Mod: shaping is stable now

Mod: shaping improved documentation
Remove: not necessary modules or moved
This commit is contained in:
L-Nafaryus 2022-01-22 22:08:47 +05:00
parent ac9e938a50
commit 00f7279c6d
No known key found for this signature in database
GPG Key ID: C76D8DCD2727DBB7
11 changed files with 647 additions and 690 deletions

View File

@ -1,17 +1,16 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
from . import utils
from . import conversion
from . import metrics
from .mesh import Mesh
from .mesh import Mesh, MeshingParameters
__all__ = [
"utils",
"conversion",
"metrics",
"Mesh"
"Mesh",
"MeshingParameters"
]

View File

@ -196,7 +196,7 @@ class Mesh:
mesh.write(path)
@property
def volumes(self) -> list[ndarray]: # delete?
def volumes(self) -> list[ndarray]:
"""Volumes.
:return:
@ -220,7 +220,7 @@ class Mesh:
return np.sum([ metrics.volume(cell) for cell in self.volumes ])
@property
def faces(self) -> list[ndarray]: # delete?
def faces(self) -> list[ndarray]:
"""Boundary faces.
:return:

View File

@ -1,9 +1,21 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
"""
Shaping is a library for using OCC shapes, provides more convient
functionality with power NumPy and Python OOP and contains interesing
primitives.
"""
from .shape import ShapeError, Shape
from . import utils
from .shape import Shape
from .periodic import Periodic
from .simple import Simple
from .faceCentered import FaceCentered
from .bodyCentered import BodyCentered
from . import primitives
__all__ = [
"utils",
"primitives",
"Shape",
"Periodic"
]

View File

@ -1,173 +0,0 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
from netgen.occ import *
import numpy
from numpy import pi, sqrt, arccos
from .occExtended import *
from . import Periodic
from . import ShapeError
class BodyCentered(Periodic):
def __init__(
self,
direction: list = None,
**kwargs
):
Periodic.__init__(
self,
alpha = kwargs.get("alpha", 0.01),
r0 = kwargs.get("r0", 1),
filletsEnabled = kwargs.get("filletsEnabled", True),
gamma = pi - 2 * arccos(sqrt(2 / 3))
)
# Parameters
self.direction = direction
self.alphaMin = 0.01
self.alphaMax = 0.18
# Objects
self.lattice = None
self.cell = None
self.shape = None
@property
def L(self):
return self.r0 * 4 / sqrt(3)
def build(self):
#
zero = Pnt(0, 0, 0)
# Lattice
spheres = numpy.array([], dtype = object)
for zn in range(3):
z = zn * self.L
z2 = z - 0.5 * self.L
for yn in range(3):
y = yn * self.L
y2 = y - 0.5 * self.L
for xn in range(3):
x = xn * self.L
x2 = x - 0.5 * self.L
spheres = numpy.append(spheres, Sphere(Pnt(x, y, z), self.radius))
# shifted
spheres = numpy.append(spheres, Sphere(Pnt(x2, y2, z2), self.radius))
lattice = spheres.sum()
lattice = lattice.Scale(zero, self.maximize)
if self.filletsEnabled:
lattice = lattice.MakeFillet(lattice.edges, self.fillets * self.maximize)
self.lattice = lattice.Scale(zero, self.minimize)
# Inlet face
if (self.direction == numpy.array([1., 0., 0.])).prod():
length = 2 * self.r0
width = self.L / 2
diag = self.L * sqrt(2)
height = self.L
xl = sqrt(diag ** 2 + diag ** 2) * 0.5
yw = xl
zh = height
vertices = numpy.array([
(xl, 0, 0),
(0, yw, 0),
(0, yw, zh),
(xl, 0, zh)
])
extr = diag
elif (self.direction == numpy.array([0., 0., 1.])).prod():
length = 2 * self.r0
width = self.L / 2
diag = self.L * sqrt(2)
height = self.L
xl = sqrt(diag ** 2 + diag ** 2) * 0.5
yw = xl
zh = height
vertices = numpy.array([
(0, yw, 0),
(xl, 0, 0),
(2 * xl, yw, 0),
(xl, 2 * yw, 0)
])
extr = height
elif (self.direction == numpy.array([1., 1., 1.])).prod():
length = 2 * self.r0
width = self.L / 2
diag = self.L * sqrt(2)
height = diag / 3
xl = -self.L / 4
yw = -self.L / 4
zh = -self.L / 4
vertices = numpy.array([
(self.L / 3 + xl, self.L / 3 + yw, 4 * self.L / 3 + zh),
(self.L + xl, 0 + yw, self.L + zh),
(4 * self.L / 3 + xl, self.L / 3 + yw, self.L / 3 + zh),
(self.L + xl, self.L + yw, 0 + zh),
(self.L / 3 + xl, 4 * self.L / 3 + yw, self.L / 3 + zh),
(0 + xl, self.L + yw, self.L + zh)
])
extr = self.L * sqrt(3)
else:
raise Exception(f"Direction { self.direction } is not implemented")
# Cell
circuit = Wire([ Segment(Pnt(*v1), Pnt(*v2)) for v1, v2 in zip(vertices, numpy.roll(vertices, -1, axis = 0)) ])
inletface = Face(circuit)
inletface.name = "inlet"
vecFlow = self.normal(inletface)
# ISSUE: don't use face.Extrude(length), only face.Extrude(length, vector)
self.cell = inletface.Extrude(extr, Vec(*vecFlow))
# Boundaries
symetryId = 0
for face in self.cell.faces:
fNorm = self.normal(face)
fAngle = self.angle(vecFlow, fNorm)
if fAngle == 0 or fAngle == numpy.pi:
if (face.center.pos() == inletface.center.pos()).prod():
face.name = "inlet"
else:
face.name = "outlet"
else:
face.name = f"symetry{ symetryId }"
symetryId += 1
# Main shape
self.shape = self.cell - self.lattice
if not len(self.shape.solids) == 1:
raise ShapeError("Expected single solid shape")
else:
self.shape = self.shape.solids[0]
# Boundaries (walls)
for face in self.shape.faces:
if face.name not in ["inlet", "outlet", *[ f"symetry{ n }" for n in range(6) ]]:
face.name = "wall"

View File

@ -1,182 +0,0 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
from netgen.occ import *
import numpy
from numpy import pi, sqrt
from .occExtended import *
from . import Periodic
from . import ShapeError
class FaceCentered(Periodic):
def __init__(
self,
direction: list = None,
**kwargs
):
Periodic.__init__(
self,
alpha = kwargs.get("alpha", 0.01),
r0 = kwargs.get("r0", 1),
filletsEnabled = kwargs.get("filletsEnabled", True),
gamma = 2 / 3 * pi
)
# Parameters
self.direction = direction
self.alphaMin = 0.01
self.alphaMax = 0.13
# Objects
self.lattice = None
self.cell = None
self.shape = None
@property
def L(self):
return self.r0 * 4 / sqrt(2)
def build(self):
#
zero = Pnt(0, 0, 0)
# Lattice
spheres = numpy.array([], dtype = object)
x0 = 0#-0.5 * self.L * (3 - 1)
x20 = 0#-0.5 * self.L * 3
z0 = -0.5 * self.L * (3 - 2)
z20 = -0.5 * self.L * (3 - 1)
for zn in range(3):
z = z0 + zn * self.L
z2 = z20 + zn * self.L
for yn in range(3):
y = yn * 2 * self.r0
y2 = yn * 2 * self.r0 + self.r0
for xn in range(3):
x = x0 + xn * 2 * self.r0
x2 = x20 + xn * 2 * self.r0 + self.r0
# TODO: fix rotations (arcs intersection -> incorrect boolean operations
spheres = numpy.append(spheres, Sphere(Pnt(x, y, z), self.radius).Rotate(Axis(Pnt(x, y, z), X), 45).Rotate(Axis(Pnt(x, y, z), Z), 45))
# shifted
spheres = numpy.append(spheres, Sphere(Pnt(x2, y2, z2), self.radius).Rotate(Axis(Pnt(x2, y2, z2), X), 45).Rotate(Axis(Pnt(x2, y2, z2), Z), 45))
lattice = spheres.sum()
lattice = lattice.Move(Vec(-self.r0 * 2, -self.r0 * 2, 0)).Rotate(Axis(zero, Z), 45)
lattice = lattice.Scale(zero, self.maximize)
if self.filletsEnabled:
lattice = lattice.MakeFillet(lattice.edges, self.fillets * self.maximize)
self.lattice = lattice.Scale(zero, self.minimize)
# Inlet face
if (self.direction == numpy.array([1., 0., 0.])).prod():
length = 2 * self.r0
width = self.L / 2
diag = self.L * sqrt(3)
height = diag / 3
xl = sqrt(length ** 2 + length ** 2) * 0.5
yw = xl
zh = width
vertices = numpy.array([
(0, 0, -zh),
(-xl, yw, -zh),
(-xl, yw, zh),
(0, 0, zh)
])
extr = length
elif (self.direction == numpy.array([0., 0., 1.])).prod():
length = 2 * self.r0
width = self.L / 2
diag = self.L * sqrt(3)
height = diag / 3
xl = sqrt(length ** 2 + length ** 2) * 0.5
yw = xl
zh = width
vertices = numpy.array([
(0, 0, -zh),
(xl, yw, -zh),
(0, 2 * yw, -zh),
(-xl, yw, -zh)
])
extr = 2 * width
elif (self.direction == numpy.array([1., 1., 1.])).prod():
length = 2 * self.r0
width = self.L / 2
diag = self.L * sqrt(3)
height = diag / 3
xl = -(3 - 2) * self.L / 3
yw = -(3 - 2) * self.L / 3
zh = -(3 - 2) * self.L / 3
vertices = numpy.array([
(-2 * width / 3 + xl, -2 * width / 3 + yw, width / 3 + zh),
(0 + xl, -width + yw, 0 + zh),
(width / 3 + xl, -2 * width / 3 + yw, -2 * width / 3 + zh),
(0 + xl, 0 + yw, -width + zh),
(-2 * width / 3 + xl, width / 3 + yw, -2 * width / 3 + zh),
(-width + xl, 0 + yw, 0 + zh)
])
extr = sqrt(3) * self.L
else:
raise Exception(f"Direction { self.direction } is not implemented")
# Cell
circuit = Wire([ Segment(Pnt(*v1), Pnt(*v2)) for v1, v2 in zip(vertices, numpy.roll(vertices, -1, axis = 0)) ])
inletface = Face(circuit)
inletface.name = "inlet"
vecFlow = self.normal(inletface)
# ISSUE: don't use face.Extrude(length), only face.Extrude(length, vector)
self.cell = inletface.Extrude(extr, Vec(*vecFlow))
# Boundaries
symetryId = 0
for face in self.cell.faces:
fNorm = self.normal(face)
fAngle = self.angle(vecFlow, fNorm)
if fAngle == 0 or fAngle == numpy.pi:
if (face.center.pos() == inletface.center.pos()).prod():
face.name = "inlet"
else:
face.name = "outlet"
else:
face.name = f"symetry{ symetryId }"
symetryId += 1
# Main shape
self.shape = self.cell - self.lattice
if not len(self.shape.solids) == 1:
raise ShapeError("Expected single solid shape")
else:
self.shape = self.shape.solids[0]
# Boundaries (walls)
for face in self.shape.faces:
if face.name not in ["inlet", "outlet", *[ f"symetry{ n }" for n in range(6) ]]:
face.name = "wall"

View File

@ -1,41 +0,0 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
from functools import wraps
from netgen import occ
import numpy
def add_method(cls):
"""Add method to existing class. Use it as decorator.
"""
def decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
return func(self, *args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func
return decorator
@add_method(occ.gp_Pnt)
def pos(self) -> numpy.array:
return numpy.array([self.x, self.y, self.z])
# ISSUE: netgen.occ.Face.Extrude: the opposite face has the same name and normal vector as an initial face.
#def reconstruct(shape):
# """Reconstruct shape with new objects.
# """
# faces = []
#
# for face in shape.faces:
# faceNew = occ.Face(face.wires[0])
# faceNew.name = face.name
# faces.append(faceNew)
#
# return occ.Solid(faces)

View File

@ -1,9 +1,6 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
from netgen.occ import *
from numpy import pi, sqrt, cos, arccos, fix
import numpy as np
from . import Shape
@ -13,85 +10,60 @@ class Periodic(Shape):
self,
alpha: float = None,
r0: float = 1,
#L: float = None,
#radius: float = None,
L: float = None,
filletsEnabled: bool = True,
#fillets: float = None,
gamma = None,
**kwargs
):
"""Constructor method.
"""A Periodic object contains periodic structure.
:param alpha:
Spheres overlap parameter.
:param r0:
Initial spheres radius.
:param L:
Side length of periodic cell. Depends on r0.
:param gamma:
Angle between lines that connect centers of spheres.
:param filletsEnabled:
Enable fillets beetween spheres.
If True, calculate fillets beetween spheres.
"""
Shape.__init__(self)
# Parameters
self.alpha = alpha
self.r0 = r0
self.L = L
self.theta = 0.5 * pi
# for lattice
# self.theta = 0.5 * pi
self.gamma = gamma or pi - 2 * (0.5 * self.theta)
self.gamma = gamma or np.pi - 2 * (0.5 * 0.5 * np.pi)
self.filletsEnabled = filletsEnabled
self.filletsScale = 0.8
# scale parameters for precision boolean operations
# scale parameters for precision boolean operations
self.maximize = 1e+2
self.minimize = 1e-2
@property
def L(self):
"""(Override) Parameter depending on the ``r0``.
"""
pass
@property
def radius(self):
def radius(self) -> float:
"""Spheres radius
:return:
Radius.
"""
return self.r0 / (1 - self.alpha)
@property
def fillets(self):
analytical = self.r0 * sqrt(2) / sqrt(1 - cos(self.gamma)) - self.radius
# ISSUE: MakeFilletAll : Fillet can't be computed on the given shape with the given radius.
# Temporary solution: degrade the precision (minRound <= analytical).
"""Fillets radius beetween spheres.
:return:
Radius.
"""
analytical = self.r0 * np.sqrt(2) / np.sqrt(1 - np.cos(self.gamma)) - self.radius
rTol = 3
minRound = fix(10 ** rTol * analytical) * 10 ** -rTol
minRound = np.fix(10 ** rTol * analytical) * 10 ** -rTol
return minRound * self.filletsScale
def lattice(self,
theta = 0.5 * pi
):
zero = Pnt(0, 0, 0)
maximize = 1e+2
minimize = 1e-2
# Lattice
spheres = numpy.array([], dtype = object)
for zn in range(3):
z = zn * self.L
for yn in range(3):
y = yn * self.L
for xn in range(3):
x = xn * self.L
spheres = numpy.append(spheres, Sphere(Pnt(x, y, z), self.radius))
lattice = spheres.sum()
lattice = lattice.Scale(zero, maximize)
if self.filletsEnabled:
lattice = lattice.MakeFillet(lattice.edges, self.fillets * maximize)
self.lattice = lattice.Scale(zero, minimize)

View File

@ -0,0 +1,499 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from numpy import ndarray
import numpy as np
import netgen.occ as ng_occ
from . import Periodic
from . import utils
def simple(alpha: float, direction: list | ndarray, **kwargs) -> Periodic:
"""Simple periodic structure.
:param alpha:
Spheres overlap parameter.
:param direction:
Flow direction vector. This parameter affects the geometry type
and boundary (faces) names.
:return:
Periodic object.
"""
# base object
pc = Periodic(
alpha = alpha,
gamma = np.pi - 2 * (0.5 * 0.5 * np.pi)
)
# additional parameters
pc.__dict__.update(kwargs)
pc.L = 2 * pc.r0
pc.direction = np.asarray(direction)
# additional attributes
pc.cell: ng_occ.Solid = None
pc.lattice: ng_occ.Solid = None
# constants
zero = ng_occ.Pnt(0, 0, 0)
# Lattice
spheres = []
for zn in range(3):
z = zn * pc.L
for yn in range(3):
y = yn * pc.L
for xn in range(3):
x = xn * pc.L
spheres.append(ng_occ.Sphere(ng_occ.Pnt(x, y, z), pc.radius))
lattice = np.sum(spheres)
lattice = lattice.Scale(zero, pc.maximize)
if pc.filletsEnabled:
lattice = lattice.MakeFillet(lattice.edges, pc.fillets * pc.maximize)
pc.lattice = lattice.Scale(zero, pc.minimize)
# Inlet face
if np.all(pc.direction == [1., 0., 0.]):
length = pc.L * np.sqrt(2)
width = pc.L * np.sqrt(2)
height = pc.L
xl = np.sqrt(length ** 2 * 0.5)
yw = xl
zh = height
vertices = np.array([
(xl, 0, 0),
(0, yw, 0),
(0, yw, zh),
(xl, 0, zh)
])
extr = width
elif np.all(pc.direction == [0., 0., 1.]):
length = pc.L * np.sqrt(2)
width = pc.L * np.sqrt(2)
height = pc.L
xl = np.sqrt(length ** 2 * 0.5)
yw = xl
zh = height
vertices = np.array([
(0, yw, 0),
(xl, 0, 0),
(2 * xl, yw, 0),
(xl, 2 * yw, 0)
])
extr = height
elif np.all(pc.direction == [1., 1., 1.]):
length = pc.L * np.sqrt(2)
width = pc.L * np.sqrt(2)
height = pc.L
xl = -pc.L - pc.L / 6
yw = -pc.L - pc.L / 6
zh = -pc.L / 6
vertices = np.array([
(pc.L + xl, pc.L + yw, pc.L + zh),
(5 * pc.L / 3 + xl, 2 * pc.L / 3 + yw, 2 * pc.L / 3 + zh),
(2 * pc.L + xl, pc.L + yw, 0 + zh),
(5 * pc.L / 3 + xl, 5 * pc.L / 3 + yw, -pc.L / 3 + zh),
(pc.L + xl, 2 * pc.L + yw, 0 + zh),
(2 * pc.L / 3 + xl, 5 * pc.L / 3 + yw, 2 * pc.L / 3 + zh)
])
extr = pc.L * np.sqrt(3)
else:
raise Exception(f"Direction { pc.direction } is not implemented")
# Cell
circuit = ng_occ.Wire([
ng_occ.Segment(ng_occ.Pnt(*v1), ng_occ.Pnt(*v2))
for v1, v2 in zip(vertices, np.roll(vertices, -1, axis = 0))
])
inletface = ng_occ.Face(circuit)
inletface.name = "inlet"
vecFlow = utils.normal(inletface)
pc.cell = inletface.Extrude(extr, ng_occ.Vec(*vecFlow))
# Boundary faces
symetryId = 0
for face in pc.cell.faces:
fNorm = utils.normal(face)
fAngle = utils.angle(vecFlow, fNorm)
if fAngle == 0 or fAngle == np.pi:
if np.all(utils.pos(face.center) == utils.pos(inletface.center)):
face.name = "inlet"
else:
face.name = "outlet"
else:
face.name = f"symetry{ symetryId }"
symetryId += 1
# Main shape
pc.shape = pc.cell - pc.lattice
assert len(pc.shape.solids) == 1, "Expected single solid shape"
pc.shape = pc.shape.solids[0]
# Boundary faces (walls)
for face in pc.shape.faces:
if face.name not in ["inlet", "outlet", *[ f"symetry{ n }" for n in range(6) ]]:
face.name = "wall"
return pc
def body_centered(alpha: float, direction: list | ndarray, **kwargs) -> Periodic:
"""Body centered periodic structure.
:param alpha:
Spheres overlap parameter.
:param direction:
Flow direction vector. This parameter affects the geometry type
and boundary (faces) names.
:return:
Periodic object.
"""
# base object
pc = Periodic(
alpha = alpha,
gamma = np.pi - 2 * np.arccos(np.sqrt(2 / 3))
)
# additional parameters
pc.__dict__.update(kwargs)
pc.L = 4 / np.sqrt(3) * pc.r0
pc.direction = np.asarray(direction)
# additional attributes
pc.cell: ng_occ.Solid = None
pc.lattice: ng_occ.Solid = None
# constants
zero = ng_occ.Pnt(0, 0, 0)
# Lattice
spheres = []
for zn in range(3):
z = zn * pc.L
z2 = z - 0.5 * pc.L
for yn in range(3):
y = yn * pc.L
y2 = y - 0.5 * pc.L
for xn in range(3):
x = xn * pc.L
x2 = x - 0.5 * pc.L
spheres.append(ng_occ.Sphere(ng_occ.Pnt(x, y, z), pc.radius))
# shifted
spheres.append(ng_occ.Sphere(ng_occ.Pnt(x2, y2, z2), pc.radius))
lattice = np.sum(spheres)
lattice = lattice.Scale(zero, pc.maximize)
if pc.filletsEnabled:
lattice = lattice.MakeFillet(lattice.edges, pc.fillets * pc.maximize)
pc.lattice = lattice.Scale(zero, pc.minimize)
# Inlet face
if np.all(pc.direction == [1., 0., 0.]):
# length = 2 * pc.r0
# width = pc.L / 2
diag = pc.L * np.sqrt(2)
height = pc.L
xl = np.sqrt(diag ** 2 + diag ** 2) * 0.5
yw = xl
zh = height
vertices = np.array([
(xl, 0, 0),
(0, yw, 0),
(0, yw, zh),
(xl, 0, zh)
])
extr = diag
elif np.all(pc.direction == [0., 0., 1.]):
# length = 2 * pc.r0
# width = pc.L / 2
diag = pc.L * np.sqrt(2)
height = pc.L
xl = np.sqrt(diag ** 2 + diag ** 2) * 0.5
yw = xl
zh = height
vertices = np.array([
(0, yw, 0),
(xl, 0, 0),
(2 * xl, yw, 0),
(xl, 2 * yw, 0)
])
extr = height
elif np.all(pc.direction == [1., 1., 1.]):
# length = 2 * pc.r0
# width = pc.L / 2
diag = pc.L * np.sqrt(2)
height = diag / 3
xl = -pc.L / 4
yw = -pc.L / 4
zh = -pc.L / 4
vertices = np.array([
(pc.L / 3 + xl, pc.L / 3 + yw, 4 * pc.L / 3 + zh),
(pc.L + xl, 0 + yw, pc.L + zh),
(4 * pc.L / 3 + xl, pc.L / 3 + yw, pc.L / 3 + zh),
(pc.L + xl, pc.L + yw, 0 + zh),
(pc.L / 3 + xl, 4 * pc.L / 3 + yw, pc.L / 3 + zh),
(0 + xl, pc.L + yw, pc.L + zh)
])
extr = pc.L * np.sqrt(3)
else:
raise Exception(f"Direction { pc.direction } is not implemented")
# Cell
circuit = ng_occ.Wire([
ng_occ.Segment(ng_occ.Pnt(*v1), ng_occ.Pnt(*v2))
for v1, v2 in zip(vertices, np.roll(vertices, -1, axis = 0))
])
inletface = ng_occ.Face(circuit)
inletface.name = "inlet"
vecFlow = utils.normal(inletface)
pc.cell = inletface.Extrude(extr, ng_occ.Vec(*vecFlow))
# Boundary faces
symetryId = 0
for face in pc.cell.faces:
fNorm = utils.normal(face)
fAngle = utils.angle(vecFlow, fNorm)
if fAngle == 0 or fAngle == np.pi:
if np.all(utils.pos(face.center) == utils.pos(inletface.center)):
face.name = "inlet"
else:
face.name = "outlet"
else:
face.name = f"symetry{ symetryId }"
symetryId += 1
# Main shape
pc.shape = pc.cell - pc.lattice
assert len(pc.shape.solids) == 1, "Expected single solid shape"
pc.shape = pc.shape.solids[0]
# Boundary faces (walls)
for face in pc.shape.faces:
if face.name not in ["inlet", "outlet", *[ f"symetry{ n }" for n in range(6) ]]:
face.name = "wall"
return pc
def face_centered(alpha: float, direction: list | ndarray, **kwargs) -> Periodic:
"""Face centered periodic structure.
:param alpha:
Spheres overlap parameter.
:param direction:
Flow direction vector. This parameter affects the geometry type
and boundary (faces) names.
:return:
Periodic object.
"""
# base class
pc = Periodic(
alpha = alpha,
gamma = 2 / 3 * np.pi
)
# additional parameters
pc.__dict__.update(kwargs)
pc.L = 4 / np.sqrt(2) * pc.r0
pc.direction = np.asarray(direction)
# additional attributes
pc.cell: ng_occ.Solid = None
pc.lattice: ng_occ.Solid = None
# constants
zero = ng_occ.Pnt(0, 0, 0)
# Lattice
spheres = []
x0 = 0
x20 = 0
z0 = -0.5 * pc.L * (3 - 2)
z20 = -0.5 * pc.L * (3 - 1)
for zn in range(3):
z = z0 + zn * pc.L
z2 = z20 + zn * pc.L
for yn in range(3):
y = yn * 2 * pc.r0
y2 = yn * 2 * pc.r0 + pc.r0
for xn in range(3):
x = x0 + xn * 2 * pc.r0
x2 = x20 + xn * 2 * pc.r0 + pc.r0
# TODO: fix rotations (arcs intersection -> incorrect boolean operations
spheres.append(
ng_occ.Sphere(ng_occ.Pnt(x, y, z), pc.radius)
.Rotate(ng_occ.Axis(ng_occ.Pnt(x, y, z), ng_occ.X), 45)
.Rotate(ng_occ.Axis(ng_occ.Pnt(x, y, z), ng_occ.Z), 45)
)
# shifted
spheres.append(
ng_occ.Sphere(ng_occ.Pnt(x2, y2, z2), pc.radius)
.Rotate(ng_occ.Axis(ng_occ.Pnt(x2, y2, z2), ng_occ.X), 45)
.Rotate(ng_occ.Axis(ng_occ.Pnt(x2, y2, z2), ng_occ.Z), 45)
)
lattice = np.sum(spheres)
lattice = (
lattice.Move(ng_occ.Vec(-pc.r0 * 2, -pc.r0 * 2, 0))
.Rotate(ng_occ.Axis(zero, ng_occ.Z), 45)
)
lattice = lattice.Scale(zero, pc.maximize)
if pc.filletsEnabled:
lattice = lattice.MakeFillet(lattice.edges, pc.fillets * pc.maximize)
pc.lattice = lattice.Scale(zero, pc.minimize)
# Inlet face
if np.all(pc.direction == [1., 0., 0.]):
length = 2 * pc.r0
width = pc.L / 2
# diag = pc.L * np.sqrt(3)
# height = diag / 3
xl = np.sqrt(length ** 2 + length ** 2) * 0.5
yw = xl
zh = width
vertices = np.array([
(0, 0, -zh),
(-xl, yw, -zh),
(-xl, yw, zh),
(0, 0, zh)
])
extr = length
elif np.all(pc.direction == [0., 0., 1.]):
length = 2 * pc.r0
width = pc.L / 2
# diag = pc.L * np.sqrt(3)
# height = diag / 3
xl = np.sqrt(length ** 2 + length ** 2) * 0.5
yw = xl
zh = width
vertices = np.array([
(0, 0, -zh),
(xl, yw, -zh),
(0, 2 * yw, -zh),
(-xl, yw, -zh)
])
extr = 2 * width
elif np.all(pc.direction == [1., 1., 1.]):
length = 2 * pc.r0
width = pc.L / 2
# diag = pc.L * np.sqrt(3)
# height = diag / 3
xl = -(3 - 2) * pc.L / 3
yw = -(3 - 2) * pc.L / 3
zh = -(3 - 2) * pc.L / 3
vertices = np.array([
(-2 * width / 3 + xl, -2 * width / 3 + yw, width / 3 + zh),
(0 + xl, -width + yw, 0 + zh),
(width / 3 + xl, -2 * width / 3 + yw, -2 * width / 3 + zh),
(0 + xl, 0 + yw, -width + zh),
(-2 * width / 3 + xl, width / 3 + yw, -2 * width / 3 + zh),
(-width + xl, 0 + yw, 0 + zh)
])
extr = np.sqrt(3) * pc.L
else:
raise Exception(f"Direction { pc.direction } is not implemented")
# Cell
circuit = ng_occ.Wire([
ng_occ.Segment(ng_occ.Pnt(*v1), ng_occ.Pnt(*v2))
for v1, v2 in zip(vertices, np.roll(vertices, -1, axis = 0))
])
inletface = ng_occ.Face(circuit)
inletface.name = "inlet"
vecFlow = utils.normal(inletface)
pc.cell = inletface.Extrude(extr, ng_occ.Vec(*vecFlow))
# Boundary faces
symetryId = 0
for face in pc.cell.faces:
fNorm = utils.normal(face)
fAngle = utils.angle(vecFlow, fNorm)
if fAngle == 0 or fAngle == np.pi:
if np.all(utils.pos(face.center) == utils.pos(inletface.center)):
face.name = "inlet"
else:
face.name = "outlet"
else:
face.name = f"symetry{ symetryId }"
symetryId += 1
# Main shape
pc.shape = pc.cell - pc.lattice
assert len(pc.shape.solids) == 1, "Expected single solid shape"
pc.shape = pc.shape.solids[0]
# Boundary faces (walls)
for face in pc.shape.faces:
if face.name not in ["inlet", "outlet", *[ f"symetry{ n }" for n in range(6) ]]:
face.name = "wall"
return pc

View File

@ -1,80 +1,95 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
from netgen.occ import *
import numpy
from numpy import linalg
import os
from __future__ import annotations
from numpy import ndarray
from os import PathLike
from pathlib import Path
import numpy as np
import netgen.occ as ng_occ
import pathlib
class ShapeError(Exception):
pass
from . import utils
class Shape(object):
def __init__(self):
"""A Shape object contains OCC shape.
"""
self.groups = {}
self.shape = None
@property
def geometry(self) -> ng_occ.OCCGeometry:
"""Shape as OCCGeometry object.
"""
return ng_occ.OCCGeometry(self.shape)
@property
def type(self) -> ng_occ.TopAbs_ShapeEnum:
"""Type of the shape. (shortcut)
"""
return self.shape.type
@property
def volume(self) -> float:
"""Volume of the shape. (shortcut)
"""
return self.shape.volume
@property
def center(self) -> ndarray:
"""Center of the shape.
"""
return np.array(utils.pos(self.shape.center))
def write(self, filename: PathLike):
"""Export a shape.
"""Export a shape to the file.
Supported formats: step.
:param filename:
Name of the file to store the given shape in.
:return:
Output, error messages and returncode
Path of the file.
"""
out, err, returncode = "", "", 0
path = Path(filename).resolve()
path = pathlib.Path(filename).resolve()
ext = path.suffix[1: ]
try:
if ext == "step":
self.shape.WriteStep(path)
else:
raise NotImplementedError(f"{ ext } is not supported")
except NotImplementedError as e:
err = e
returncode = 1
if ext == "step":
self.shape.WriteStep(str(path))
except Exception as e:
err = e
returncode = 1
return out, err, returncode
else:
raise NotImplementedError(f"Shape format '{ ext }' is not supported")
def read(self, filename: PathLike):
path = Path(filename).resolve()
"""Import a shape from the file.
Supported formats: step, iges, brep.
:param filename:
Path of the file.
"""
path = pathlib.Path(filename).resolve()
ext = path.suffix[1: ]
if ext in ["step", "iges", "brep"]:
self.shape = OCCGeometry(path).shape
self.shape = ng_occ.OCCGeometry(str(path)).shape
else:
raise NotImplementedError(f"Shape format '{ext}' is not supported")
return self
def patches(self, group: bool = False, shiftIndex: bool = False, prefix: str = None):
def patches(
self,
group: bool = False,
shiftIndex: bool = False,
prefix: str = None
) -> list | dict:
"""Get patches indices with their names.
:param group:
Group indices together with the same patches names.
:param shiftIndex:
Start numerating with one instead of zero.
:param prefix:
Add string prefix to the index.
:return:
List if group = False else dictionary.
"""
@ -105,24 +120,3 @@ class Shape(object):
patches_.append((item, face.name))
return patches_
def normal(self, face: FACE) -> numpy.array:
"""
:return:
Normal vector to face.
"""
_, u, v = face.surf.D1(0, 0)
return numpy.cross([u.x, u.y, u.z], [v.x, v.y, v.z])
def angle(self, vec1: numpy.array, vec2: numpy.array) -> float:
"""
:return:
Angle between two vectors in radians.
"""
inner = numpy.inner(vec1, vec2)
norms = linalg.norm(vec1) * linalg.norm(vec2)
cos = inner / norms
return numpy.arccos(numpy.clip(cos, -1.0, 1.0))

View File

@ -1,170 +0,0 @@
# -*- coding: utf-8 -*-
# This file is part of anisotropy.
# License: GNU GPL version 3, see the file "LICENSE" for details.
from netgen.occ import *
import numpy
from numpy import pi, sqrt
from .occExtended import *
from . import Periodic
from . import ShapeError
class Simple(Periodic):
def __init__(
self,
direction: list = None,
**kwargs
):
Periodic.__init__(
self,
alpha = kwargs.get("alpha", 0.01),
r0 = kwargs.get("r0", 1),
filletsEnabled = kwargs.get("filletsEnabled", True)
)
# Parameters
self.direction = direction
self.alphaMin = 0.01
self.alphaMax = 0.28
# Objects
self.lattice = None
self.cell = None
self.shape = None
@property
def L(self):
return 2 * self.r0
def build(self):
#
zero = Pnt(0, 0, 0)
# Lattice
spheres = numpy.array([], dtype = object)
for zn in range(3):
z = zn * self.L
for yn in range(3):
y = yn * self.L
for xn in range(3):
x = xn * self.L
spheres = numpy.append(spheres, Sphere(Pnt(x, y, z), self.radius))
lattice = spheres.sum()
lattice = lattice.Scale(zero, self.maximize)
if self.filletsEnabled:
lattice = lattice.MakeFillet(lattice.edges, self.fillets * self.maximize)
self.lattice = lattice.Scale(zero, self.minimize)
# Inlet face
if (self.direction == numpy.array([1., 0., 0.])).prod():
length = self.L * numpy.sqrt(2)
width = self.L * numpy.sqrt(2)
height = self.L
xl = numpy.sqrt(length ** 2 * 0.5)
yw = xl
zh = height
vertices = numpy.array([
(xl, 0, 0),
(0, yw, 0),
(0, yw, zh),
(xl, 0, zh)
])
extr = width
elif (self.direction == numpy.array([0., 0., 1.])).prod():
length = self.L * numpy.sqrt(2)
width = self.L * numpy.sqrt(2)
height = self.L
xl = numpy.sqrt(length ** 2 * 0.5)
yw = xl
zh = height
vertices = numpy.array([
(0, yw, 0),
(xl, 0, 0),
(2 * xl, yw, 0),
(xl, 2 * yw, 0)
])
extr = height
elif (self.direction == numpy.array([1., 1., 1.])).prod():
length = self.L * numpy.sqrt(2)
width = self.L * numpy.sqrt(2)
height = self.L
xl = -self.L - self.L / 6
yw = -self.L - self.L / 6
zh = -self.L / 6
vertices = numpy.array([
(self.L + xl, self.L + yw, self.L + zh),
(5 * self.L / 3 + xl, 2 * self.L / 3 + yw, 2 * self.L / 3 + zh),
(2 * self.L + xl, self.L + yw, 0 + zh),
(5 * self.L / 3 + xl, 5 * self.L / 3 + yw, -self.L / 3 + zh),
(self.L + xl, 2 * self.L + yw, 0 + zh),
(2 * self.L / 3 + xl, 5 * self.L / 3 + yw, 2 * self.L / 3 + zh)
])
extr = self.L * sqrt(3)
else:
raise Exception(f"Direction { self.direction } is not implemented")
#
# Cell
circuit = Wire([ Segment(Pnt(*v1), Pnt(*v2)) for v1, v2 in zip(vertices, numpy.roll(vertices, -1, axis = 0)) ])
inletface = Face(circuit)
inletface.name = "inlet"
vecFlow = self.normal(inletface)
# ISSUE: don't use face.Extrude(length), only face.Extrude(length, vector)
self.cell = inletface.Extrude(extr, Vec(*vecFlow))
# Boundaries
symetryId = 0
for face in self.cell.faces:
fNorm = self.normal(face)
fAngle = self.angle(vecFlow, fNorm)
if fAngle == 0 or fAngle == numpy.pi:
if (face.center.pos() == inletface.center.pos()).prod():
face.name = "inlet"
else:
face.name = "outlet"
else:
face.name = f"symetry{ symetryId }"
symetryId += 1
# Main shape
self.shape = self.cell - self.lattice
if not len(self.shape.solids) == 1:
raise ShapeError("Expected single solid shape")
else:
self.shape = self.shape.solids[0]
# Boundaries (walls)
for face in self.shape.faces:
if face.name not in ["inlet", "outlet", *[ f"symetry{ n }" for n in range(6) ]]:
face.name = "wall"

View File

@ -0,0 +1,47 @@
# -*- coding: utf-8 -*-
from numpy import ndarray
import numpy as np
import netgen.occ as ng_occ
def pos(point: ng_occ.gp_Pnt) -> ndarray:
"""Extract coordinates from point.
:param point:
OCC point object
:return:
Array of coordinates.
"""
return np.array([ point.x, point.y, point.z ])
def normal(face: ng_occ.Face) -> ndarray:
"""Calculate normal vector from face.
:param face:
OCC face object.
:return:
Normal vector from face.
"""
_, u, v = face.surf.D1(0, 0)
return np.cross([u.x, u.y, u.z], [v.x, v.y, v.z])
def angle(vec1: ndarray, vec2: ndarray) -> float:
"""Angle between two vectors.
:param vec1:
Array of points that represents first vector.
:param vec2:
Array of points that represents second vector.
:return:
Angle between two vectors in radians.
"""
inner = np.inner(vec1, vec2)
norms = np.linalg.norm(vec1) * np.linalg.norm(vec2)
cos = inner / norms
return np.arccos(np.clip(cos, -1.0, 1.0))