Quaternions: fix

This commit is contained in:
L-Nafaryus 2021-03-31 23:11:29 +05:00
parent e593583f26
commit ede45cd925
No known key found for this signature in database
GPG Key ID: C76D8DCD2727DBB7
8 changed files with 96 additions and 80 deletions

2
run.py
View File

@ -33,7 +33,7 @@ def createTasks():
for structure in structures:
if structure == "simpleCubic":
theta = [c * 0.01 for c in range(1, 14)]
theta = [c * 0.01 for c in range(1, 29 + 1)]
elif structure == "faceCenteredCubic":
theta = []

View File

@ -37,31 +37,35 @@ def genMesh(stype, theta, flowdirection, saveto):
# initial angle
angle = math.pi / 6
vec = Quaternion(0, flowdirection[0], flowdirection[1], flowdirection[2])
ax = Quaternion(
math.cos(angle * 0.5),
math.sin(angle * 0.5) * norm[0],
math.sin(angle * 0.5) * norm[1],
math.sin(angle * 0.5) * norm[2])
qvec = (ax * vec * ax.inverse).vector
norm = [qvec[0], qvec[1], qvec[2]]
#vec = Quaternion(0, norm[0], norm[1], norm[2])
#ax = Quaternion(
# math.cos(angle * 0.5),
# math.sin(angle * 0.5) * flowdirection[0],
# math.sin(angle * 0.5) * flowdirection[1],
# math.sin(angle * 0.5) * flowdirection[2])
#qvec = (ax * vec * ax.inverse).vector
#normvec = [qvec[0], qvec[1], qvec[2]]
normvec = Quaternion(axis = flowdirection, angle = angle).rotate(norm)
direction = [1, 1, 1]
#direction = fd([1, 1, 1], [1, -1, 1], [1, -1, -1])
#else:
# geometry = cubic
if flowdirection == [1, 0, 0]:
norm = [0, 0, 1]
normvec = [0, 0, 1]
bcount = 4
direction = [1, 1, 0]
#direction = fd([1, 1, 0], [1, -1, 0], [0, 0, 1])
if flowdirection == [0, 0, 1]:
norm = [1, 1, 0]
normvec = [1, 1, 0]
bcount = 4
direction = [0, 0, 1]
#direction = fd([0, 0, 1], [1, -1, 0], [1, 1, 0])
#boundary = geometry_utils.boundaryCreate(geometry, direction, grains)
boundary = geometry_utils.createBoundary(geometry, bcount, flowdirection, norm, grains)
boundary = geometry_utils.createBoundary(geometry, bcount, direction, normvec, grains)
fineness = 3
mesh = mesh_utils.meshCreate(geometry, boundary, fineness)

View File

@ -127,22 +127,21 @@ def bodyCenteredCubic(alpha):
Pore_3b = geompy.MakeCutList(Cut_3b, [Middle])
Pore_3c = geompy.MakeCutList(Cut_3c, [Middle])
geompy.addToStudy( Sphere_1, 'Sphere_'+str(i+1) )
geompy.addToStudy( Down, 'Down_'+str(i+1) )
geompy.addToStudy( Up, 'Up_'+str(i+1) )
geompy.addToStudy( Up_Down, 'Up_Down_'+str(i+1) )
geompy.addToStudy( Cut_1a, 'Cut_1a_'+str(i+1) )
geompy.addToStudy( Cut_1b, 'Cut_1b_'+str(i+1) )
geompy.addToStudy( Middle, 'Middle_'+str(i+1) )
geompy.addToStudy( Pore_1a, 'Pore_1a_'+str(i+1) )
geompy.addToStudy( Pore_1b, 'Pore_1b_'+str(i+1) )
geompy.addToStudy( Pore_2a, 'Pore_2a_'+str(i+1) )
geompy.addToStudy( Pore_2b, 'Pore_2b_'+str(i+1) )
geompy.addToStudy( Pore_3a, 'Pore_3a_'+str(i+1) )
geompy.addToStudy( Pore_3b, 'Pore_3b_'+str(i+1) )
geompy.addToStudy( Pore_3c, 'Pore_3c_'+str(i+1) )
geompy.addToStudy( Sphere_1, 'Sphere_' )
geompy.addToStudy( Down, 'Down_' )
geompy.addToStudy( Up, 'Up_' )
geompy.addToStudy( Up_Down, 'Up_Down_' )
geompy.addToStudy( Cut_1a, 'Cut_1a_' )
geompy.addToStudy( Cut_1b, 'Cut_1b_' )
geompy.addToStudy( Middle, 'Middle_' )
geompy.addToStudy( Pore_1a, 'Pore_1a_' )
geompy.addToStudy( Pore_1b, 'Pore_1b_' )
geompy.addToStudy( Pore_2a, 'Pore_2a_' )
geompy.addToStudy( Pore_2b, 'Pore_2b_' )
geompy.addToStudy( Pore_3a, 'Pore_3a_' )
geompy.addToStudy( Pore_3b, 'Pore_3b_' )
geompy.addToStudy( Pore_3c, 'Pore_3c_' )
i = i + 1
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()

View File

@ -125,19 +125,18 @@ def faceCenteredCubic(alpha):
Cut_7 = geompy.MakeCutList(Extrusion_4, [Up_Down], True)
Cut_8 = geompy.MakeCutList(Cut_7, [Middle_Up], True)
#geompy.addToStudy( Sphere_1, 'Sphere_'+str(i+1) )
geompy.addToStudy( Down, 'Down_'+str(i+1) )
geompy.addToStudy( Up_Down, 'Up_Down_'+str(i+1) )
geompy.addToStudy( Cut_1, 'Cut_1_'+str(i+1) )
geompy.addToStudy( Middle_Up, 'Middle_Up_'+str(i+1) )
geompy.addToStudy( Cut_2, 'Pore_'+str(i+1) )
geompy.addToStudy( Common, 'Pore_2_'+str(i+1) )
geompy.addToStudy( Pore_3, 'Pore_3_'+str(i+1) )
geompy.addToStudy( Cut_4, 'Pore_3a_'+str(i+1) )
geompy.addToStudy( Cut_6, 'Pore_3b_'+str(i+1) )
geompy.addToStudy( Cut_8, 'Pore_3c_'+str(i+1) )
#geompy.addToStudy( Sphere_1, 'Sphere_' )
geompy.addToStudy( Down, 'Down_' )
geompy.addToStudy( Up_Down, 'Up_Down_' )
geompy.addToStudy( Cut_1, 'Cut_1_' )
geompy.addToStudy( Middle_Up, 'Middle_Up_' )
geompy.addToStudy( Cut_2, 'Pore_' )
geompy.addToStudy( Common, 'Pore_2_' )
geompy.addToStudy( Pore_3, 'Pore_3_' )
geompy.addToStudy( Cut_4, 'Pore_3a_' )
geompy.addToStudy( Cut_6, 'Pore_3b_' )
geompy.addToStudy( Cut_8, 'Pore_3c_' )
i = i + 1
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()

View File

@ -99,15 +99,14 @@ def simpleCubic(alpha):
Cut_4 = geompy.MakeCutList(Extrusion_3, [Multi_Translation_3])
geompy.addToStudy( Sphere_1, 'Sphere_' )
geompy.addToStudy( Multi_Translation_2, 'Multi-Translation_2_'+str(i+1) )
geompy.addToStudy( Multi_Translation_3, 'Multi-Translation_3_'+str(i+1) )
geompy.addToStudy( Cut_1, 'Pore1_'+str(i+1) )
geompy.addToStudy( Cut_2, 'Pore2_'+str(i+1) )
geompy.addToStudy( Cut_3, 'Pore3_'+str(i+1) )
geompy.addToStudy( Cut_V, 'Cut_V_'+str(i+1) )
geompy.addToStudy( Cut_4, 'Pore4_'+str(i+1) )
geompy.addToStudy( Multi_Translation_2, 'Multi-Translation_2_' )
geompy.addToStudy( Multi_Translation_3, 'Multi-Translation_3_' )
geompy.addToStudy( Cut_1, 'Pore1_' )
geompy.addToStudy( Cut_2, 'Pore2_' )
geompy.addToStudy( Cut_3, 'Pore3_' )
geompy.addToStudy( Cut_V, 'Cut_V_' )
geompy.addToStudy( Cut_4, 'Pore4_' )
i = i + 1
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()

View File

@ -6,10 +6,6 @@ from datetime import timedelta
def application(name, case, log=False, args=[], parallel=False):
#if log:
# logfile = open("{}/{}.log".format(case, name), "a")
mpirun = []
if parallel:
mpirun = ["mpirun", "-np", "4", "--oversubscribe"]
@ -18,7 +14,6 @@ def application(name, case, log=False, args=[], parallel=False):
logging.info("Running '{}'".format(" ".join(cmd)))
with subprocess.Popen(cmd,
#shell = True,
stdout = subprocess.PIPE,
stderr = subprocess.PIPE) as p, \
open("{}/{}.log".format(case, name), "wb") as logfile:

View File

@ -1,6 +1,3 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import GEOM
from salome.geom import geomBuilder
geompy = geomBuilder.New()
@ -14,19 +11,19 @@ import numpy as np
def getGeom():
return geompy
def rotate(gobj, ang):
x = geompy.MakeVectorDXDYDZ(1, 0, 0)
y = geompy.MakeVectorDXDYDZ(0, 1, 0)
z = geompy.MakeVectorDXDYDZ(0, 0, 1)
#def rotate(gobj, ang):
# x = geompy.MakeVectorDXDYDZ(1, 0, 0)
# y = geompy.MakeVectorDXDYDZ(0, 1, 0)
# z = geompy.MakeVectorDXDYDZ(0, 0, 1)
# yaw
rotated = geompy.MakeRotation(gobj, z, ang[2])
# rotated = geompy.MakeRotation(gobj, z, ang[2])
# pitch
rotated = geompy.MakeRotation(rotated, y, ang[1])
# rotated = geompy.MakeRotation(rotated, y, ang[1])
# roll
rotated = geompy.MakeRotation(rotated, x, ang[0])
# rotated = geompy.MakeRotation(rotated, x, ang[0])
return rotated
# return rotated
def createGroup(gobj, planelist, grains, name):
gr = geompy.CreateGroup(gobj, geompy.ShapeType["FACE"], name)
@ -43,17 +40,26 @@ def createGroup(gobj, planelist, grains, name):
def createBoundary(gobj, bcount, dvec, norm, grains):
direction = Quaternion(0, dvec[0], dvec[1], dvec[2]).normalized
ax = lambda alpha: Quaternion(
np.cos(alpha * 0.5),
np.sin(alpha * 0.5) * norm[0],
np.sin(alpha * 0.5) * norm[1],
np.sin(alpha * 0.5) * norm[2])
#normvec = Quaternion(0, norm[0], norm[1], norm[2]).normalised
#ax = lambda alpha: Quaternion(
# np.cos(alpha * 0.5),
# np.sin(alpha * 0.5) * dvec[0],
# 0, 0).normalised
#np.sin(alpha * 0.5) * dvec[1],
#np.sin(alpha * 0.5) * dvec[2]).normalised
ang = lambda n, count: 2 * np.pi * n / count
limit = bcount if np.mod(bcount, 2) else int(bcount / 2)
vecs = [ ax(ang(n, bcount)) * direction * ax(ang(n, bcount)).inverse for n in range(limit) ]
#vecs = [ ax(ang(n, bcount)) * normvec * ax(ang(n, bcount)).inverse for n in range(limit) ]
vecs = [ Quaternion(axis = dvec, angle = ang(n, bcount)).rotate(norm) for n in range(limit) ]
logging.info("""createBoundary:
flow direction:\t{}
side boundaries:\t{}
normal direction:\t{}
angles:\t{}
side directions:\t{}""".format(dvec, bcount, norm, [ ang(n, bcount) / (2 * np.pi) * 360 for n in range(limit) ], [ v for v in vecs ]))
#
flowvec = geompy.MakeVector(
@ -61,8 +67,8 @@ def createBoundary(gobj, bcount, dvec, norm, grains):
geompy.MakeVertex(dvec[0], dvec[1], dvec[2]))
symvec = []
for qvec in vecs:
vec = qvec.vector
for vec in vecs:
#vec = qvec.vector
symvec.append(geompy.MakeVector(
geompy.MakeVertex(0, 0, 0),
geompy.MakeVertex(vec[0], vec[1], vec[2])))
@ -73,6 +79,7 @@ def createBoundary(gobj, bcount, dvec, norm, grains):
planes = geompy.MakeCompound(planes)
planes = geompy.MakeCutList(planes, [grains], False)
planes = geompy.ExtractShapes(planes, geompy.ShapeType["FACE"], False)
#print("planes: ", len(planes))
inletplanes = []
outletplanes = []
@ -82,6 +89,7 @@ def createBoundary(gobj, bcount, dvec, norm, grains):
nvec = geompy.GetNormal(plane)
fwang = round(geompy.GetAngle(nvec, flowvec), 0)
#print("fwang = ", fwang)
if fwang == 0:
inletplanes.append(plane)
@ -90,13 +98,26 @@ def createBoundary(gobj, bcount, dvec, norm, grains):
outletplanes.append(plane)
for n in range(len(symvec)):
sang = round(geompy.GetAngle(nvec, svec[n]), 0)
sang = round(geompy.GetAngle(nvec, symvec[n]), 0)
#print("sang = ", sang, "\n")
if sang == 0:
symetryplanes[n][0] = plane
if symetryplanes[n][0] == None:
symetryplanes[n][0] = []
symetryplanes[n][0].append(plane)
elif sang == 180:
symetryplanes[n][1] = plane
if symetryplanes[n][1] == None:
symetryplanes[n][1] = []
symetryplanes[n][1].append(plane)
logging.info("""createBoundary:
planes:\t{}
inlet planes:\t{}
outlet planes:\t{}
side planes:\t{}""".format(len(planes), inletplanes, outletplanes, symetryplanes))
#
boundary = {}

View File

@ -1,6 +1,3 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import SMESH
from salome.smesh import smeshBuilder
smesh = smeshBuilder.New()
@ -10,6 +7,7 @@ import logging
def getSmesh():
return smesh
def meshCreate(gobj, boundary, fineness, viscousLayers=None):
"""
Creates a mesh from a geometry.
@ -89,6 +87,7 @@ def meshCreate(gobj, boundary, fineness, viscousLayers=None):
return mesh
def meshCompute(mobj):
"""Compute the mesh."""
status = mobj.Compute()
@ -103,6 +102,7 @@ def meshCompute(mobj):
logging.info("""meshCompute:
status:\t{}""".format(msg))
def meshExport(mobj, path):
"""
Export the mesh in a file in UNV format.
@ -110,10 +110,9 @@ def meshExport(mobj, path):
Parameters:
path (string): full path to the expected directory.
"""
exportpath = path #os.path.join(path, "{}.unv".format(mobj.name))
try:
mobj.ExportUNV(exportpath)
mobj.ExportUNV(path)
logging.info("""meshExport:
format:\t{}""".format("unv"))