2 directions for boundary faces

This commit is contained in:
L-Nafaryus 2021-03-03 13:00:28 +05:00
parent 44ce05b86e
commit f62ce3d5b4
No known key found for this signature in database
GPG Key ID: C76D8DCD2727DBB7
6 changed files with 149 additions and 247 deletions

View File

@ -2,52 +2,40 @@ import os
import subprocess
import multiprocessing
src = os.getcwd()
build = os.path.join(src, "../build")
def salome(src_path, build_path, coefficient, direction):
subprocess.run(["salome", "start", "-t", src_path, "args:{},{}".format(build_path, coefficient, direction)])
if not os.path.exists(build):
os.makedirs(build)
if __name__ == "__main__":
# Get main paths
project = os.getcwd()
src = os.path.join(project, "src")
build = os.path.join(project, "build")
###
if not os.path.exists(build):
os.makedirs(build)
alpha = []
###
processes = []
structures = ["simple-cubic"] #, "bc-cubic", "fc-cubic"]
directions = ["001", "100"]
coefficients = [ alpha * 0.01 for alpha in range(1, 13 + 1) ]
for n in range(0.01, 0.13 + 0.01, 0.01):
alpha.append(n)
for structure in structures:
for direction in directions:
for coefficient in coefficients:
src_path = os.path.join(src, "{}.py".format(structure))
build_path = os.path.join(build,
structure,
"direction-{}".format(direction),
"alpha-{}".format(coefficient))
# Structures
simpleCubic = os.path.join(src, "simple-cubic/main.py")
# Body-centered cubic
#bcCubic = os.path.join(path, "bc-cubic/main.py")
# Face-centered cubic
#fcCubic = os.path.join(path, "fc-cubic/main.py")
if not os.path.exists(build_path):
os.makedirs(build_path)
###
print("starting process")
p = multiprocessing.Process(target = salome, args = (src_path, build_path, coefficient, direction))
processes.append(p)
p.start()
processes = []
structure = ["simple-cubic"] #, "bc-cubic", "fc-cubic"]
direction = ["1"]
def salome(src_path, build_path, arg):
subprocess.run(["salome", "start", "-t", src_path, "args:{},{}".format(build_path, arg)])
for s in structure:
s_path = os.path.join(build, s)
for d in direction:
d_path = os.path.join(s_path, d)
for c in alpha:
src_path = os.path.join(src, "%s/main.py" % s)
build_path = os.path.join(d_path, str(c))
if not os.path.exists(build_path):
os.makedirs(build_path)
print("starting process")
p = multiprocessing.Process(target = salome, args = (src_path, build_path, c))
processes.append(p)
p.start()
for process in processes:
process.join()
for process in processes:
process.join()

View File

@ -1,83 +0,0 @@
import GEOM
from salome.geom import geomBuilder
geompy = geomBuilder.New()
import math
def create(alpha):
# xyz axes
axes = [
geompy.MakeVectorDXDYDZ(1, 0, 0),
geompy.MakeVectorDXDYDZ(0, 1, 0),
geompy.MakeVectorDXDYDZ(0, 0, 1)
]
# Main box
box = geompy.MakeBoxDXDYDZ(2 * math.sqrt(2), 2 * math.sqrt(2), 2)
box = geompy.MakeRotation(box, axes[2], 45 * math.pi / 180.0)
box = geompy.MakeTranslation(box, 2, 0, 0)
vtx = [
geompy.MakeVertex(2, 0, 0),
geompy.MakeVertex(2, 2, 0),
geompy.MakeVertex(2, 2, 2)
]
line = geompy.MakeLineTwoPnt(vtx[1], vtx[2])
# Spheres for cutting
sphere = geompy.MakeSpherePntR(vtx[0], 1 / (1 - alpha))
sphere = geompy.MakeMultiTranslation1D(sphere, axes[1], 2, 3)
cut = geompy.MakeCutList(box, [sphere], True)
sphere2 = geompy.MakeTranslation(sphere, 0, 0, 2)
cut2 = geompy.MakeCutList(cut, [sphere2], True)
sphere3 = geompy.MakeRotation(sphere, line, 90 * math.pi / 180.0)
cut3 = geompy.MakeCutList(cut2, [sphere3], True)
sphere4 = geompy.MakeTranslation(sphere3, 0, 0, 2)
# Main geometry
Pore = geompy.MakeCutList(cut3, [sphere4], True)
geompy.addToStudy(Pore, "PORE")
#
# D /\ B A(1, 1, 0) \vec{n}(1, 1, 0)
# / \ B(3, 3, 0) \vec{n}(1, 1, 0)
# \ / C(3, 1, 0) \vec{n}(-1, 1, 0)
# A \/ C D(1, 3, 0) \vec{n}(-1, 1, 0)
#
# Prepare faces
vtx.append(geompy.MakeVertex(2, 2, 2))
vtx.append(geompy.MakeVertexWithRef(vtx[3], 0, 0, 1))
vec2 = geompy.MakeVector(vtx[3], vtx[4])
plane = geompy.MakePlane(vtx[3], vec2, 5)
common1 = geompy.MakeCommonList([Pore, plane], True)
plane = geompy.MakeTranslation(plane, 0, 0, -2)
common2 = geompy.MakeCommonList([Pore, plane], True)
# TODO: make 4 planes A B C D
Pore = geompy.MakeFillet(Pore, 0.1, geompy.ShapeType["EDGE"], [24, 27, 35])
# Main groups (inlet, outlet, wall)
inlet = geompy.CreateGroup(Pore, geompy.ShapeType["FACE"])
gip = geompy.GetInPlace(Pore, common1, True)
faces = geompy.SubShapeAll(gip, geompy.ShapeType["FACE"])
geompy.UnionList(inlet, faces)
outlet = geompy.CreateGroup(Pore, geompy.ShapeType["FACE"])
gip = geompy.GetInPlace(Pore, common2, True)
faces = geompy.SubShapeAll(gip, geompy.ShapeType["FACE"])
geompy.UnionList(outlet, faces)
PoreGroup = geompy.CreateGroup(Pore, geompy.ShapeType["FACE"])
faces = geompy.SubShapeAllIDs(Pore, geompy.ShapeType["FACE"])
geompy.UnionIDs(PoreGroup, faces)
wall = geompy.CutListOfGroups([PoreGroup], [inlet, outlet])
return Pore, [inlet, outlet, wall]

View File

@ -1,35 +0,0 @@
import os, sys
import salome
salome.salome_init()
import geometry, mesh
#alpha = [ 0.1, 0.15, 0.2 ]
build_path = str(sys.argv[1])
coef = float(sys.argv[2])
#for coef in alpha:
print("alpha = {}".format(coef))
print("Building geometry ...")
Pore, bc = geometry.create(coef)
#geometry.geompy.addToStudy(Pore, 'Pore {}'.format(coef))
#geometry.geompy.addToStudyInFather(Pore, bc[0], "INLET")
print("Building mesh ...")
PoreMesh = mesh.create(Pore, bc)
isDone = PoreMesh.Compute()
status = "Succesfully" if isDone else "Mesh is not computed"
print(status)
try:
filename = os.path.join(build_path, "mesh.unv")
PoreMesh.ExportUNV(filename)
pass
except:
print('ExportUNV() failed. Invalid file name?')
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()

View File

@ -1,34 +0,0 @@
import SMESH, SALOMEDS
from salome.smesh import smeshBuilder
smesh = smeshBuilder.New()
def create(geomObj, bc):
mesh = smesh.Mesh(geomObj)
netgen = mesh.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D)
param = netgen.Parameters()
param.SetSecondOrder( 0 )
param.SetOptimize( 1 )
param.SetChordalError( -1 )
param.SetChordalErrorEnabled( 0 )
param.SetUseSurfaceCurvature( 1 )
param.SetFuseEdges( 1 )
param.SetCheckChartBoundary( 0 )
param.SetMinSize( 0.01 )
param.SetMaxSize( 0.1 )
param.SetFineness( 4 )
#param.SetGrowthRate( 0.1 )
#param.SetNbSegPerEdge( 5 )
#param.SetNbSegPerRadius( 10 )
param.SetQuadAllowed( 0 )
vlayer = netgen.ViscousLayers(0.025, 2, 1.1, [],
1, smeshBuilder.NODE_OFFSET)
mesh.GroupOnGeom(bc[0], 'inlet', SMESH.FACE)
mesh.GroupOnGeom(bc[1], 'outlet', SMESH.FACE)
mesh.GroupOnGeom(bc[2], 'wall', SMESH.FACE)
return mesh

View File

@ -15,6 +15,19 @@ class simpleCubic:
salome.salome_init()
def geometryCreate(self, alpha):
"""
Create the simple cubic geometry.
Parameters:
alpha (float): Sphere intersection parameter which used for cutting spheres from box.
Radius = R_0 / (1 - alpha)
Should be from 0.01 to 0.13
Returns:
Configured geometry.
"""
geompy = geomBuilder.New()
#
@ -58,15 +71,44 @@ class simpleCubic:
geompy.addToStudy(self.geometry, self.name)
return self.geometry
def boundaryCreate(self, direction):
geompy = geomBuilder.New()
"""
Create the boundary faces from the geometry.
Parameters:
direction (str): Direction of the flow.
'001' for the flow with normal vector (0, 0, -1) to face.
'100' for the flow with normal vector (-1, 0, 0) to face.
Returns:
boundary (dict):
{
"inlet": <GEOM._objref_GEOM_Object>,
"outlet": <GEOM._objref_GEOM_Object>,
"symetryPlane": <GEOM._objref_GEOM_Object>,
"wall": <GEOM._objref_GEOM_Object>
}
"""
#
# D /\ B A(1, 1, 0) \vec{n}(1, 1, 0)
# / \ B(3, 3, 0) \vec{n}(1, 1, 0)
# \ / C(3, 1, 0) \vec{n}(-1, 1, 0)
# A \/ C D(1, 3, 0) \vec{n}(-1, 1, 0)
# _____ z |
# //////| | | flow
# ////// | |___y f
# | | / /
# |____|/ /x direction [0, 0, 1]
#
# _____ z f
# / /| | / flow
# /____/ | |___y /
# |||||| / /
# ||||||/ /x direction [1, 0, 0]
#
geompy = geomBuilder.New()
center = geompy.MakeVertex(2, 2, 1)
rot = [0, 0, 45]
@ -78,7 +120,9 @@ class simpleCubic:
elif direction == "100":
norm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center, 1, 0, 0))
geompy.MakeVertexWithRef(center,
math.cos((90 + rot[2]) * math.pi / 180.0),
-math.sin((90 + rot[2]) * math.pi / 180.0), 0))
vstep = math.sqrt(2)
hstep = 1
@ -102,14 +146,13 @@ class simpleCubic:
box = geompy.MakeBoxDXDYDZ(2 * math.sqrt(2), 2 * math.sqrt(2), 2)
box = geompy.MakeRotation(box, axes[2], 45 * math.pi / 180.0)
box = geompy.MakeTranslation(box, 2, 0, 0)
planes = geompy.ExtractShapes(box,
geompy.ShapeType["FACE"], True)
planes = geompy.ExtractShapes(box, geompy.ShapeType["FACE"], True)
vplanes = []
hplanes = []
for plane in planes:
planeNorm = geompy.GetNormal(plane)
angle = geompy.GetAngle(planeNorm, norm)
angle = abs(geompy.GetAngle(planeNorm, norm))
if angle == 0 or angle == 180:
vplanes.append(plane)
@ -117,26 +160,29 @@ class simpleCubic:
else:
hplanes.append(plane)
zvplane1 = vplanes[0]
zvplane2 = vplanes[1]
if direction == "001":
if geompy.GetPosition(zvplane1)[3] > geompy.GetPosition(zvplane1)[3]:
inletplane = zvplane1
outletplane = zvplane2
z1 = geompy.GetPosition(vplanes[0])[3]
z2 = geompy.GetPosition(vplanes[1])[3]
if z1 > z2:
inletplane = vplanes[0]
outletplane = vplanes[1]
else:
inletplane = zvplane2
outletplane = zvplane1
inletplane = vplanes[1]
outletplane = vplanes[0]
elif direction == "100":
if geompy.GetPosition(zvplane1)[1] > geompy.GetPosition(zvplane1)[1]:
inletplane = zvplane1
outletplane = zvplane2
x1 = geompy.GetPosition(vplanes[0])[1]
x2 = geompy.GetPosition(vplanes[1])[1]
if x1 > x2:
inletplane = vplanes[0]
outletplane = vplanes[1]
else:
inletplane = zvplane2
outletplane = zvplane1
inletplane = vplanes[1]
outletplane = vplanes[0]
# inlet and outlet
@ -146,9 +192,6 @@ class simpleCubic:
common2 = geompy.MakeCommonList([self.geometry, outletplane], True)
outlet = createGroup(common2, "outlet")
geompy.addToStudy(inletplane, "inletplane")
geompy.addToStudy(outletplane, "outletplane")
# symetryPlane(s)
symetryPlane = geompy.CreateGroup(self.geometry, geompy.ShapeType["FACE"], "symetryPlane")
@ -173,10 +216,35 @@ class simpleCubic:
return self.boundary
def meshCreate(self):
def meshCreate(self, fineness, viscousLayers=None):
"""
Creates a mesh from a geometry.
Parameters:
fineness (int): Fineness of mesh.
0 - Very coarse,
1 - Coarse,
2 - Moderate,
3 - Fine,
4 - Very fine.
viscousLayers (dict or None): Defines viscous layers for mesh.
By default, inlets and outlets specified without layers.
{
"thickness": float,
"number": int,
"stretch": float
}
Returns:
Configured instance of class <SMESH.SMESH_Mesh>, containig the parameters and boundary groups.
"""
smesh = smeshBuilder.New()
mesh = smesh.Mesh(geomObj)
mesh = smesh.Mesh(self.geometry)
netgen = mesh.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D)
param = netgen.Parameters()
@ -189,25 +257,28 @@ class simpleCubic:
param.SetCheckChartBoundary( 0 )
param.SetMinSize( 0.01 )
param.SetMaxSize( 0.1 )
param.SetFineness( 4 )
param.SetFineness(fineness)
#param.SetGrowthRate( 0.1 )
#param.SetNbSegPerEdge( 5 )
#param.SetNbSegPerRadius( 10 )
param.SetQuadAllowed( 0 )
vlayer = netgen.ViscousLayers(0.025, 2, 1.1, [],
1, smeshBuilder.NODE_OFFSET)
if not viscousLayers is None:
vlayer = netgen.ViscousLayers(viscousLayers["thickness"],
viscousLayers["number"],
viscousLayers["stretch"],
[self.boundary["inlet"], self.boundary["outlet"]],
1, smeshBuilder.NODE_OFFSET)
mesh.GroupOnGeom(self.boundary["inlet"], "inlet", SMESH.FACE)
mesh.GroupOnGeom(self.boundary["outlet"], "outlet", SMESH.FACE)
mesh.GroupOnGeom(self.boundary["symetryPlane"], "symetryPlane", SMESH.FACE)
mesh.GroupOnGeom(self.boundary["wall"], "wall", SMESH.FACE)
for name, boundary in self.boundary.items():
mesh.GroupOnGeom(boundary, name, SMESH.FACE)
self.mesh = mesh
return self.mesh
def meshCompute(self):
"""Compute the mesh."""
status = self.mesh.Compute()
if status:
@ -217,6 +288,12 @@ class simpleCubic:
print("Mesh is not computed.")
def meshExport(self, path):
"""
Export the mesh in a file in UNV format.
Parameters:
path (string): full path to the expected directory.
"""
exportpath = os.path.join(path, "{}.unv".format(self.name))
try:
@ -230,12 +307,15 @@ if __name__ == "__main__":
alpha = float(sys.argv[2])
direction = str(sys.argv[3])
#salome.salome_init()
sc = simpleCubic("simpleCubic-{}-{}".format(direction, alpha))
sc.geometryCreate(alpha)
sc.boundaryCreate(direction)
#sc.meshCreate()
#sc.meshCompute()
sc.meshCreate(2, {
"thickness": 0.02,
"number": 2,
"stretch": 1.1
})
sc.meshCompute()
#sc.meshExport(build)
if salome.sg.hasDesktop():

View File

@ -1,14 +0,0 @@
digraph structure {
node [shape=plaintext]
s1 [label="src/simple-cubic/geometry.py"]
s2 [label="src/simple-cubic/mesh.py"]
s3 [label="src/simple-cubic/main.py"]
s1 -> s3
s2 -> s3
s4 [label="src/genmesh.py"]
s3 -> s4
b1 [label="build/simple-cubic/direction-1/0.1/"]
s4 -> b1 [label="[alpha=0.1, direction=1, mesh.unv]"]
s5 [label="src/prefoam.py"]
s5 -> b1 [label="[0, constant, system (/src/foam/*)]"]
}