anisotropy/temp/faceCenteredCubic.old.py

503 lines
17 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import salome, GEOM, SMESH, SALOMEDS
from salome.geom import geomBuilder
from salome.smesh import smeshBuilder
import math
import os, sys
import logging
import time
from datetime import timedelta
class faceCenteredCubic:
def __init__(self, name = None):
self.name = name if type(name) != None else "faceCenteredCubic"
self.geometry = None
self.geometrybbox = None
self.mesh = None
self.boundary = None
self.rombus = None
self.rombusbbox = None
self.spheres = None
salome.salome_init()
def geometryCreate(self, alpha, fillet):
"""
Create the simple cubic geometry.
Parameters:
alpha (float): Sphere intersection parameter which used for cutting spheres from box.
Radius = R0 / (1 - alpha)
Should be from 0.01 to 0.28
fillet (list): Fillet coefficient.
[fillet1, fillet2]
0 <= fillet <= 1
if fillet = [0, 0] then R_fillet = 0
Returns:
Configured geometry.
"""
geompy = geomBuilder.New()
# Parameters
R0 = math.sqrt(2) / 4
R = R0 / (1 - alpha)
C1 = fillet[0]
C2 = fillet[1]
alpha1 = 0.01
alpha2 = 0.28
Cf = C1 + (C2 - C1) / (alpha2 - alpha1) * (alpha - alpha1)
R_fillet = Cf * (R0 * math.sqrt(2) - R)
logging.info("geometryCreate: alpha = {}".format(alpha))
logging.info("geometryCreate: R = {}".format(R))
logging.info("geometryCreate: R_fillet = {}".format(R_fillet))
# xyz axes
axes = [
geompy.MakeVectorDXDYDZ(1, 0, 0),
geompy.MakeVectorDXDYDZ(0, 1, 0),
geompy.MakeVectorDXDYDZ(0, 0, 1)
]
# Main box
size = [1 / math.sqrt(2), 1 / math.sqrt(2), 1]
angle = [0, 0, 0]
pos = [0, 0, 0]
box = geompy.MakeBoxDXDYDZ(size[0], size[1], size[2])
for n in range(3):
box = geompy.MakeRotation(box, axes[n], angle[n] * math.pi / 180.0)
box = geompy.MakeTranslation(box, pos[0], pos[1], pos[2])
#[x, y, z, _, _, _, _, _, _] = geompy.GetPosition(box)
#pos = [x, y, z]
# Spheres for cutting
sphere = geompy.MakeSpherePntR(geompy.MakeVertex(pos[0], pos[1], pos[2]), R)
sphere = geompy.MakeMultiTranslation2D(sphere, None, 2 * R0, 3, None, 2 * R0, 3)
sphere2 = geompy.MakeTranslation(sphere, 0, 0, 2 * math.sqrt(2) * R0)
sphere3 = geompy.MakeTranslation(sphere, R0, R0, 0.5)
sphere = geompy.ExtractShapes(sphere, geompy.ShapeType["SOLID"], True)
sphere2 = geompy.ExtractShapes(sphere2, geompy.ShapeType["SOLID"], True)
sphere3 = geompy.ExtractShapes(sphere3, geompy.ShapeType["SOLID"], True)
sphere = geompy.MakeFuseList(sphere + sphere2 + sphere3, False, False)
if not R_fillet == 0:
sphere = geompy.MakeFilletAll(sphere, R_fillet)
self.spheres = sphere
# Main geometry and bounding box
# geompy.RemoveExtraEdges(obj, True)
self.geometry = geompy.MakeCutList(box, [sphere], True)
self.geometrybbox = box
# Rombus and bounding box
sk = geompy.Sketcher3D()
sk.addPointsAbsolute(0, 0, size[2])
sk.addPointsAbsolute(size[2] / 2, 0, size[2] / 2)
sk.addPointsAbsolute(size[2] / 2, size[2] / 2, 0)
sk.addPointsAbsolute(0, size[2] / 2, size[2] / 2)
sk.addPointsAbsolute(0, 0, size[2])
face = geompy.MakeFaceWires([sk.wire()], 1)
rombusbbox = geompy.MakePrismVecH(face, geompy.MakeVectorDXDYDZ(1, 1, 0), size[0])
rombusbbox = geompy.MakeRotation(rombusbbox, axes[2], 45 * math.pi / 180.0)
rombusbbox = geompy.MakeTranslation(rombusbbox, size[0], 0, 0)
self.rombus = geompy.MakeCutList(rombusbbox, [sphere], True)
self.rombusbbox = rombusbbox
# Change position
self.spheres = geompy.MakeRotation(self.spheres, axes[2], -45 * math.pi / 180.0)
self.spheres = geompy.MakeTranslation(self.spheres, 0, 0.5, 0)
self.geometry = geompy.MakeRotation(self.geometry, axes[2], -45 * math.pi / 180.0)
self.geometry = geompy.MakeTranslation(self.geometry, 0, 0.5, 0)
self.geometrybbox = geompy.MakeRotation(self.geometrybbox, axes[2], -45 * math.pi / 180.0)
self.geometrybbox = geompy.MakeTranslation(self.geometrybbox, 0, 0.5, 0)
self.rombus = geompy.MakeRotation(self.rombus, axes[2], -45 * math.pi / 180.0)
self.rombus = geompy.MakeTranslation(self.rombus, 0, 0.5, 0)
self.rombusbbox = geompy.MakeRotation(self.rombusbbox, axes[2], -45 * math.pi / 180.0)
self.rombusbbox = geompy.MakeTranslation(self.rombusbbox, 0, 0.5, 0)
geompy.addToStudy(self.spheres, "spheres")
geompy.addToStudy(self.geometry, self.name)
geompy.addToStudy(self.rombus, "rombus")
geompy.addToStudy(rombusbbox, "rombusbbox")
return self.geometry
def boundaryCreate(self, direction):
"""
Create the boundary faces from the geometry.
Parameters:
direction (str): Direction of the flow.
'001' for the flow with normal vector (0, 0, 1) to face.
'100' for the flow with normal vector (1, 0, 0) to face.
'111' for (1, 1, 1)
Returns:
boundary (dict):
{
"inlet": <GEOM._objref_GEOM_Object>,
"outlet": <GEOM._objref_GEOM_Object>,
"symetryPlane": <GEOM._objref_GEOM_Object>,
"wall": <GEOM._objref_GEOM_Object>
}
"""
geompy = geomBuilder.New()
rot = [0, 0, 45]
buffergeometry = self.geometry
if direction == "001":
[x, y, z, _, _, _, _, _, _] = geompy.GetPosition(self.geometry)
center = geompy.MakeVertex(x, y, z)
norm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center, 0, 0, 1))
bnorm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center,
-math.cos((90 + rot[2]) * math.pi / 180.0),
math.sin((90 + rot[2]) * math.pi / 180.0), 0))
vnorm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center,
-math.cos((0 + rot[2]) * math.pi / 180.0),
math.sin((0 + rot[2]) * math.pi / 180.0), 0))
elif direction == "100":
[x, y, z, _, _, _, _, _, _] = geompy.GetPosition(self.geometry)
center = geompy.MakeVertex(x, y, z)
norm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center,
-math.cos((90 + rot[2]) * math.pi / 180.0),
math.sin((90 + rot[2]) * math.pi / 180.0), 0))
bnorm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center, 0, 0, 1))
vnorm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center,
-math.cos((0 + rot[2]) * math.pi / 180.0),
math.sin((0 + rot[2]) * math.pi / 180.0), 0))
elif direction == "111":
self.geometry = self.rombus
[x, y, z, _, _, _, _, _, _] = geompy.GetPosition(self.geometry)
center = geompy.MakeVertex(x, y, z)
norm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center, 1, 1, 1))
#-math.cos((90 + rot[2]) * math.pi / 180.0),
#math.sin((90 + rot[2]) * math.pi / 180.0), math.sqrt(2) / 2))
bnorm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center, 1, -1, 1))
# -math.cos((90 + rot[2]) * math.pi / 180.0),
# math.sin((90 + rot[2]) * math.pi / 180.0), 0))
vnorm = geompy.MakeVector(center,
geompy.MakeVertexWithRef(center, -1, 1, 1))
#-math.cos((0 + rot[2]) * math.pi / 180.0),
#math.sin((0 + rot[2]) * math.pi / 180.0), 0))
logging.info("boundaryCreate: direction = {}".format(direction))
geompy.addToStudy(norm, "normalvector")
geompy.addToStudy(bnorm, "bnorm")
geompy.addToStudy(vnorm, "vnorm")
if direction == "111":
box = self.rombus
else:
box = self.geometrybbox
planes = geompy.ExtractShapes(box, geompy.ShapeType["FACE"], True)
inletplane = []
outletplane = []
hplanes = []
fwplanes = []
bwplanes = []
lplanes = []
rplanes = []
for plane in planes:
planeNorm = geompy.GetNormal(plane)
angle = round(abs(geompy.GetAngle(planeNorm, norm)), 0)
if angle == 0:
outletplane.append(plane)
elif angle == 180:
inletplane.append(plane)
elif direction == "111" and (angle == 109 or angle == 71):
#hplanes.append(plane)
bangle = round(abs(geompy.GetAngle(planeNorm, bnorm)), 0)
#logging.info("bangle = {}".format(bangle))
if bangle == 0:
fwplanes.append(plane)
elif bangle == 180:
bwplanes.append(plane)
vangle = round(abs(geompy.GetAngle(planeNorm, vnorm)), 0)
#logging.info("vangle = {}".format(vangle))
if vangle == 0:
lplanes.append(plane)
elif vangle == 180:
rplanes.append(plane)
elif direction == "100" or direction == "001":
if angle == 90:
#hplanes.append(plane)
bangle = round(abs(geompy.GetAngle(planeNorm, bnorm)), 0)
#logging.info("bangle = {}".format(bangle))
if bangle == 0:
fwplanes.append(plane)
elif bangle == 180:
bwplanes.append(plane)
vangle = round(abs(geompy.GetAngle(planeNorm, vnorm)), 0)
#logging.info("vangle = {}".format(vangle))
if vangle == 0:
lplanes.append(plane)
elif vangle == 180:
rplanes.append(plane)
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()
logging.info("boundaryCreate: inletplanes = {}, outletplanes = {}, hplanes = {}".format(
len(inletplane), len(outletplane), len(hplanes)))
logging.info("boundaryCreate: fwplanes = {}, bwplanes = {}, lplanes = {}, rplanes = {}".format(
len(fwplanes), len(bwplanes), len(lplanes), len(rplanes)))
def createGroup(planelist, name):
gr = geompy.CreateGroup(self.geometry, geompy.ShapeType["FACE"], name)
grcomp = geompy.MakeCompound(planelist)
grcut = geompy.MakeCutList(grcomp, [self.spheres], True)
gip = geompy.GetInPlace(self.geometry, grcut, True)
faces = geompy.SubShapeAll(gip, geompy.ShapeType["FACE"])
geompy.UnionList(gr, faces)
return gr
# Main groups
inlet = createGroup(inletplane, "inlet")
outlet = createGroup(outletplane, "outlet")
# Symetry planes
symetryPlaneFW = createGroup(fwplanes, "symetryPlaneFW")
symetryPlaneBW = createGroup(bwplanes, "symetryPlaneBW")
symetryPlaneL = createGroup(lplanes, "symetryPlaneL")
symetryPlaneR = createGroup(rplanes, "symetryPlaneR")
# Wall
allgroup = geompy.CreateGroup(self.geometry, geompy.ShapeType["FACE"])
faces = geompy.SubShapeAllIDs(self.geometry, geompy.ShapeType["FACE"])
geompy.UnionIDs(allgroup, faces)
wall = geompy.CutListOfGroups([allgroup],
[inlet, outlet, symetryPlaneFW, symetryPlaneBW, symetryPlaneL, symetryPlaneR], "wall")
self.boundary = {
"inlet": inlet,
"outlet": outlet,
"symetryPlaneFW": symetryPlaneFW,
"symetryPlaneBW": symetryPlaneBW,
"symetryPlaneL": symetryPlaneL,
"symetryPlaneR": symetryPlaneR,
"wall": wall
}
return self.boundary
def meshCreate(self, fineness, viscousLayers=None):
"""
Creates a mesh from a geometry.
Parameters:
fineness (int): Fineness of mesh.
0 - Very coarse,
1 - Coarse,
2 - Moderate,
3 - Fine,
4 - Very fine.
viscousLayers (dict or None): Defines viscous layers for mesh.
By default, inlets and outlets specified without layers.
{
"thickness": float,
"number": int,
"stretch": float
}
Returns:
Configured instance of class <SMESH.SMESH_Mesh>, containig the parameters and boundary groups.
"""
smesh = smeshBuilder.New()
Fineness = {
0: "Very coarse",
1: "Coarse",
2: "Moderate",
3: "Fine",
4: "Very fine"
}[fineness]
logging.info("meshCreate: mesh fineness - {}".format(Fineness))
mesh = smesh.Mesh(self.geometry)
netgen = mesh.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D)
param = netgen.Parameters()
param.SetSecondOrder( 0 )
param.SetOptimize( 1 )
param.SetChordalError( -1 )
param.SetChordalErrorEnabled( 0 )
param.SetUseSurfaceCurvature( 1 )
param.SetFuseEdges( 1 )
param.SetCheckChartBoundary( 0 )
param.SetMinSize( 0.001 )
param.SetMaxSize( 0.1 )
param.SetFineness(fineness)
#param.SetGrowthRate( 0.1 )
#param.SetNbSegPerEdge( 5 )
#param.SetNbSegPerRadius( 10 )
param.SetQuadAllowed( 0 )
if not viscousLayers is None:
logging.info("meshCreate: viscous layers params - thickness = {}, number = {}, stretch factor = {}".format(
viscousLayers["thickness"], viscousLayers["number"], viscousLayers["stretch"]))
vlayer = netgen.ViscousLayers(
viscousLayers["thickness"],
viscousLayers["number"],
viscousLayers["stretch"],
[self.boundary["inlet"], self.boundary["outlet"]],
1, smeshBuilder.NODE_OFFSET)
else:
logging.info("meshCreate: viscous layers are disabled")
for name, boundary in self.boundary.items():
mesh.GroupOnGeom(boundary, "{}_".format(name), SMESH.FACE)
self.mesh = mesh
return self.mesh
def meshCompute(self):
"""Compute the mesh."""
status = self.mesh.Compute()
if status:
logging.info("Mesh succesfully computed.")
else:
logging.warning("Mesh is not computed.")
def meshExport(self, path):
"""
Export the mesh in a file in UNV format.
Parameters:
path (string): full path to the expected directory.
"""
exportpath = os.path.join(path, "{}.unv".format(self.name))
try:
self.mesh.ExportUNV(exportpath)
except:
logging.error("Cannot export mesh to '{}'".format(exportpath))
if __name__ == "__main__":
# Arguments
buildpath = str(sys.argv[1])
alpha = float(sys.argv[2])
direction = str(sys.argv[3])
name = "faceCenteredCubic-{}-{}".format(direction, alpha)
# Logger
logging.basicConfig(
level=logging.INFO,
format="%(levelname)s: %(message)s",
handlers = [
logging.StreamHandler(),
logging.FileHandler(os.path.join(buildpath, "{}.log".format(name)))
])
start_time = time.monotonic()
# Simple cubic
fcc = faceCenteredCubic(name)
logging.info("Creating the geometry ...")
fcc.geometryCreate(alpha, [0, 0])
logging.info("Extracting boundaries ...")
fcc.boundaryCreate(direction)
logging.info("Creating the mesh ...")
fcc.meshCreate(2, {
"thickness": 0.01,
"number": 2,
"stretch": 1.1
})
fcc.meshCompute()
logging.info("Exporting the mesh ...")
fcc.meshExport(buildpath)
end_time = time.monotonic()
logging.info("Elapsed time: {}".format(timedelta(seconds=end_time - start_time)))
logging.info("Done.")
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()