hpr-cpp/source/hpr/math/quaternion.hpp

290 lines
6.1 KiB
C++

#pragma once
#include <hpr/math/vector.hpp>
#include <hpr/exception.hpp>
namespace hpr
{
// forward declarations
class Quaternion;
inline
Quaternion inverse(const Quaternion& q);
inline
Quaternion operator*(const Quaternion& lhs, const Quaternion& rhs);
// aliases
using quat = Quaternion;
// class declaration
class Quaternion
{
public:
enum RotationSequence
{
ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, XZX
};
protected:
scalar p_real;
vec3 p_imag;
public:
inline
Quaternion() :
p_real{},
p_imag{}
{}
inline
Quaternion(const scalar real, const vec3& imag) :
p_real {real},
p_imag {imag}
{}
inline explicit
Quaternion(const scalar real) :
p_real {real},
p_imag {}
{}
inline explicit
Quaternion(const vec3& imag) :
p_real {},
p_imag {imag}
{}
inline
Quaternion(const vec3& vs, const scalar& theta) :
p_real {cos(0.5 * theta)},
p_imag {sin(0.5 * theta) * vs / mag(vs)}
{}
static inline
Quaternion unit(const vec3& vs)
{
return Quaternion(sqrt(1 - norm(vs)), vs);
}
inline
Quaternion(const RotationSequence rs, const vec3& angles)
{
switch (rs)
{
case XYZ:
*this = Quaternion(vec3(0, 1, 0), angles[0]) *
Quaternion(vec3(0, 1, 0), angles[1]) *
Quaternion(vec3(0, 0, 1), angles[2]);
break;
default:
throw std::runtime_error("Unknown rotation sequence");
}
}
inline
scalar real() const
{
return p_real;
}
inline
scalar& real()
{
return p_real;
}
inline
vec3 imag() const
{
return p_imag;
}
inline
vec3& imag()
{
return p_imag;
}
inline
scalar& operator[](Size n)
{
if (n > 3)
throw hpr::OutOfRange();
if (n == 0)
return p_real;
else
return p_imag[n - 1];
}
inline
scalar operator[](Size n) const
{
if (n > 3)
throw hpr::OutOfRange();
if (n == 0)
return p_real;
else
return p_imag[n - 1];
}
inline
void operator+=(const Quaternion& q)
{
p_real += q.p_real;
p_imag += q.p_imag;
}
inline
void operator-=(const Quaternion& q)
{
p_real -= q.p_real;
p_imag -= q.p_imag;
}
inline
void operator*=(const Quaternion& q)
{
scalar temp = p_real;
p_real = p_real * q.p_real - dot(p_imag, q.p_imag);
p_imag = temp * q.p_imag + q.p_real * p_imag + cross(p_imag, q.p_imag);
}
inline
void operator/=(const Quaternion& q)
{
operator*=(inverse(q));
}
inline
void operator*=(const scalar s)
{
p_real *= s;
p_imag *= s;
}
inline
void operator/=(const scalar s)
{
p_real /= s;
p_imag /= s;
}
};
inline
bool equal(const Quaternion& lhs, const Quaternion& rhs)
{
return lhs.real() == rhs.real() && lhs.imag() == rhs.imag();
}
inline
bool operator==(const Quaternion& lhs, const Quaternion& rhs)
{
return equal(lhs, rhs);
}
inline
bool operator!=(const Quaternion& lhs, const Quaternion& rhs)
{
return !equal(lhs, rhs);
}
inline
Quaternion operator+(const Quaternion& lhs, const Quaternion& rhs)
{
return {lhs.real() + rhs.real(), lhs.imag() + rhs.imag()};
}
inline
Quaternion operator-(const Quaternion& q)
{
return {q.real(), q.imag()};
}
inline
Quaternion operator-(const Quaternion& lhs, const Quaternion& rhs)
{
return {lhs.real() - rhs.real(), lhs.imag() - rhs.imag()};
}
inline
Quaternion operator*(const Quaternion& lhs, const Quaternion& rhs)
{
return {
lhs.real() * rhs.real() - dot(lhs.imag(), rhs.imag()),
lhs.real() * rhs.imag() + rhs.real() * lhs.imag() + cross(lhs.imag(), rhs.imag())
};
}
inline
Quaternion operator/(const Quaternion& lhs, const Quaternion& rhs)
{
return lhs * inverse(rhs);
}
inline
Quaternion operator*(const scalar s, const Quaternion& q)
{
return {s * q.real(), s * q.imag()};
}
inline
Quaternion operator*(const Quaternion& q, const scalar s)
{
return {q.real() * s, q.imag() * s};
}
inline
Quaternion operator/(const Quaternion& q, const scalar s)
{
return {q.real() / s, q.imag() / s};
}
inline
scalar norm(const Quaternion& q)
{
return sqrt(pow(q.real(), 2) + dot(q.imag(), q.imag()));
}
inline
Quaternion conjugate(const Quaternion& q)
{
return {q.real(), -q.imag()};
}
inline
Quaternion inverse(const Quaternion& q)
{
return conjugate(q) / pow(norm(q), 2);
}
inline
Quaternion normalize(const Quaternion& q)
{
return q / norm(q);
}
inline
vec3 rotate(const vec3& point, const vec3& axis, const scalar& angle)
{
Quaternion p {point};
Quaternion q {normalize(axis), angle};
return (q * p * inverse(q)).imag();
}
void decompose(const Quaternion& q, vec3& axis, scalar& angle)
{
const scalar qnorm = norm(q.imag());
axis = q.imag() / qnorm;
angle = 2 * atan2(qnorm, q.real());
}
} // end namespace hpr