#pragma once #include "../vector.hpp" namespace hpr { // Forward declaration class Quaternion; inline Quaternion inverse(const Quaternion& q); inline Quaternion operator*(const Quaternion& lhs, const Quaternion& rhs); // Class declaration class Quaternion { public: enum RotationSequence { ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, XZX }; protected: scalar p_real; vec3 p_imag; public: inline Quaternion() : p_real{}, p_imag{} {} inline Quaternion(const scalar real, const vec3& imag) : p_real {real}, p_imag {imag} {} inline explicit Quaternion(const scalar real) : p_real {real}, p_imag {} {} inline explicit Quaternion(const vec3& imag) : p_real {}, p_imag {imag} {} inline Quaternion(const vec3& vs, const scalar& theta) : p_real {cos(0.5 * theta)}, p_imag {sin(0.5 * theta) * vs / mag(vs)} {} static inline Quaternion unit(const vec3& vs) { return Quaternion(sqrt(1 - norm(vs)), vs); } inline Quaternion(const RotationSequence rs, const vec3& angles) { switch (rs) { case XYZ: *this = Quaternion(vec3(0, 1, 0), angles[0]) * Quaternion(vec3(0, 1, 0), angles[1]) * Quaternion(vec3(0, 0, 1), angles[2]); break; default: throw std::runtime_error("Unknown rotation sequence"); } } inline scalar real() const { return p_real; } inline scalar& real() { return p_real; } inline vec3 imag() const { return p_imag; } inline vec3& imag() { return p_imag; } inline void operator+=(const Quaternion& q) { p_real += q.p_real; p_imag += q.p_imag; } inline void operator-=(const Quaternion& q) { p_real -= q.p_real; p_imag -= q.p_imag; } inline void operator*=(const Quaternion& q) { scalar temp = p_real; p_real = p_real * q.p_real - dot(p_imag, q.p_imag); p_imag = temp * q.p_imag + q.p_real * p_imag + cross(p_imag, q.p_imag); } inline void operator/=(const Quaternion& q) { operator*=(inverse(q)); } inline void operator*=(const scalar s) { p_real *= s; p_imag *= s; } inline void operator/=(const scalar s) { p_real /= s; p_imag /= s; } }; inline bool equal(const Quaternion& lhs, const Quaternion& rhs) { return lhs.real() == rhs.real() && lhs.imag() == rhs.imag(); } inline bool operator==(const Quaternion& lhs, const Quaternion& rhs) { return equal(lhs, rhs); } inline bool operator!=(const Quaternion& lhs, const Quaternion& rhs) { return !equal(lhs, rhs); } inline Quaternion operator+(const Quaternion& lhs, const Quaternion& rhs) { return {lhs.real() + rhs.real(), lhs.imag() + rhs.imag()}; } inline Quaternion operator-(const Quaternion& q) { return {q.real(), q.imag()}; } inline Quaternion operator-(const Quaternion& lhs, const Quaternion& rhs) { return {lhs.real() - rhs.real(), lhs.imag() - rhs.imag()}; } inline Quaternion operator*(const Quaternion& lhs, const Quaternion& rhs) { return {lhs.real() * rhs.real() - dot(lhs.imag(), rhs.imag()), lhs.real() * rhs.imag() + rhs.real() * lhs.imag() + cross(lhs.imag(), rhs.imag())}; } inline Quaternion operator/(const Quaternion& lhs, const Quaternion& rhs) { return lhs * inverse(rhs); } inline Quaternion operator*(const scalar s, const Quaternion& q) { return {s * q.real(), s * q.imag()}; } inline Quaternion operator*(const Quaternion& q, const scalar s) { return {q.real() * s, q.imag() * s}; } inline Quaternion operator/(const Quaternion& q, const scalar s) { return {q.real() / s, q.imag() / s}; } inline scalar norm(const Quaternion& q) { return sqrt(pow(q.real(), 2) + dot(q.imag(), q.imag())); } inline Quaternion conjugate(const Quaternion& q) { return {q.real(), -q.imag()}; } inline Quaternion inverse(const Quaternion& q) { return conjugate(q) / pow(norm(q), 2); } inline Quaternion normalize(const Quaternion& q) { return q / norm(q); } inline vec3 rotate(const vec3& point, const vec3& axis, const scalar& angle) { Quaternion p {point}; Quaternion q {normalize(axis), angle}; return (q * p * inverse(q)).imag(); } // Aliases using quat = Quaternion; }