291 lines
5.4 KiB
C++
291 lines
5.4 KiB
C++
#pragma once
|
|
|
|
#include <hpr/math/vector/vector.hpp>
|
|
#include <hpr/exception.hpp>
|
|
|
|
namespace hpr
|
|
{
|
|
|
|
// Forward declaration
|
|
|
|
class Quaternion;
|
|
|
|
inline
|
|
Quaternion inverse(const Quaternion& q);
|
|
|
|
inline
|
|
Quaternion operator*(const Quaternion& lhs, const Quaternion& rhs);
|
|
|
|
// Class declaration
|
|
class Quaternion
|
|
{
|
|
|
|
public:
|
|
|
|
enum RotationSequence
|
|
{
|
|
ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, XZX
|
|
};
|
|
|
|
protected:
|
|
|
|
scalar p_real;
|
|
vec3 p_imag;
|
|
|
|
public:
|
|
|
|
inline
|
|
Quaternion() :
|
|
p_real{},
|
|
p_imag{}
|
|
{}
|
|
|
|
inline
|
|
Quaternion(const scalar real, const vec3& imag) :
|
|
p_real {real},
|
|
p_imag {imag}
|
|
{}
|
|
|
|
inline explicit
|
|
Quaternion(const scalar real) :
|
|
p_real {real},
|
|
p_imag {}
|
|
{}
|
|
|
|
inline explicit
|
|
Quaternion(const vec3& imag) :
|
|
p_real {},
|
|
p_imag {imag}
|
|
{}
|
|
|
|
inline
|
|
Quaternion(const vec3& vs, const scalar& theta) :
|
|
p_real {cos(0.5 * theta)},
|
|
p_imag {sin(0.5 * theta) * vs / mag(vs)}
|
|
{}
|
|
|
|
static inline
|
|
Quaternion unit(const vec3& vs)
|
|
{
|
|
return Quaternion(sqrt(1 - norm(vs)), vs);
|
|
}
|
|
|
|
inline
|
|
Quaternion(const RotationSequence rs, const vec3& angles)
|
|
{
|
|
switch (rs)
|
|
{
|
|
case XYZ:
|
|
*this = Quaternion(vec3(0, 1, 0), angles[0]) *
|
|
Quaternion(vec3(0, 1, 0), angles[1]) *
|
|
Quaternion(vec3(0, 0, 1), angles[2]);
|
|
break;
|
|
|
|
default:
|
|
throw std::runtime_error("Unknown rotation sequence");
|
|
}
|
|
}
|
|
|
|
inline
|
|
scalar real() const
|
|
{
|
|
return p_real;
|
|
}
|
|
|
|
inline
|
|
scalar& real()
|
|
{
|
|
return p_real;
|
|
}
|
|
|
|
inline
|
|
vec3 imag() const
|
|
{
|
|
return p_imag;
|
|
}
|
|
|
|
inline
|
|
vec3& imag()
|
|
{
|
|
return p_imag;
|
|
}
|
|
|
|
inline
|
|
scalar& operator[](Size n)
|
|
{
|
|
if (n > 3)
|
|
throw hpr::OutOfRange();
|
|
if (n == 0)
|
|
return p_real;
|
|
else
|
|
return p_imag[n - 1];
|
|
}
|
|
|
|
inline
|
|
scalar operator[](Size n) const
|
|
{
|
|
if (n > 3)
|
|
throw hpr::OutOfRange();
|
|
if (n == 0)
|
|
return p_real;
|
|
else
|
|
return p_imag[n - 1];
|
|
}
|
|
|
|
inline
|
|
void operator+=(const Quaternion& q)
|
|
{
|
|
p_real += q.p_real;
|
|
p_imag += q.p_imag;
|
|
}
|
|
|
|
inline
|
|
void operator-=(const Quaternion& q)
|
|
{
|
|
p_real -= q.p_real;
|
|
p_imag -= q.p_imag;
|
|
}
|
|
|
|
inline
|
|
void operator*=(const Quaternion& q)
|
|
{
|
|
scalar temp = p_real;
|
|
p_real = p_real * q.p_real - dot(p_imag, q.p_imag);
|
|
p_imag = temp * q.p_imag + q.p_real * p_imag + cross(p_imag, q.p_imag);
|
|
}
|
|
|
|
inline
|
|
void operator/=(const Quaternion& q)
|
|
{
|
|
operator*=(inverse(q));
|
|
}
|
|
|
|
inline
|
|
void operator*=(const scalar s)
|
|
{
|
|
p_real *= s;
|
|
p_imag *= s;
|
|
}
|
|
|
|
inline
|
|
void operator/=(const scalar s)
|
|
{
|
|
p_real /= s;
|
|
p_imag /= s;
|
|
}
|
|
};
|
|
|
|
inline
|
|
bool equal(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return lhs.real() == rhs.real() && lhs.imag() == rhs.imag();
|
|
}
|
|
|
|
inline
|
|
bool operator==(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return equal(lhs, rhs);
|
|
}
|
|
|
|
inline
|
|
bool operator!=(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return !equal(lhs, rhs);
|
|
}
|
|
|
|
inline
|
|
Quaternion operator+(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return {lhs.real() + rhs.real(), lhs.imag() + rhs.imag()};
|
|
}
|
|
|
|
inline
|
|
Quaternion operator-(const Quaternion& q)
|
|
{
|
|
return {q.real(), q.imag()};
|
|
}
|
|
|
|
inline
|
|
Quaternion operator-(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return {lhs.real() - rhs.real(), lhs.imag() - rhs.imag()};
|
|
}
|
|
|
|
inline
|
|
Quaternion operator*(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return {
|
|
lhs.real() * rhs.real() - dot(lhs.imag(), rhs.imag()),
|
|
lhs.real() * rhs.imag() + rhs.real() * lhs.imag() + cross(lhs.imag(), rhs.imag())
|
|
};
|
|
}
|
|
|
|
inline
|
|
Quaternion operator/(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return lhs * inverse(rhs);
|
|
}
|
|
|
|
inline
|
|
Quaternion operator*(const scalar s, const Quaternion& q)
|
|
{
|
|
return {s * q.real(), s * q.imag()};
|
|
}
|
|
|
|
inline
|
|
Quaternion operator*(const Quaternion& q, const scalar s)
|
|
{
|
|
return {q.real() * s, q.imag() * s};
|
|
}
|
|
|
|
inline
|
|
Quaternion operator/(const Quaternion& q, const scalar s)
|
|
{
|
|
return {q.real() / s, q.imag() / s};
|
|
}
|
|
|
|
inline
|
|
scalar norm(const Quaternion& q)
|
|
{
|
|
return sqrt(pow(q.real(), 2) + dot(q.imag(), q.imag()));
|
|
}
|
|
|
|
inline
|
|
Quaternion conjugate(const Quaternion& q)
|
|
{
|
|
return {q.real(), -q.imag()};
|
|
}
|
|
|
|
inline
|
|
Quaternion inverse(const Quaternion& q)
|
|
{
|
|
return conjugate(q) / pow(norm(q), 2);
|
|
}
|
|
|
|
inline
|
|
Quaternion normalize(const Quaternion& q)
|
|
{
|
|
return q / norm(q);
|
|
}
|
|
|
|
inline
|
|
vec3 rotate(const vec3& point, const vec3& axis, const scalar& angle)
|
|
{
|
|
Quaternion p {point};
|
|
Quaternion q {normalize(axis), angle};
|
|
return (q * p * inverse(q)).imag();
|
|
}
|
|
|
|
void decompose(const Quaternion& q, vec3& axis, scalar& angle)
|
|
{
|
|
const scalar qnorm = norm(q.imag());
|
|
axis = q.imag() / qnorm;
|
|
angle = 2 * atan2(qnorm, q.real());
|
|
}
|
|
|
|
|
|
// Aliases
|
|
|
|
using quat = Quaternion;
|
|
|
|
} |