geom/src/GEOMImpl/GEOMImpl_ICurvesOperations.cxx

1623 lines
50 KiB
C++

// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
#ifdef WIN32
// E.A. : On windows with python 2.6, there is a conflict
// E.A. : between pymath.h and Standard_math.h which define
// E.A. : some same symbols : acosh, asinh, ...
#include <Standard_math.hxx>
#include <pymath.h>
#endif
#include <Python.h>
#include <structmember.h>
#ifdef HAVE_FINITE
#undef HAVE_FINITE
#endif
#include "GEOMImpl_ICurvesOperations.hxx"
#include "GEOMImpl_Types.hxx"
#include "GEOM_Function.hxx"
#include "GEOM_PythonDump.hxx"
#include "GEOMImpl_PolylineDriver.hxx"
#include "GEOMImpl_CircleDriver.hxx"
#include "GEOMImpl_SplineDriver.hxx"
#include "GEOMImpl_EllipseDriver.hxx"
#include "GEOMImpl_ArcDriver.hxx"
#include "GEOMImpl_ShapeDriver.hxx"
#include "GEOMImpl_SketcherDriver.hxx"
#include "GEOMImpl_3DSketcherDriver.hxx"
#include "GEOMImpl_IPolyline.hxx"
#include "GEOMImpl_IPolyline2D.hxx"
#include "GEOMImpl_ICircle.hxx"
#include "GEOMImpl_ISpline.hxx"
#include "GEOMImpl_IEllipse.hxx"
#include "GEOMImpl_IArc.hxx"
#include "GEOMImpl_ISketcher.hxx"
#include "GEOMImpl_I3DSketcher.hxx"
#include "GEOMImpl_ICurveParametric.hxx"
#include "GEOMImpl_IIsoline.hxx"
#include "GEOMImpl_PolylineDumper.hxx"
#include <Basics_OCCTVersion.hxx>
#include "utilities.h"
#include <TDF_Tool.hxx>
#include <TColStd_HArray1OfByte.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <Standard_Failure.hxx>
#include <Standard_ErrorHandler.hxx> // CAREFUL ! position of this file is critic : see Lucien PIGNOLONI / OCC
/* ==================================
* =========== PYTHON ==============
* ==================================*/
typedef struct {
PyObject_HEAD
int softspace;
std::string *out;
} PyStdOut;
static void
PyStdOut_dealloc(PyStdOut *self)
{
PyObject_Del(self);
}
static PyObject *
PyStdOut_write(PyStdOut *self, PyObject *args)
{
char *c;
int l;
if (!PyArg_ParseTuple(args, "t#:write",&c, &l))
return NULL;
//std::cerr << c ;
*(self->out)=*(self->out)+c;
Py_INCREF(Py_None);
return Py_None;
}
static PyMethodDef PyStdOut_methods[] = {
{"write", (PyCFunction)PyStdOut_write, METH_VARARGS,
PyDoc_STR("write(string) -> None")},
{NULL, NULL} /* sentinel */
};
static PyMemberDef PyStdOut_memberlist[] = {
{(char*)"softspace", T_INT, offsetof(PyStdOut, softspace), 0,
(char*)"flag indicating that a space needs to be printed; used by print"},
{NULL} /* Sentinel */
};
static PyTypeObject PyStdOut_Type = {
/* The ob_type field must be initialized in the module init function
* to be portable to Windows without using C++. */
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"PyOut", /*tp_name*/
sizeof(PyStdOut), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
(destructor)PyStdOut_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
PyObject_GenericGetAttr, /*tp_getattro*/
/* softspace is writable: we must supply tp_setattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
PyStdOut_methods, /*tp_methods*/
PyStdOut_memberlist, /*tp_members*/
0, /*tp_getset*/
0, /*tp_base*/
0, /*tp_dict*/
0, /*tp_descr_get*/
0, /*tp_descr_set*/
0, /*tp_dictoffset*/
0, /*tp_init*/
0, /*tp_alloc*/
0, /*tp_new*/
0, /*tp_free*/
0, /*tp_is_gc*/
};
PyObject * newPyStdOut( std::string& out )
{
PyStdOut *self;
self = PyObject_New(PyStdOut, &PyStdOut_Type);
if (self == NULL)
return NULL;
self->softspace = 0;
self->out=&out;
return (PyObject*)self;
}
////////////////////////END PYTHON///////////////////////////
//=============================================================================
/*!
* constructor:
*/
//=============================================================================
GEOMImpl_ICurvesOperations::GEOMImpl_ICurvesOperations (GEOM_Engine* theEngine, int theDocID)
: GEOM_IOperations(theEngine, theDocID)
{
MESSAGE("GEOMImpl_ICurvesOperations::GEOMImpl_ICurvesOperations");
}
//=============================================================================
/*!
* destructor
*/
//=============================================================================
GEOMImpl_ICurvesOperations::~GEOMImpl_ICurvesOperations()
{
MESSAGE("GEOMImpl_ICurvesOperations::~GEOMImpl_ICurvesOperations");
}
//=============================================================================
/*!
* MakeCircleThreePnt
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeCircleThreePnt (Handle(GEOM_Object) thePnt1,
Handle(GEOM_Object) thePnt2,
Handle(GEOM_Object) thePnt3)
{
SetErrorCode(KO);
if (thePnt1.IsNull() || thePnt2.IsNull() || thePnt3.IsNull()) return NULL;
//Add a new Circle object
Handle(GEOM_Object) aCircle = GetEngine()->AddObject(GetDocID(), GEOM_CIRCLE);
//Add a new Circle function for creation a circle relatively to three points
Handle(GEOM_Function) aFunction =
aCircle->AddFunction(GEOMImpl_CircleDriver::GetID(), CIRCLE_THREE_PNT);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_CircleDriver::GetID()) return NULL;
GEOMImpl_ICircle aCI (aFunction);
Handle(GEOM_Function) aRefPnt1 = thePnt1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePnt2->GetLastFunction();
Handle(GEOM_Function) aRefPnt3 = thePnt3->GetLastFunction();
if (aRefPnt1.IsNull() || aRefPnt2.IsNull() || aRefPnt3.IsNull()) return NULL;
aCI.SetPoint1(aRefPnt1);
aCI.SetPoint2(aRefPnt2);
aCI.SetPoint3(aRefPnt3);
//Compute the Circle value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Circle driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aCircle << " = geompy.MakeCircleThreePnt("
<< thePnt1 << ", " << thePnt2 << ", " << thePnt3 << ")";
SetErrorCode(OK);
return aCircle;
}
//=============================================================================
/*!
* MakeCircleCenter2Pnt
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeCircleCenter2Pnt (Handle(GEOM_Object) thePnt1,
Handle(GEOM_Object) thePnt2,
Handle(GEOM_Object) thePnt3)
{
SetErrorCode(KO);
if (thePnt1.IsNull() || thePnt2.IsNull() || thePnt3.IsNull()) return NULL;
//Add a new Circle object
Handle(GEOM_Object) aCircle = GetEngine()->AddObject(GetDocID(), GEOM_CIRCLE);
//Add a new Circle function for creation a circle relatively to center and 2 points
Handle(GEOM_Function) aFunction =
aCircle->AddFunction(GEOMImpl_CircleDriver::GetID(), CIRCLE_CENTER_TWO_PNT);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_CircleDriver::GetID()) return NULL;
GEOMImpl_ICircle aCI (aFunction);
Handle(GEOM_Function) aRefPnt1 = thePnt1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePnt2->GetLastFunction();
Handle(GEOM_Function) aRefPnt3 = thePnt3->GetLastFunction();
if (aRefPnt1.IsNull() || aRefPnt2.IsNull() || aRefPnt3.IsNull()) return NULL;
aCI.SetPoint1(aRefPnt1);
aCI.SetPoint2(aRefPnt2);
aCI.SetPoint3(aRefPnt3);
//Compute the Circle value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Circle driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aCircle << " = geompy.MakeCircleCenter2Pnt("
<< thePnt1 << ", " << thePnt2 << ", " << thePnt3 << ")";
SetErrorCode(OK);
return aCircle;
}
//=============================================================================
/*!
* MakeCirclePntVecR
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeCirclePntVecR
(Handle(GEOM_Object) thePnt, Handle(GEOM_Object) theVec, double theR)
{
SetErrorCode(KO);
// Not set thePnt means origin of global CS,
// Not set theVec means Z axis of global CS
//if (thePnt.IsNull() || theVec.IsNull()) return NULL;
//Add a new Circle object
Handle(GEOM_Object) aCircle = GetEngine()->AddObject(GetDocID(), GEOM_CIRCLE);
//Add a new Circle function for creation a circle relatively to point and vector
Handle(GEOM_Function) aFunction =
aCircle->AddFunction(GEOMImpl_CircleDriver::GetID(), CIRCLE_PNT_VEC_R);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_CircleDriver::GetID()) return NULL;
GEOMImpl_ICircle aCI (aFunction);
if (!thePnt.IsNull()) {
Handle(GEOM_Function) aRefPnt = thePnt->GetLastFunction();
if (aRefPnt.IsNull()) return NULL;
aCI.SetCenter(aRefPnt);
}
if (!theVec.IsNull()) {
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefVec.IsNull()) return NULL;
aCI.SetVector(aRefVec);
}
aCI.SetRadius(theR);
//Compute the Circle value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Circle driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aCircle << " = geompy.MakeCircle("
<< thePnt << ", " << theVec << ", " << theR << ")";
SetErrorCode(OK);
return aCircle;
}
//=============================================================================
/*!
* MakeEllipse
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeEllipse
(Handle(GEOM_Object) thePnt, Handle(GEOM_Object) theVec,
double theRMajor, double theRMinor,
Handle(GEOM_Object) theVecMaj)
{
SetErrorCode(KO);
// Not set thePnt means origin of global CS,
// Not set theVec means Z axis of global CS
// Not set theVecMaj means X axis of global CS
//if (thePnt.IsNull() || theVec.IsNull()) return NULL;
//Add a new Ellipse object
Handle(GEOM_Object) anEll = GetEngine()->AddObject(GetDocID(), GEOM_ELLIPSE);
//Add a new Ellipse function
Handle(GEOM_Function) aFunction =
anEll->AddFunction(GEOMImpl_EllipseDriver::GetID(), ELLIPSE_PNT_VEC_RR);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_EllipseDriver::GetID()) return NULL;
GEOMImpl_IEllipse aCI (aFunction);
if (!thePnt.IsNull()) {
Handle(GEOM_Function) aRefPnt = thePnt->GetLastFunction();
if (aRefPnt.IsNull()) return NULL;
aCI.SetCenter(aRefPnt);
}
if (!theVec.IsNull()) {
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefVec.IsNull()) return NULL;
aCI.SetVector(aRefVec);
}
aCI.SetRMajor(theRMajor);
aCI.SetRMinor(theRMinor);
if (!theVecMaj.IsNull()) {
Handle(GEOM_Function) aRefVecMaj = theVecMaj->GetLastFunction();
if (aRefVecMaj.IsNull()) return NULL;
aCI.SetVectorMajor(aRefVecMaj);
}
//Compute the Ellipse value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Ellipse driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
if (!theVecMaj.IsNull()) {
GEOM::TPythonDump(aFunction) << anEll << " = geompy.MakeEllipse("
<< thePnt << ", " << theVec << ", " << theRMajor << ", " << theRMinor
<< ", " << theVecMaj << ")";
}
else {
GEOM::TPythonDump(aFunction) << anEll << " = geompy.MakeEllipse("
<< thePnt << ", " << theVec << ", " << theRMajor << ", " << theRMinor << ")";
}
SetErrorCode(OK);
return anEll;
}
//=============================================================================
/*!
* MakeArc
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeArc (Handle(GEOM_Object) thePnt1,
Handle(GEOM_Object) thePnt2,
Handle(GEOM_Object) thePnt3)
{
SetErrorCode(KO);
if (thePnt1.IsNull() || thePnt2.IsNull() || thePnt3.IsNull()) return NULL;
//Add a new Circle Arc object
Handle(GEOM_Object) anArc = GetEngine()->AddObject(GetDocID(), GEOM_CIRC_ARC);
//Add a new Circle Arc function
Handle(GEOM_Function) aFunction =
anArc->AddFunction(GEOMImpl_ArcDriver::GetID(), CIRC_ARC_THREE_PNT);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_ArcDriver::GetID()) return NULL;
GEOMImpl_IArc aCI (aFunction);
Handle(GEOM_Function) aRefPnt1 = thePnt1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePnt2->GetLastFunction();
Handle(GEOM_Function) aRefPnt3 = thePnt3->GetLastFunction();
if (aRefPnt1.IsNull() || aRefPnt2.IsNull() || aRefPnt3.IsNull()) return NULL;
aCI.SetPoint1(aRefPnt1);
aCI.SetPoint2(aRefPnt2);
aCI.SetPoint3(aRefPnt3);
//Compute the Arc value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Arc driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << anArc << " = geompy.MakeArc("
<< thePnt1 << ", " << thePnt2 << ", " << thePnt3 << ")";
SetErrorCode(OK);
return anArc;
}
//=============================================================================
/*!
* MakeArcCenter
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeArcCenter (Handle(GEOM_Object) thePnt1,
Handle(GEOM_Object) thePnt2,
Handle(GEOM_Object) thePnt3,
bool theSense)
{
SetErrorCode(KO);
if (thePnt1.IsNull() || thePnt2.IsNull() || thePnt3.IsNull()) return NULL;
//Add a new Circle Arc object
Handle(GEOM_Object) anArc = GetEngine()->AddObject(GetDocID(), GEOM_CIRC_ARC);
//Add a new Circle Arc function
Handle(GEOM_Function) aFunction =
anArc->AddFunction(GEOMImpl_ArcDriver::GetID(), CIRC_ARC_CENTER);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_ArcDriver::GetID()) return NULL;
GEOMImpl_IArc aCI (aFunction);
Handle(GEOM_Function) aRefPnt1 = thePnt1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePnt2->GetLastFunction();
Handle(GEOM_Function) aRefPnt3 = thePnt3->GetLastFunction();
if (aRefPnt1.IsNull() || aRefPnt2.IsNull() || aRefPnt3.IsNull()) return NULL;
aCI.SetPoint1(aRefPnt1);
aCI.SetPoint2(aRefPnt2);
aCI.SetPoint3(aRefPnt3);
aCI.SetSense(theSense);
//Compute the Arc value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Arc driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << anArc << " = geompy.MakeArcCenter("
<< thePnt1 << ", " << thePnt2 << ", " << thePnt3 << "," << theSense << ")";
SetErrorCode(OK);
return anArc;
}
//=============================================================================
/*!
* MakeArcOfEllipse
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeArcOfEllipse (Handle(GEOM_Object) thePnt1,
Handle(GEOM_Object) thePnt2,
Handle(GEOM_Object) thePnt3)
{
SetErrorCode(KO);
if (thePnt1.IsNull() || thePnt2.IsNull() || thePnt3.IsNull()) return NULL;
//Add a new Circle Arc object
Handle(GEOM_Object) anArc = GetEngine()->AddObject(GetDocID(), GEOM_ELLIPSE_ARC);
//Add a new Circle Arc function
Handle(GEOM_Function) aFunction =
anArc->AddFunction(GEOMImpl_ArcDriver::GetID(), ELLIPSE_ARC_CENTER_TWO_PNT);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_ArcDriver::GetID()) return NULL;
GEOMImpl_IArc aCI (aFunction);
Handle(GEOM_Function) aRefPnt1 = thePnt1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePnt2->GetLastFunction();
Handle(GEOM_Function) aRefPnt3 = thePnt3->GetLastFunction();
if (aRefPnt1.IsNull() || aRefPnt2.IsNull() || aRefPnt3.IsNull()) return NULL;
aCI.SetPoint1(aRefPnt1);
aCI.SetPoint2(aRefPnt2);
aCI.SetPoint3(aRefPnt3);
//Compute the Arc value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Arc driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << anArc << " = geompy.MakeArcOfEllipse("
<< thePnt1 << ", " << thePnt2 << ", " << thePnt3 << ")";
SetErrorCode(OK);
return anArc;
}
//=============================================================================
/*!
* MakePolyline
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakePolyline (std::list<Handle(GEOM_Object)> thePoints,
bool theIsClosed)
{
SetErrorCode(KO);
//Add a new Polyline object
Handle(GEOM_Object) aPolyline = GetEngine()->AddObject(GetDocID(), GEOM_POLYLINE);
//Add a new Polyline function for creation a polyline relatively to points set
Handle(GEOM_Function) aFunction =
aPolyline->AddFunction(GEOMImpl_PolylineDriver::GetID(), POLYLINE_POINTS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PolylineDriver::GetID()) return NULL;
GEOMImpl_IPolyline aCI (aFunction);
int aLen = thePoints.size();
aCI.SetLength(aLen);
aCI.SetConstructorType(POINT_CONSTRUCTOR);
int ind = 1;
std::list<Handle(GEOM_Object)>::iterator it = thePoints.begin();
for (; it != thePoints.end(); it++, ind++) {
Handle(GEOM_Function) aRefPnt = (*it)->GetLastFunction();
if (aRefPnt.IsNull()) {
SetErrorCode("NULL point for Polyline");
return NULL;
}
aCI.SetPoint(ind, aRefPnt);
}
aCI.SetIsClosed(theIsClosed);
//Compute the Polyline value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Polyline driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aPolyline << " = geompy.MakePolyline([";
it = thePoints.begin();
pd << (*it++);
while (it != thePoints.end()) {
pd << ", " << (*it++);
}
pd << "], " << theIsClosed << ")";
SetErrorCode(OK);
return aPolyline;
}
//=============================================================================
/*!
* MakeSplineBezier
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeSplineBezier
(std::list<Handle(GEOM_Object)> thePoints,
bool theIsClosed)
{
SetErrorCode(KO);
//Add a new Spline object
Handle(GEOM_Object) aSpline = GetEngine()->AddObject(GetDocID(), GEOM_SPLINE);
//Add a new Spline function for creation a bezier curve relatively to points set
Handle(GEOM_Function) aFunction =
aSpline->AddFunction(GEOMImpl_SplineDriver::GetID(), SPLINE_BEZIER);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SplineDriver::GetID()) return NULL;
GEOMImpl_ISpline aCI (aFunction);
aCI.SetConstructorType(POINT_CONSTRUCTOR);
Handle(TColStd_HSequenceOfTransient) aPoints = new TColStd_HSequenceOfTransient;
std::list<Handle(GEOM_Object)>::iterator it = thePoints.begin();
for (; it != thePoints.end(); it++) {
Handle(GEOM_Function) aRefPnt = (*it)->GetLastFunction();
if (aRefPnt.IsNull()) {
SetErrorCode("NULL point for Besier curve");
return NULL;
}
aPoints->Append(aRefPnt);
}
aCI.SetPoints(aPoints);
aCI.SetIsClosed(theIsClosed);
//Compute the Spline value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Spline driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aSpline << " = geompy.MakeBezier([";
it = thePoints.begin();
pd << (*it++);
while (it != thePoints.end()) {
pd << ", " << (*it++);
}
pd << "], " << theIsClosed << ")";
SetErrorCode(OK);
return aSpline;
}
//=============================================================================
/*!
* MakeSplineInterpolation
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeSplineInterpolation
(std::list<Handle(GEOM_Object)> thePoints,
bool theIsClosed,
bool theDoReordering)
{
SetErrorCode(KO);
//Add a new Spline object
Handle(GEOM_Object) aSpline = GetEngine()->AddObject(GetDocID(), GEOM_SPLINE);
//Add a new Spline function for interpolation type
Handle(GEOM_Function) aFunction =
aSpline->AddFunction(GEOMImpl_SplineDriver::GetID(), SPLINE_INTERPOLATION);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SplineDriver::GetID()) return NULL;
GEOMImpl_ISpline aCI (aFunction);
aCI.SetConstructorType(POINT_CONSTRUCTOR);
Handle(TColStd_HSequenceOfTransient) aPoints = new TColStd_HSequenceOfTransient;
std::list<Handle(GEOM_Object)>::iterator it = thePoints.begin();
for (; it != thePoints.end(); it++) {
Handle(GEOM_Function) aRefPnt = (*it)->GetLastFunction();
if (aRefPnt.IsNull()) {
return NULL;
}
aPoints->Append(aRefPnt);
}
aCI.SetPoints(aPoints);
aCI.SetIsClosed(theIsClosed);
aCI.SetDoReordering(theDoReordering);
//Compute the Spline value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Spline driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aSpline << " = geompy.MakeInterpol([";
it = thePoints.begin();
pd << (*it++);
while (it != thePoints.end()) {
pd << ", " << (*it++);
}
pd << "], " << theIsClosed << ", " << theDoReordering << ")";
SetErrorCode(OK);
return aSpline;
}
//=============================================================================
/*!
* MakeSplineInterpolWithTangents
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeSplineInterpolWithTangents
(std::list<Handle(GEOM_Object)> thePoints,
Handle(GEOM_Object) theFirstVec,
Handle(GEOM_Object) theLastVec)
{
SetErrorCode(KO);
//Add a new Spline object
Handle(GEOM_Object) aSpline = GetEngine()->AddObject(GetDocID(), GEOM_SPLINE);
//Add a new Spline function for interpolation type
Handle(GEOM_Function) aFunction =
aSpline->AddFunction(GEOMImpl_SplineDriver::GetID(), SPLINE_INTERPOL_TANGENTS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SplineDriver::GetID()) return NULL;
GEOMImpl_ISpline aCI (aFunction);
aCI.SetConstructorType(POINT_CONSTRUCTOR);
Handle(TColStd_HSequenceOfTransient) aPoints = new TColStd_HSequenceOfTransient;
std::list<Handle(GEOM_Object)>::iterator it = thePoints.begin();
for (; it != thePoints.end(); it++) {
Handle(GEOM_Function) aRefPnt = (*it)->GetLastFunction();
if (aRefPnt.IsNull()) {
SetErrorCode("NULL point for Interpolation");
return NULL;
}
aPoints->Append(aRefPnt);
}
aCI.SetPoints(aPoints);
Handle(GEOM_Function) aVec1 = theFirstVec->GetLastFunction();
Handle(GEOM_Function) aVec2 = theLastVec->GetLastFunction();
if (aVec1.IsNull() || aVec2.IsNull()) return NULL;
aCI.SetFirstVector(aVec1);
aCI.SetLastVector(aVec2);
//Compute the Spline value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Spline driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aSpline << " = geompy.MakeInterpolWithTangents([";
it = thePoints.begin();
pd << (*it++);
while (it != thePoints.end()) {
pd << ", " << (*it++);
}
pd << "], " << theFirstVec << ", " << theLastVec << ")";
SetErrorCode(OK);
return aSpline;
}
//=============================================================================
/*!
* MakeCurveParametric
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeCurveParametric
(const char* thexExpr, const char* theyExpr, const char* thezExpr,
double theParamMin, double theParamMax, double theParamStep,
CurveType theCurveType,
int theParamNbStep, bool theNewMethod)
{
TCollection_AsciiString aPyScript;
aPyScript +="from math import * \n";
aPyScript +="def X(t): \n";
aPyScript +=" return ";
aPyScript += thexExpr;
aPyScript += "\n";
aPyScript +="def Y(t): \n";
aPyScript +=" return ";
aPyScript += theyExpr;
aPyScript += "\n";
aPyScript +="def Z(t): \n";
aPyScript +=" return ";
aPyScript += thezExpr;
aPyScript += "\n";
if (theNewMethod)
{
aPyScript +="def coordCalculator(tmin, tmax, nstep): \n";
aPyScript +=" coords = [] \n";
aPyScript +=" tstep = (tmax - tmin) / nstep \n";
aPyScript +=" n = 0 \n";
aPyScript +=" while n <= nstep : \n";
aPyScript +=" t = tmin + n*tstep \n";
aPyScript +=" coords.append([X(t), Y(t), Z(t)]) \n";
aPyScript +=" n = n+1 \n";
aPyScript +=" return coords \n";
}
else
{
aPyScript +="def coordCalculator(tmin, tmax, tstep): \n";
aPyScript +=" coords = [] \n";
aPyScript +=" while tmin <= tmax : \n";
aPyScript +=" coords.append([X(tmin), Y(tmin), Z(tmin)]) \n";
aPyScript +=" tmin = tmin + tstep \n";
aPyScript +=" return coords \n";
}
SetErrorCode(KO);
if(theParamMin >= theParamMax) {
SetErrorCode("The minimum value of the parameter must be less than maximum value !!!");
return NULL;
}
if(!theNewMethod && theParamStep <= 0.0) {
SetErrorCode("Value of the step must be positive !!!");
return NULL;
}
else if(theNewMethod && theParamNbStep < 0) {
SetErrorCode("The number of steps must be positive !!!");
return NULL;
}
/* Initialize the Python interpreter */
if (! Py_IsInitialized()) {
SetErrorCode("Python interpreter is not initialized !!! ");
return NULL;
}
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject* main_mod = PyImport_AddModule("__main__");
PyObject* main_dict = PyModule_GetDict(main_mod);
PyObject* obj = PyRun_String(aPyScript.ToCString(), Py_file_input, main_dict, NULL);
if (obj == NULL) {
SetErrorCode("Error during executing of python script !!!");
PyErr_Print();
PyGILState_Release(gstate);
return NULL;
} else {
Py_DECREF(obj);
}
PyObject * func = NULL;
func = PyObject_GetAttrString(main_mod, "coordCalculator");
if (func == NULL){
SetErrorCode("Can't get function from python module !!!");
PyGILState_Release(gstate);
return NULL;
}
PyObject* coords;
if (theNewMethod)
coords = PyObject_CallFunction(func,(char*)"(d, d, i)", theParamMin, theParamMax, theParamNbStep );
else
coords = PyObject_CallFunction(func,(char*)"(d, d, d)", theParamMin, theParamMax, theParamStep );
PyObject* new_stderr = NULL;
if (coords == NULL){
fflush(stderr);
std::string err_description="";
new_stderr = newPyStdOut(err_description);
PySys_SetObject((char*)"stderr", new_stderr);
PyErr_Print();
PySys_SetObject((char*)"stderr", PySys_GetObject((char*)"__stderr__"));
Py_DECREF(new_stderr);
MESSAGE("Can't evaluate coordCalculator()" << " error is " << err_description);
SetErrorCode("Can't evaluate the expressions, please check them !!!");
PyGILState_Release(gstate);
return NULL;
}
int lsize = PyList_Size( coords );
if(lsize <= 0) {
SetErrorCode("Empty list of the points, please check input parameters !!!");
return NULL;
}
Handle(TColStd_HArray1OfReal) aCoordsArray = new TColStd_HArray1OfReal (1, lsize * 3);
int k=1;
for ( Py_ssize_t i = 0; i < lsize; ++i ) {
PyObject* coord = PyList_GetItem( coords, i );
if (coord != NULL) {
for ( Py_ssize_t j = 0; j < PyList_Size(coord); ++j) {
PyObject* item = PyList_GetItem(coord, j);
aCoordsArray->SetValue(k, PyFloat_AsDouble(item));
k++;
}
}
}
Py_DECREF(coords);
PyGILState_Release(gstate);
Handle(GEOM_Object) aCurve;
Handle(GEOM_Function) aFunction;
TCollection_AsciiString aCurveType;
switch(theCurveType) {
case Polyline: {
//Add a new Polyline object
aCurve = GetEngine()->AddObject(GetDocID(), GEOM_POLYLINE);
//Add a new Polyline function for creation a polyline relatively to points set
aFunction = aCurve->AddFunction(GEOMImpl_PolylineDriver::GetID(), POLYLINE_POINTS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PolylineDriver::GetID()) return NULL;
GEOMImpl_IPolyline aCI (aFunction);
aCI.SetLength(lsize);
aCI.SetConstructorType(COORD_CONSTRUCTOR);
aCI.SetIsClosed(false);
aCI.SetCoordinates(aCoordsArray);
aCurveType = "GEOM.Polyline";
break;
}
case Bezier: {
//Add a new Spline object
aCurve = GetEngine()->AddObject(GetDocID(), GEOM_SPLINE);
//Add a new Spline function for creation a bezier curve relatively to points set
aFunction =
aCurve->AddFunction(GEOMImpl_SplineDriver::GetID(), SPLINE_BEZIER);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SplineDriver::GetID()) return NULL;
GEOMImpl_ISpline aCI (aFunction);
aCI.SetConstructorType(COORD_CONSTRUCTOR);
aCI.SetIsClosed(false);
aCI.SetCoordinates(aCoordsArray);
aCurveType = "GEOM.Bezier";
break;
}
case Interpolation: {
//Add a new Spline object
aCurve = GetEngine()->AddObject(GetDocID(), GEOM_SPLINE);
//Add a new Spline function for creation a bezier curve relatively to points set
aFunction = aCurve->AddFunction(GEOMImpl_SplineDriver::GetID(), SPLINE_INTERPOLATION);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SplineDriver::GetID()) return NULL;
GEOMImpl_ISpline aCI (aFunction);
aCI.SetConstructorType(COORD_CONSTRUCTOR);
aCI.SetIsClosed(false);
aCI.SetDoReordering(false);
aCI.SetCoordinates(aCoordsArray);
aCurveType = "GEOM.Interpolation";
break;
}
}
GEOMImpl_ICurveParametric aIP(aFunction);
aIP.SetExprX (thexExpr);
aIP.SetExprY (theyExpr);
aIP.SetExprZ (thezExpr);
aIP.SetParamMin (theParamMin);
aIP.SetParamMax (theParamMax);
if ( theNewMethod )
aIP.SetParamNbStep(theParamNbStep);
else
aIP.SetParamStep (theParamStep);
//Compute the Curve value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Curve driver failed !!!");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aCurve << " = geompy.MakeCurveParametric(";
pd << "\"" << thexExpr << "\", ";
pd << "\"" << theyExpr << "\", ";
pd << "\"" << thezExpr << "\", ";
pd << theParamMin <<", ";
pd << theParamMax <<", ";
if (theNewMethod)
pd << theParamNbStep <<", ";
else
pd << theParamStep <<", ";
pd << aCurveType.ToCString() <<", ";
pd << theNewMethod <<")";
SetErrorCode(OK);
return aCurve;
}
//=============================================================================
/*!
* MakeSketcher
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeSketcher (const char* theCommand,
std::list<double> theWorkingPlane)
{
SetErrorCode(KO);
if (!theCommand || strcmp(theCommand, "") == 0) return NULL;
//Add a new Sketcher object
Handle(GEOM_Object) aSketcher = GetEngine()->AddObject(GetDocID(), GEOM_SKETCHER);
//Add a new Sketcher function
Handle(GEOM_Function) aFunction =
aSketcher->AddFunction(GEOMImpl_SketcherDriver::GetID(), SKETCHER_NINE_DOUBLS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SketcherDriver::GetID()) return NULL;
GEOMImpl_ISketcher aCI (aFunction);
TCollection_AsciiString aCommand((char*) theCommand);
aCI.SetCommand(aCommand);
int ind = 1;
std::list<double>::iterator it = theWorkingPlane.begin();
for (; it != theWorkingPlane.end(); it++, ind++)
aCI.SetWorkingPlane(ind, *it);
//Compute the Sketcher value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Sketcher driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aSketcher << " = geompy.MakeSketcher(\"" << aCommand.ToCString() << "\", [";
it = theWorkingPlane.begin();
pd << (*it++);
while (it != theWorkingPlane.end()) {
pd << ", " << (*it++);
}
pd << "])";
SetErrorCode(OK);
return aSketcher;
}
//=============================================================================
/*!
* MakeSketcherOnPlane
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeSketcherOnPlane
(const char* theCommand,
Handle(GEOM_Object) theWorkingPlane)
{
SetErrorCode(KO);
if (!theCommand || strcmp(theCommand, "") == 0) return NULL;
//Add a new Sketcher object
Handle(GEOM_Object) aSketcher = GetEngine()->AddObject(GetDocID(), GEOM_SKETCHER);
//Add a new Sketcher function
Handle(GEOM_Function) aFunction =
aSketcher->AddFunction(GEOMImpl_SketcherDriver::GetID(), SKETCHER_PLANE);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SketcherDriver::GetID()) return NULL;
GEOMImpl_ISketcher aCI (aFunction);
TCollection_AsciiString aCommand((char*) theCommand);
aCI.SetCommand(aCommand);
Handle(GEOM_Function) aRefPlane = theWorkingPlane->GetLastFunction();
if (aRefPlane.IsNull()) return NULL;
aCI.SetWorkingPlane( aRefPlane );
//Compute the Sketcher value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Sketcher driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump (aFunction) << aSketcher << " = geompy.MakeSketcherOnPlane(\""
<< aCommand.ToCString() << "\", " << theWorkingPlane << " )";
SetErrorCode(OK);
return aSketcher;
}
//=============================================================================
/*!
* Make3DSketcherCommand
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::Make3DSketcherCommand (const char* theCommand)
{
SetErrorCode(KO);
if (!theCommand || strcmp(theCommand, "") == 0) return NULL;
//Add a new Sketcher object
Handle(GEOM_Object) aSketcher = GetEngine()->AddObject(GetDocID(), GEOM_3DSKETCHER);
//Add a new Sketcher function
Handle(GEOM_Function) aFunction =
aSketcher->AddFunction(GEOMImpl_3DSketcherDriver::GetID(), SKETCHER3D_COMMAND);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_3DSketcherDriver::GetID()) return NULL;
GEOMImpl_I3DSketcher aCI (aFunction);
TCollection_AsciiString aCommand ((char*) theCommand);
aCI.SetCommand(aCommand);
//Compute the 3D Sketcher value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("3D Sketcher driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aSketcher << " = geompy.Make3DSketcherCommand(\"" << aCommand.ToCString() << "\")";
SetErrorCode(OK);
return aSketcher;
}
//=============================================================================
/*!
* Make3DSketcher
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::Make3DSketcher (std::list<double> theCoordinates)
{
SetErrorCode(KO);
//Add a new Sketcher object
Handle(GEOM_Object) a3DSketcher = GetEngine()->AddObject(GetDocID(), GEOM_3DSKETCHER);
//Add a new Sketcher function
Handle(GEOM_Function) aFunction =
a3DSketcher->AddFunction(GEOMImpl_3DSketcherDriver::GetID(), SKETCHER3D_COORDS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_3DSketcherDriver::GetID()) return NULL;
GEOMImpl_I3DSketcher aCI (aFunction);
int nbOfCoords = 0;
std::list<double>::iterator it = theCoordinates.begin();
for (; it != theCoordinates.end(); it++)
nbOfCoords++;
Handle(TColStd_HArray1OfReal) aCoordsArray = new TColStd_HArray1OfReal (1, nbOfCoords);
it = theCoordinates.begin();
int ind = 1;
for (; it != theCoordinates.end(); it++, ind++)
aCoordsArray->SetValue(ind, *it);
aCI.SetCoordinates(aCoordsArray);
//Compute the Sketcher value
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("3D Sketcher driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << a3DSketcher << " = geompy.Make3DSketcher([";
it = theCoordinates.begin();
pd << (*it++);
while (it != theCoordinates.end()) {
pd << ", " << (*it++);
}
pd << "])";
SetErrorCode(OK);
return a3DSketcher;
}
//=============================================================================
/*!
* MakeIsoline
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakeIsoline
(const Handle(GEOM_Object) &theFace,
const bool IsUIso,
const double theParameter)
{
SetErrorCode(KO);
if (theFace.IsNull()) {
return NULL;
}
//Add a new Spline object
Handle(GEOM_Object) anIsoline =
GetEngine()->AddObject(GetDocID(), GEOM_ISOLINE);
//Add a new Spline function for interpolation type
Handle(GEOM_Function) aFunction =
anIsoline->AddFunction(GEOMImpl_ShapeDriver::GetID(), SHAPE_ISOLINE);
if (aFunction.IsNull()) {
return NULL;
}
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_ShapeDriver::GetID()) {
return NULL;
}
GEOMImpl_IIsoline aCI (aFunction);
Handle(GEOM_Function) aRefFace = theFace->GetLastFunction();
if (aRefFace.IsNull()) {
return NULL;
}
aCI.SetFace(aRefFace);
aCI.SetIsUIso(IsUIso);
aCI.SetParameter(theParameter);
//Compute the isoline curve
try {
OCC_CATCH_SIGNALS;
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Shape driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump (aFunction) << anIsoline << " = geompy.MakeIsoline( "
<< theFace << ", " << IsUIso << ", " << theParameter << " )";
SetErrorCode(OK);
return anIsoline;
}
//=============================================================================
/*!
* MakePolyline2D
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakePolyline2D
(const std::list <std::list <double> > &theCoords,
const Handle(TColStd_HArray1OfExtendedString) &theNames,
const Handle(TColStd_HArray1OfByte) &theTypes,
const Handle(TColStd_HArray1OfByte) &theCloseds,
const Handle(TColStd_HArray1OfReal) &theWorkingPlane)
{
SetErrorCode(KO);
if (theCoords.empty() || theNames.IsNull() || theTypes.IsNull() ||
theCloseds.IsNull() || theWorkingPlane.IsNull()) {
return NULL;
}
// Add a new Polyline object
Handle(GEOM_Object) aResult =
GetEngine()->AddObject(GetDocID(), GEOM_POLYLINE2D);
Handle(GEOM_Function) aFunction = aResult->AddFunction
(GEOMImpl_PolylineDriver::GetID(), POLYLINE2D_PLN_COORDS);
if (aFunction.IsNull()) {
return NULL;
}
// Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PolylineDriver::GetID()) {
return NULL;
}
GEOMImpl_IPolyline2D aCI(aFunction);
aCI.SetCoords(theCoords);
aCI.SetNames(theNames);
aCI.SetTypes(theTypes);
aCI.SetClosedFlags(theCloseds);
aCI.SetWorkingPlaneDbls(theWorkingPlane);
// Compute the isoline curve
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Polyline driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOMImpl_PolylineDumper aDumper(theCoords, theNames, theTypes,
theCloseds, theWorkingPlane);
aDumper.Dump(aResult);
if (aDumper.IsDone() == Standard_False) {
SetErrorCode("Python dump failed");
return NULL;
}
SetErrorCode(OK);
return aResult;
}
//=============================================================================
/*!
* MakePolyline2DOnPlane
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_ICurvesOperations::MakePolyline2DOnPlane
(const std::list <std::list <double> > &theCoords,
const Handle(TColStd_HArray1OfExtendedString) &theNames,
const Handle(TColStd_HArray1OfByte) &theTypes,
const Handle(TColStd_HArray1OfByte) &theCloseds,
const Handle(GEOM_Object) &theWorkingPlane)
{
SetErrorCode(KO);
if (theCoords.empty() || theNames.IsNull() || theTypes.IsNull() ||
theCloseds.IsNull() || theWorkingPlane.IsNull()) {
return NULL;
}
//Add a new Polyline object
Handle(GEOM_Object) aResult =
GetEngine()->AddObject(GetDocID(), GEOM_POLYLINE2D);
Handle(GEOM_Function) aFunction = aResult->AddFunction
(GEOMImpl_PolylineDriver::GetID(), POLYLINE2D_PLN_OBJECT);
if (aFunction.IsNull()) {
return NULL;
}
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PolylineDriver::GetID()) {
return NULL;
}
Handle(GEOM_Function) aRefPlane = theWorkingPlane->GetLastFunction();
if (aRefPlane.IsNull()) {
return NULL;
}
GEOMImpl_IPolyline2D aCI(aFunction);
aCI.SetCoords(theCoords);
aCI.SetNames(theNames);
aCI.SetTypes(theTypes);
aCI.SetClosedFlags(theCloseds);
aCI.SetWorkingPlane(aRefPlane);
//Compute the isoline curve
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Polyline driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOMImpl_PolylineDumper aDumper(theCoords, theNames, theTypes,
theCloseds, theWorkingPlane);
aDumper.Dump(aResult);
if (aDumper.IsDone() == Standard_False) {
SetErrorCode("Python dump failed");
return NULL;
}
SetErrorCode(OK);
return aResult;
}