1
0
mirror of https://github.com/NGSolve/netgen.git synced 2025-01-15 15:30:34 +05:00
netgen/libsrc/linalg/linsearch.cpp

352 lines
7.5 KiB
C++
Raw Normal View History

2009-01-26 01:58:48 +05:00
/***************************************************************************/
/* */
/* Problem: Liniensuche */
/* */
/* Programmautor: Joachim Schöberl */
2009-01-26 01:58:48 +05:00
/* Matrikelnummer: 9155284 */
/* */
/* Algorithmus nach: */
/* */
/* Optimierung I, Gfrerer, WS94/95 */
/* Algorithmus 2.1: Liniensuche Problem (ii) */
/* */
/***************************************************************************/
#include <mystdlib.h>
#include <myadt.hpp> // min, max, sqr
#include <linalg.hpp>
#include "opti.hpp"
namespace netgen
{
const double eps0 = 1E-15;
// Liniensuche
double MinFunction :: Func (const Vector & /* x */) const
{
cerr << "Func of MinFunction called" << endl;
return 0;
}
void MinFunction :: Grad (const Vector & /* x */, Vector & /* g */) const
{
cerr << "Grad of MinFunction called" << endl;
}
double MinFunction :: FuncGrad (const Vector & x, Vector & g) const
{
cerr << "Grad of MinFunction called" << endl;
return 0;
/*
int n = x.Size();
static Vector xr;
static Vector xl;
xr.SetSize(n);
xl.SetSize(n);
double eps = 1e-6;
double fl, fr;
for (int i = 1; i <= n; i++)
{
xr.Set (1, x);
xl.Set (1, x);
xr.Elem(i) += eps;
fr = Func (xr);
xl.Elem(i) -= eps;
fl = Func (xl);
g.Elem(i) = (fr - fl) / (2 * eps);
}
double f = Func(x);
// (*testout) << "f = " << f << " grad = " << g << endl;
return f;
*/
}
double MinFunction :: FuncDeriv (const Vector & x, const Vector & dir, double & deriv) const
{
Vector g(x.Size());
double f = FuncGrad (x, g);
deriv = (g * dir);
// (*testout) << "g = " << g << ", dir = " << dir << ", deriv = " << deriv << endl;
return f;
}
void MinFunction :: ApproximateHesse (const Vector & x,
DenseMatrix & hesse) const
{
int n = x.Size();
int i, j;
static Vector hx;
hx.SetSize(n);
double eps = 1e-6;
double f, f11, f12, f21, f22;
for (i = 0; i < n; i++)
2009-01-26 01:58:48 +05:00
{
for (j = 0; j < i; j++)
2009-01-26 01:58:48 +05:00
{
hx = x;
hx(i) = x(i) + eps;
hx(j) = x(j) + eps;
2009-01-26 01:58:48 +05:00
f11 = Func(hx);
hx(i) = x(i) + eps;
hx(j) = x(j) - eps;
2009-01-26 01:58:48 +05:00
f12 = Func(hx);
hx(i) = x(i) - eps;
hx(j) = x(j) + eps;
2009-01-26 01:58:48 +05:00
f21 = Func(hx);
hx(i) = x(i) - eps;
hx(j) = x(j) - eps;
2009-01-26 01:58:48 +05:00
f22 = Func(hx);
hesse(i, j) = hesse(j, i) =
2009-01-26 01:58:48 +05:00
(f11 + f22 - f12 - f21) / (2 * eps * eps);
}
hx = x;
f = Func(x);
hx(i) = x(i) + eps;
2009-01-26 01:58:48 +05:00
f11 = Func(hx);
hx(i) = x(i) - eps;
2009-01-26 01:58:48 +05:00
f22 = Func(hx);
hesse(i, i) = (f11 + f22 - 2 * f) / (eps * eps);
2009-01-26 01:58:48 +05:00
}
// (*testout) << "hesse = " << hesse << endl;
}
/// Line search, modified Mangasarien conditions
void lines (Vector & x, // i: initial point of line-search
Vector & xneu, // o: solution, if successful
Vector & p, // i: search direction
double & f, // i: function-value at x
// o: function-value at xneu, iff ifail = 0
Vector & g, // i: gradient at x
// o: gradient at xneu, iff ifail = 0
const MinFunction & fun, // function to minimize
const OptiParameters & par,
double & alphahat, // i: initial value for alpha_hat
// o: solution alpha iff ifail = 0
double fmin, // i: lower bound for f
double mu1, // i: Parameter mu_1 of Alg.2.1
double sigma, // i: Parameter sigma of Alg.2.1
double xi1, // i: Parameter xi_1 of Alg.2.1
double xi2, // i: Parameter xi_1 of Alg.2.1
double tau, // i: Parameter tau of Alg.2.1
double tau1, // i: Parameter tau_1 of Alg.2.1
double tau2, // i: Parameter tau_2 of Alg.2.1
int & ifail) // o: 0 on success
// -1 bei termination because lower limit fmin
// 1 bei illegal termination due to different reasons
{
double phi0, phi0prime, phi1, phi1prime, phihatprime;
double alpha1, alpha2, alphaincr, c;
char flag = 1;
long it;
alpha1 = 0;
alpha2 = 1e50;
phi0 = phi1 = f;
phi0prime = g * p;
if (phi0prime > 0)
{
ifail = 1;
return;
}
ifail = 1; // Markus
phi1prime = phi0prime;
// (*testout) << "phi0prime = " << phi0prime << endl;
// it = 100000l;
it = 0;
while (it++ <= par.maxit_linsearch)
{
xneu.Set2 (1, x, alphahat, p);
// f = fun.FuncGrad (xneu, g);
// f = fun.Func (xneu);
f = fun.FuncDeriv (xneu, p, phihatprime);
// (*testout) << "lines, f = " << f << " phip = " << phihatprime << endl;
if (f < fmin)
{
ifail = -1;
break;
}
if (alpha2 - alpha1 < eps0 * alpha2)
{
ifail = 0;
break;
}
// (*testout) << "i = " << it << " al = " << alphahat << " f = " << f << " fprime " << phihatprime << endl;;
if (f - phi0 > mu1 * alphahat * phi1prime + eps0 * fabs (phi0))
{
flag = 0;
alpha2 = alphahat;
c =
(f - phi1 - phi1prime * (alphahat-alpha1)) /
sqr (alphahat-alpha1);
alphahat = alpha1 - 0.5 * phi1prime / c;
if (alphahat > alpha2)
alphahat = alpha1 + 1/(4*c) *
( (sigma+mu1) * phi0prime - 2*phi1prime
+ sqrt (sqr(phi1prime - mu1 * phi0prime) -
4 * (phi1 - phi0 - mu1 * alpha1 * phi0prime) * c));
alphahat = max2 (alphahat, alpha1 + tau * (alpha2 - alpha1));
alphahat = min2 (alphahat, alpha2 - tau * (alpha2 - alpha1));
// (*testout) << " if-branch" << endl;
}
else
{
/*
f = fun.FuncGrad (xneu, g);
phihatprime = g * p;
*/
f = fun.FuncDeriv (xneu, p, phihatprime);
if (phihatprime < sigma * phi0prime * (1 + eps0))
{
if (phi1prime < phihatprime)
// Approximationsfunktion ist konvex
alphaincr = (alphahat - alpha1) * phihatprime /
(phi1prime - phihatprime);
else
alphaincr = 1e99; // MAXDOUBLE;
if (flag)
{
alphaincr = max2 (alphaincr, xi1 * (alphahat-alpha1));
alphaincr = min2 (alphaincr, xi2 * (alphahat-alpha1));
}
else
{
alphaincr = max2 (alphaincr, tau1 * (alpha2 - alphahat));
alphaincr = min2 (alphaincr, tau2 * (alpha2 - alphahat));
}
alpha1 = alphahat;
alphahat += alphaincr;
phi1 = f;
phi1prime = phihatprime;
}
else
{
ifail = 0; // Erfolg !!
break;
}
// (*testout) << " else, " << endl;
}
}
// (*testout) << "linsearch: it = " << it << " ifail = " << ifail << endl;
fun.FuncGrad (xneu, g);
if (it < 0)
ifail = 1;
// (*testout) << "fail = " << ifail << endl;
}
void SteepestDescent (Vector & x, const MinFunction & fun,
const OptiParameters & par)
{
int it, n = x.Size();
Vector xnew(n), p(n), g(n), g2(n);
double val, alphahat;
int fail;
val = fun.FuncGrad(x, g);
alphahat = 1;
// testout << "f = ";
for (it = 0; it < 10; it++)
{
// testout << val << " ";
// p = -g;
p.Set (-1, g);
lines (x, xnew, p, val, g, fun, par, alphahat, -1e5,
0.1, 0.1, 1, 10, 0.1, 0.1, 0.6, fail);
x = xnew;
}
// testout << endl;
}
}