netgen/libsrc/occ/python_occ_shapes.cpp

1398 lines
46 KiB
C++
Raw Normal View History

#ifdef NG_PYTHON
#ifdef OCCGEOMETRY
#include <../general/ngpython.hpp>
#include <core/python_ngcore.hpp>
#include "../meshing/python_mesh.hpp"
#include <meshing.hpp>
#include <occgeom.hpp>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Trsf.hxx>
#include <BRepPrimAPI_MakeSphere.hxx>
#include <BRepPrimAPI_MakeCylinder.hxx>
#include <BRepPrimAPI_MakeRevol.hxx>
#include <BRepPrimAPI_MakeBox.hxx>
#include <BRepPrimAPI_MakePrism.hxx>
#include <BRepOffsetAPI_MakePipe.hxx>
#include <BRepAlgoAPI_Cut.hxx>
#include <BRepAlgoAPI_Common.hxx>
#include <BRepAlgoAPI_Fuse.hxx>
// #include <XCAFDoc_VisMaterialTool.hxx>
#include <TDF_Attribute.hxx>
#include <Standard_GUID.hxx>
#include <Geom_TrimmedCurve.hxx>
2021-08-06 20:43:01 +05:00
#include <Geom_Plane.hxx>
2021-08-10 23:28:49 +05:00
#include <Geom_BSplineCurve.hxx>
#include <Geom_BezierCurve.hxx>
#include <GC_MakeSegment.hxx>
#include <GC_MakeCircle.hxx>
#include <GC_MakeArcOfCircle.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_MakeWire.hxx>
#include <BRepBuilderAPI_Transform.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepFilletAPI_MakeFillet.hxx>
#include <BRepOffsetAPI_ThruSections.hxx>
2021-08-07 00:33:54 +05:00
#include <BRepOffsetAPI_MakeOffset.hxx>
#include <BRepGProp.hxx>
#include <BRepOffsetAPI_MakeThickSolid.hxx>
#include <BRepLib.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_Ellipse.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GCE2d_MakeSegment.hxx>
#include <GCE2d_MakeCircle.hxx>
#include <GCE2d_MakeArcOfCircle.hxx>
2021-08-09 13:59:24 +05:00
#include <ShapeUpgrade_UnifySameDomain.hxx>
2021-08-12 00:54:45 +05:00
#include <GeomLProp_SLProps.hxx>
#if OCC_VERSION_MAJOR>=7 && OCC_VERSION_MINOR>=4
#define OCC_HAVE_DUMP_JSON
#endif
using namespace netgen;
2021-08-14 01:39:20 +05:00
class ListOfShapes : public std::vector<TopoDS_Shape> { };
2021-08-13 19:46:49 +05:00
void ExtractEdgeData( const TopoDS_Edge & edge, int index, std::vector<double> * p, Box<3> & box )
{
2021-08-13 19:46:49 +05:00
if (BRep_Tool::Degenerated(edge)) return;
Handle(Poly_PolygonOnTriangulation) poly;
Handle(Poly_Triangulation) T;
TopLoc_Location loc;
BRep_Tool::PolygonOnTriangulation(edge, poly, T, loc);
2021-08-14 01:39:20 +05:00
if (poly.IsNull())
{
cout << "no edge mesh, do my own sampling" << endl;
double s0, s1;
Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1);
for (int i = 0; i < 50; i++)
{
auto p0 = occ2ng(c->Value (s0 + i*(s1-s0)/50.0));
auto p1 = occ2ng(c->Value (s0 + (i+1)*(s1-s0)/50.0));
for(auto k : Range(3))
{
p[0].push_back(p0[k]);
p[1].push_back(p1[k]);
}
p[0].push_back(index);
p[1].push_back(index);
box.Add(p0);
box.Add(p1);
}
return;
}
2021-08-13 19:46:49 +05:00
int nbnodes = poly -> NbNodes();
for (int j = 1; j < nbnodes; j++)
{
auto p0 = occ2ng((T -> Nodes())(poly->Nodes()(j)).Transformed(loc));
auto p1 = occ2ng((T -> Nodes())(poly->Nodes()(j+1)).Transformed(loc));
for(auto k : Range(3))
{
p[0].push_back(p0[k]);
p[1].push_back(p1[k]);
}
p[0].push_back(index);
p[1].push_back(index);
box.Add(p0);
box.Add(p1);
}
}
2021-08-13 19:46:49 +05:00
void ExtractFaceData( const TopoDS_Face & face, int index, std::vector<double> * p, Box<3> & box )
{
TopLoc_Location loc;
Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc);
bool flip = TopAbs_REVERSED == face.Orientation();
2021-08-14 01:39:20 +05:00
if (triangulation.IsNull())
{
cout << "pls build face triangulation before" << endl;
return;
}
int ntriangles = triangulation -> NbTriangles();
for (int j = 1; j <= ntriangles; j++)
{
Poly_Triangle triangle = (triangulation -> Triangles())(j);
std::array<Point<3>,3> pts;
for (int k = 0; k < 3; k++)
pts[k] = occ2ng( (triangulation -> Nodes())(triangle(k+1)).Transformed(loc) );
if(flip)
Swap(pts[1], pts[2]);
for (int k = 0; k < 3; k++)
{
box.Add(pts[k]);
for (int d = 0; d < 3; d++)
p[k].push_back( pts[k][d] );
p[k].push_back( index );
}
}
}
py::object CastShape(const TopoDS_Shape & s)
{
switch (s.ShapeType())
{
case TopAbs_VERTEX:
return py::cast(TopoDS::Vertex(s));
case TopAbs_FACE:
return py::cast(TopoDS::Face(s));
case TopAbs_EDGE:
return py::cast(TopoDS::Edge(s));
case TopAbs_WIRE:
return py::cast(TopoDS::Wire(s));
case TopAbs_COMPOUND:
case TopAbs_COMPSOLID:
case TopAbs_SOLID:
case TopAbs_SHELL:
case TopAbs_SHAPE:
return py::cast(s);
}
};
2021-08-06 20:43:01 +05:00
class WorkPlane : public enable_shared_from_this<WorkPlane>
{
gp_Ax3 axis;
gp_Ax2d localpos;
gp_Pnt2d startpnt;
Handle(Geom_Surface) surf;
// Geom_Plane surf;
BRepBuilderAPI_MakeWire wire_builder;
std::vector<TopoDS_Wire> wires;
public:
WorkPlane (const gp_Ax3 & _axis, const gp_Ax2d _localpos = gp_Ax2d())
: axis(_axis), localpos(_localpos) // , surf(_axis)
{
// surf = GC_MakePlane (gp_Ax1(axis.Location(), axis.Direction()));
surf = new Geom_Plane(axis);
}
auto MoveTo (double h, double v)
{
startpnt = gp_Pnt2d(h,v);
localpos.SetLocation(startpnt);
return shared_from_this();
}
auto Direction (double h, double v)
{
localpos.SetDirection(gp_Dir2d(h,v));
return shared_from_this();
}
auto LineTo (double h, double v)
{
gp_Pnt2d old2d = localpos.Location();
gp_Pnt oldp = axis.Location() . Translated(old2d.X() * axis.XDirection() + old2d.Y() * axis.YDirection());
// localpos.Translate (gp_Vec2d(h,v));
localpos.SetLocation (gp_Pnt2d(h,v));
gp_Pnt2d new2d = localpos.Location();
gp_Pnt newp = axis.Location() . Translated(new2d.X() * axis.XDirection() + new2d.Y() * axis.YDirection());
cout << "lineto, newp = " << occ2ng(newp) << endl;
gp_Pnt pfromsurf;
surf->D0(new2d.X(), new2d.Y(), pfromsurf);
cout << "p from plane = " << occ2ng(pfromsurf) << endl;
Handle(Geom_TrimmedCurve) curve = GC_MakeSegment(oldp, newp);
auto edge = BRepBuilderAPI_MakeEdge(curve).Edge();
wire_builder.Add(edge);
return shared_from_this();
}
auto Line(double h, double v)
{
gp_Pnt2d oldp = localpos.Location();
oldp.Translate(gp_Vec2d(h,v));
return LineTo (oldp.X(), oldp.Y());
}
auto Line(double len)
{
gp_Dir2d dir = localpos.Direction();
cout << "dir = " << dir.X() << ", " << dir.Y() << endl;
gp_Pnt2d oldp = localpos.Location();
oldp.Translate(len*dir);
return LineTo (oldp.X(), oldp.Y());
}
2021-08-11 00:18:30 +05:00
auto Rotate (double angle)
{
localpos.Rotate(localpos.Location(), angle*M_PI/180);
return shared_from_this();
}
2021-08-13 17:19:11 +05:00
auto ArcTo (double h, double v, const gp_Vec2d t)
{
gp_Pnt2d P1 = localpos.Location();
//check input
if(P1.X() == h && P1.Y() == v)
throw Exception("points P1 and P2 must not be congruent");
localpos.SetLocation (gp_Pnt2d(h,v));
gp_Pnt2d P2 = localpos.Location();
cout << "ArcTo:" << endl;
cout << "P1 = (" << P1.X() <<", " << P1.Y() << ")"<<endl;
cout << "P2 = (" << P2.X() <<", " << P2.Y() << ")"<<endl;
cout << "t = (" << t.X() << ", " << t.Y() << ")" << endl;
//compute circle center point M
//point midway between p1 and p2
gp_Pnt2d P12 = gp_Pnt2d((P1.X() + h) / 2, (P1.Y() + v) / 2);
//vector normal to vector from P1 to P12
gp_Vec2d p12n = gp_Vec2d( - (P12.Y() - P1.Y()), (P12.X() - P1.X()));
//M is intersection of p12n and tn (tn ... normalvector to t)
double k = ((P12.Y()- P1.Y())*p12n.X() + (P1.X() - P12.X())*p12n.Y() )/ (t.X()*p12n.X() + t.Y()*p12n.Y());
gp_Pnt2d M = gp_Pnt2d(P1.X()-k*t.Y(), P1.Y() + k*t.X());
cout << "P12 = (" << P12.X() <<", " << P12.Y() << ")"<<endl;
cout << "p12n = (" << p12n.X() <<", " << p12n.Y() << ")"<<endl;
cout << "k = " << k <<endl;
cout << "M = (" << M.X() <<", " << M.Y() << ")"<<endl;
//radius
double r = P1.Distance(M);
//compute point P3 on circle between P1 and P2
p12n.Normalize(); //docu: reverses direction of p12n ??
cout << "p12n = (" << p12n.X() <<", " << p12n.Y() << ")"<<endl;
gp_Pnt2d P3;
2021-08-13 17:19:11 +05:00
double angletp12n = t.Angle(p12n);
if(angletp12n > -M_PI/2 && angletp12n < M_PI/2)
P3 = gp_Pnt2d(M.X() + r * p12n.X() , M.Y() + r * p12n.Y());
else
P3 = gp_Pnt2d(M.X() - r * p12n.X() , M.Y() - r * p12n.Y());
cout << "r = " << r <<endl;
cout << "angle t,p12n = " << t.Angle(p12n)<<endl;
cout << "P3 = (" << P3.X() <<", " << P3.Y() << ")"<<endl;
cout << "dist(M,P3) = " << P3.Distance(M) <<endl;
2021-08-13 17:19:11 +05:00
//Draw 2d arc of circle from P1 to P2 through P3
Handle(Geom2d_TrimmedCurve) curve2d = GCE2d_MakeArcOfCircle(P1, P3, P2).Value();
//create 3d edge from 2d curve using surf
2021-08-12 02:02:49 +05:00
auto edge = BRepBuilderAPI_MakeEdge(curve2d, surf).Edge();
BRepLib::BuildCurves3d(edge);
wire_builder.Add(edge);
2021-08-11 00:18:30 +05:00
2021-08-13 17:19:11 +05:00
//compute angle of rotation
//compute tangent t2 in P2
gp_Vec2d p2 = gp_Vec2d(P1.X()-P2.X(),P1.Y()-P2.Y());
gp_Vec2d t2;
if(t.Angle(p2) >=0)
t2 = gp_Vec2d((P2.Y()-M.Y()),-(P2.X()-M.X()));
else
t2 = gp_Vec2d(-(P2.Y()-M.Y()),(P2.X()-M.X()));
double angle = -t2.Angle(t); //angle \in [-pi,pi]
cout << "angle t2,t = " << angle*180/M_PI << endl;
//update localpos.Direction()
Rotate(angle*180/M_PI);
return shared_from_this();
}
2021-08-11 00:18:30 +05:00
auto Arc(double radius, double angle)
{
2021-08-12 02:02:49 +05:00
double newAngle = fmod(angle,360)*M_PI/180;
2021-08-11 00:18:30 +05:00
//check input
if(newAngle<1e-16 && newAngle>-1e-16)
throw Exception("angle must not be an integer multiple of 360");
gp_Dir2d dir = localpos.Direction();
2021-08-11 00:18:30 +05:00
gp_Dir2d dirn;
//compute center point of arc
2021-08-11 00:18:30 +05:00
if(newAngle>=0)
dirn = gp_Dir2d(-dir.Y(),dir.X());
else
2021-08-11 00:18:30 +05:00
dirn = gp_Dir2d(dir.Y(),-dir.X());
gp_Pnt2d oldp = localpos.Location();
2021-08-11 00:18:30 +05:00
oldp.Translate(radius*dirn);
cout << "M = (" << oldp.X() << ", " << oldp.Y() << ")" << endl;
2021-08-11 00:18:30 +05:00
dirn.Rotate(newAngle-M_PI);
oldp.Translate(radius*dirn);
//compute tangent vector in P1
2021-08-13 19:03:53 +05:00
gp_Vec2d t = gp_Vec2d(dir.X(),dir.Y());
2021-08-13 19:03:53 +05:00
cout << "t = (" << t.X() << ", " << t.Y() << ")" << endl;
2021-08-11 00:18:30 +05:00
//add arc
2021-08-13 19:03:53 +05:00
return ArcTo (oldp.X(), oldp.Y(), t);
2021-08-06 20:43:01 +05:00
}
2021-08-07 00:33:54 +05:00
auto Rectangle (double l, double w)
{
Line (l);
Rotate (90);
Line(w);
Rotate (90);
Line (l);
Rotate (90);
Line(w);
Rotate (90);
wires.push_back (wire_builder.Wire());
wire_builder = BRepBuilderAPI_MakeWire();
return shared_from_this();
}
2021-08-14 15:47:12 +05:00
2021-08-14 15:50:03 +05:00
auto Circle(double x, double y, double r)
2021-08-14 15:47:12 +05:00
{
2021-08-14 15:50:03 +05:00
MoveTo(x+r, y);
2021-08-14 15:47:12 +05:00
Direction (0, 1);
Arc(r, 180);
Arc(r, 180);
wires.push_back (wire_builder.Wire());
wire_builder = BRepBuilderAPI_MakeWire();
return shared_from_this();
/*
// could not get it working with MakeCircle
cout << "make circle, p = " << p.X() << "/" << p.Y() << ", r = " << r << endl;
// Handle(Geom2d_Circle) circ_curve = GCE2d_MakeCircle(p, r).Value();
// Handle(Geom2d_Curve) curve2d = new Geom2d_TrimmedCurve (circ_curve, 0, M_PI);
gp_Vec2d v(r,0);
Handle(Geom2d_TrimmedCurve) curve2d = GCE2d_MakeArcOfCircle(p.Translated(v),
p.Translated(-v),
p.Translated(v)).Value();
// Handle(Geom2d_TrimmedCurve) curve2d = GCE2d_MakeCircle(p, r).Value();
auto edge = BRepBuilderAPI_MakeEdge(curve2d, surf).Edge();
cout << "have edge, is null = " << edge.IsNull() << endl;
wire_builder.Add(edge);
wires.push_back (wire_builder.Wire());
cout << "have wire, is null = " << wires.back().IsNull() << endl;
wire_builder = BRepBuilderAPI_MakeWire();
return shared_from_this();
*/
}
2021-08-06 20:43:01 +05:00
auto Close ()
{
LineTo (startpnt.X(), startpnt.Y());
wires.push_back (wire_builder.Wire());
wire_builder = BRepBuilderAPI_MakeWire();
2021-08-07 00:33:54 +05:00
return shared_from_this();
2021-08-06 20:43:01 +05:00
}
2021-08-07 00:33:54 +05:00
auto Reverse()
{
wires.back().Reverse();
return shared_from_this();
}
auto Offset(double d)
{
TopoDS_Wire wire = wires.back();
wires.pop_back();
BRepOffsetAPI_MakeOffset builder;
builder.AddWire(wire);
cout << "call builder" << endl;
builder.Perform(d);
cout << "perform is back" << endl;
auto shape = builder.Shape();
cout << "builder is back" << endl;
cout << "Offset got shape type " << shape.ShapeType() << endl;
wires.push_back (TopoDS::Wire(shape.Reversed()));
return shared_from_this();
}
2021-08-06 20:43:01 +05:00
TopoDS_Wire Last()
{
return wires.back();
}
TopoDS_Face Face()
{
BRepBuilderAPI_MakeFace builder(surf, 1e-8);
for (auto w : wires)
builder.Add(w);
return builder.Face();
2021-08-14 01:39:20 +05:00
}
auto Wires()
{
ListOfShapes ws;
for (auto w : wires)
ws.push_back(w);
return ws;
2021-08-06 20:43:01 +05:00
}
};
DLL_HEADER void ExportNgOCCShapes(py::module &m)
{
cout << "export shapes" << endl;
py::enum_<TopAbs_ShapeEnum>(m, "TopAbs_ShapeEnum", "Enumeration of all supported TopoDS_Shapes")
.value("COMPOUND", TopAbs_COMPOUND) .value("COMPSOLID", TopAbs_COMPSOLID)
.value("SOLID", TopAbs_SOLID) .value("SHELL", TopAbs_SHELL)
.value("FACE", TopAbs_FACE) .value("WIRE", TopAbs_WIRE)
.value("EDGE", TopAbs_EDGE) .value("VERTEX", TopAbs_VERTEX)
.value("SHAPE", TopAbs_SHAPE)
.export_values()
;
py::class_<TopoDS_Shape> (m, "TopoDS_Shape")
.def("__str__", [] (const TopoDS_Shape & shape)
{
stringstream str;
#ifdef OCC_HAVE_DUMP_JSON
shape.DumpJson(str);
#endif // OCC_HAVE_DUMP_JSON
return str.str();
})
.def("ShapeType", [] (const TopoDS_Shape & shape)
{
cout << "WARNING: pls use 'shape' instead of 'ShapeType()'" << endl;
return shape.ShapeType();
})
.def_property_readonly("type", [](const TopoDS_Shape & shape)
{ return shape.ShapeType(); })
.def("SubShapes", [] (const TopoDS_Shape & shape, TopAbs_ShapeEnum & type)
{
/*
py::list sub;
TopExp_Explorer e;
for (e.Init(shape, type); e.More(); e.Next())
{
switch (type)
{
case TopAbs_FACE:
sub.append(TopoDS::Face(e.Current())); break;
default:
sub.append(e.Current());
}
}
return sub;
*/
ListOfShapes sub;
for (TopExp_Explorer e(shape, type); e.More(); e.Next())
sub.push_back(e.Current());
return sub;
})
.def_property_readonly("faces", [] (const TopoDS_Shape & shape)
{
ListOfShapes sub;
for (TopExp_Explorer e(shape, TopAbs_FACE); e.More(); e.Next())
sub.push_back(e.Current());
return sub;
})
.def_property_readonly("edges", [] (const TopoDS_Shape & shape)
{
ListOfShapes sub;
for (TopExp_Explorer e(shape, TopAbs_EDGE); e.More(); e.Next())
sub.push_back(e.Current());
return sub;
})
.def_property_readonly("vertices", [] (const TopoDS_Shape & shape)
{
ListOfShapes sub;
for (TopExp_Explorer e(shape, TopAbs_VERTEX); e.More(); e.Next())
sub.push_back(e.Current());
return sub;
})
.def("Properties", [] (const TopoDS_Shape & shape)
{
GProp_GProps props;
switch (shape.ShapeType())
{
case TopAbs_FACE:
BRepGProp::SurfaceProperties (shape, props); break;
default:
BRepGProp::LinearProperties(shape, props);
// throw Exception("Properties implemented only for FACE");
}
double mass = props.Mass();
gp_Pnt center = props.CentreOfMass();
return tuple( py::cast(mass), py::cast(center) );
})
.def_property_readonly("center", [](const TopoDS_Shape & shape) {
GProp_GProps props;
switch (shape.ShapeType())
{
case TopAbs_FACE:
BRepGProp::SurfaceProperties (shape, props); break;
default:
BRepGProp::LinearProperties(shape, props);
}
return props.CentreOfMass();
})
.def("bc", [](const TopoDS_Shape & shape, const string & name)
{
for (TopExp_Explorer e(shape, TopAbs_FACE); e.More(); e.Next())
OCCGeometry::global_shape_properties[e.Current().TShape()].name = name;
return shape;
})
.def("mat", [](const TopoDS_Shape & shape, const string & name)
{
for (TopExp_Explorer e(shape, TopAbs_SOLID); e.More(); e.Next())
OCCGeometry::global_shape_properties[e.Current().TShape()].name = name;
return shape;
})
.def_property("name", [](const TopoDS_Shape & self) {
if (auto name = OCCGeometry::global_shape_properties[self.TShape()].name)
return *name;
else
return string();
}, [](const TopoDS_Shape & self, string name) {
OCCGeometry::global_shape_properties[self.TShape()].name = name;
})
.def_property("col", [](const TopoDS_Shape & self) {
auto it = OCCGeometry::global_shape_properties.find(self.TShape());
Vec<3> col(0.2, 0.2, 0.2);
if (it != OCCGeometry::global_shape_properties.end() && it->second.col)
col = *it->second.col; // .value();
return std::vector<double> ( { col(0), col(1), col(2) } );
}, [](const TopoDS_Shape & self, std::vector<double> c) {
Vec<3> col(c[0], c[1], c[2]);
OCCGeometry::global_shape_properties[self.TShape()].col = col;
})
.def_property("location",
[](const TopoDS_Shape & shape) { return shape.Location(); },
[](TopoDS_Shape & shape, const TopLoc_Location & loc)
{ shape.Location(loc); })
.def("Located", [](const TopoDS_Shape & shape, const TopLoc_Location & loc)
{ return shape.Located(loc); })
.def("__add__", [] (const TopoDS_Shape & shape1, const TopoDS_Shape & shape2) {
2021-08-09 13:59:24 +05:00
auto fused = BRepAlgoAPI_Fuse(shape1, shape2).Shape();
2021-08-14 01:39:20 +05:00
// return fused;
2021-08-09 13:59:24 +05:00
// make one face when fusing in 2D
// from https://gitlab.onelab.info/gmsh/gmsh/-/issues/627
2021-08-14 01:39:20 +05:00
int cntsolid = 0;
for (TopExp_Explorer e(shape1, TopAbs_SOLID); e.More(); e.Next())
cntsolid++;
for (TopExp_Explorer e(shape2, TopAbs_SOLID); e.More(); e.Next())
cntsolid++;
if (cntsolid == 0)
{
ShapeUpgrade_UnifySameDomain unify(fused, true, true, true);
unify.Build();
return unify.Shape();
}
else
return fused;
})
2021-08-14 01:39:20 +05:00
.def("__radd__", [] (const TopoDS_Shape & shape, int i) // for sum([shapes])
{ return shape; })
.def("__mul__", [] (const TopoDS_Shape & shape1, const TopoDS_Shape & shape2) {
// return BRepAlgoAPI_Common(shape1, shape2).Shape();
BRepAlgoAPI_Common builder(shape1, shape2);
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
/*
// work in progress ...
TopTools_ListOfShape modlist = history->Modified(shape1);
for (auto s : modlist)
cout << "modified from list el: " << s.ShapeType() << endl;
*/
for (auto & s : { shape1, shape2 })
for (TopExp_Explorer e(s, TopAbs_FACE); e.More(); e.Next())
{
auto & prop = OCCGeometry::global_shape_properties[e.Current().TShape()];
for (auto smod : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[smod.TShape()].Merge(prop);
}
#endif // OCC_HAVE_HISTORY
return builder.Shape();
})
.def("__sub__", [] (const TopoDS_Shape & shape1, const TopoDS_Shape & shape2) {
// return BRepAlgoAPI_Cut(shape1, shape2).Shape();
BRepAlgoAPI_Cut builder(shape1, shape2);
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
for (auto s : { shape1, shape2 })
for (TopExp_Explorer e(s, TopAbs_FACE); e.More(); e.Next())
{
/*
const string & name = OCCGeometry::global_shape_names[e.Current().TShape()];
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_names[s.TShape()] = name;
*/
/*
auto it = OCCGeometry::global_shape_cols.find(e.Current().TShape());
if (it != OCCGeometry::global_shape_cols.end())
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_cols[s.TShape()] = it->second;
*/
auto propit = OCCGeometry::global_shape_properties.find(e.Current().TShape());
if (propit != OCCGeometry::global_shape_properties.end())
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[s.TShape()].Merge(propit->second);
}
/*
for (TopExp_Explorer e(shape2, TopAbs_FACE); e.More(); e.Next())
{
auto it = OCCGeometry::global_shape_cols[e.Current().TShape()];
if (it != OCCGeometry::global_shape_cols.end())
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_cols[s.TShape()] = it->second;
}
*/
#endif // OCC_HAVE_HISTORY
return builder.Shape();
})
.def("Reversed", [](const TopoDS_Shape & shape) {
return CastShape(shape.Reversed()); })
2021-08-06 20:43:01 +05:00
.def("Extrude", [](const TopoDS_Shape & shape, double h) {
for (TopExp_Explorer e(shape, TopAbs_FACE); e.More(); e.Next())
{
Handle(Geom_Surface) surf = BRep_Tool::Surface (TopoDS::Face(e.Current()));
gp_Vec du, dv;
gp_Pnt p;
surf->D1 (0,0,p,du,dv);
2021-08-07 00:33:54 +05:00
return BRepPrimAPI_MakePrism (shape, h*du^dv).Shape();
2021-08-06 20:43:01 +05:00
}
throw Exception("no face found for extrusion");
})
.def("Revolve", [](const TopoDS_Shape & shape, const gp_Ax1 &A, const double D) {
for (TopExp_Explorer e(shape, TopAbs_FACE); e.More(); e.Next())
{
return BRepPrimAPI_MakeRevol (shape, A, D*M_PI/180).Shape();
}
throw Exception("no face found for revolve");
})
2021-08-06 20:43:01 +05:00
.def("Find", [](const TopoDS_Shape & shape, gp_Pnt p)
{
// find sub-shape contianing point
// BRepClass_FaceClassifier::Perform (p);
})
.def("MakeFillet", [](const TopoDS_Shape & shape, std::vector<TopoDS_Shape> edges, double r) {
BRepFilletAPI_MakeFillet mkFillet(shape);
for (auto e : edges)
mkFillet.Add (r, TopoDS::Edge(e));
return mkFillet.Shape();
})
.def("MakeThickSolid", [](const TopoDS_Shape & body, std::vector<TopoDS_Shape> facestoremove,
double offset, double tol) {
TopTools_ListOfShape faces;
for (auto f : facestoremove)
faces.Append(f);
BRepOffsetAPI_MakeThickSolid maker;
maker.MakeThickSolidByJoin(body, faces, offset, tol);
return maker.Shape();
})
.def("MakeTriangulation", [](const TopoDS_Shape & shape)
{
BRepTools::Clean (shape);
double deflection = 0.01;
BRepMesh_IncrementalMesh (shape, deflection, true);
})
.def("Triangulation", [](const TopoDS_Shape & shape)
{
// extracted from vsocc.cpp
TopoDS_Face face;
try
{
face = TopoDS::Face(shape);
}
catch (Standard_Failure & e)
{
e.Print (cout);
throw NgException ("Triangulation: shape is not a face");
}
/*
BRepTools::Clean (shape);
double deflection = 0.01;
BRepMesh_IncrementalMesh (shape, deflection, true);
*/
Handle(Geom_Surface) surf = BRep_Tool::Surface (face);
TopLoc_Location loc;
Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc);
if (triangulation.IsNull())
{
BRepTools::Clean (shape);
double deflection = 0.01;
BRepMesh_IncrementalMesh (shape, deflection, true);
triangulation = BRep_Tool::Triangulation (face, loc);
}
// throw Exception("Don't have a triangulation, call 'MakeTriangulation' first");
int ntriangles = triangulation -> NbTriangles();
Array< std::array<Point<3>,3> > triangles;
for (int j = 1; j <= ntriangles; j++)
{
Poly_Triangle triangle = (triangulation -> Triangles())(j);
std::array<Point<3>,3> pts;
for (int k = 0; k < 3; k++)
pts[k] = occ2ng( (triangulation -> Nodes())(triangle(k+1)).Transformed(loc) );
triangles.Append ( pts );
}
// return MoveToNumpyArray(triangles);
return triangles;
})
.def("_webgui_data", [](const TopoDS_Shape & shape)
{
BRepTools::Clean (shape);
double deflection = 0.01;
BRepMesh_IncrementalMesh (shape, deflection, true);
// triangulation = BRep_Tool::Triangulation (face, loc);
std::vector<double> p[3];
py::list names, colors;
int index = 0;
Box<3> box(Box<3>::EMPTY_BOX);
for (TopExp_Explorer e(shape, TopAbs_FACE); e.More(); e.Next())
{
TopoDS_Face face = TopoDS::Face(e.Current());
// Handle(TopoDS_Face) face = e.Current();
ExtractFaceData(face, index, p, box);
auto & props = OCCGeometry::global_shape_properties[face.TShape()];
if(props.col)
{
auto & c = *props.col;
colors.append(py::make_tuple(c[0], c[1], c[2]));
}
else
colors.append(py::make_tuple(0.0, 1.0, 0.0));
if(props.name)
{
names.append(*props.name);
}
else
names.append("");
index++;
}
2021-08-13 19:46:49 +05:00
std::vector<double> edge_p[2];
py::list edge_names, edge_colors;
index = 0;
for (TopExp_Explorer e(shape, TopAbs_EDGE); e.More(); e.Next())
{
TopoDS_Edge edge = TopoDS::Edge(e.Current());
ExtractEdgeData(edge, index, edge_p, box);
auto & props = OCCGeometry::global_shape_properties[edge.TShape()];
if(props.col)
{
auto & c = *props.col;
edge_colors.append(py::make_tuple(c[0], c[1], c[2]));
}
else
edge_colors.append(py::make_tuple(0.0, 0.0, 0.0));
if(props.name)
{
edge_names.append(*props.name);
}
else
edge_names.append("");
index++;
}
auto center = box.Center();
py::list mesh_center;
mesh_center.append(center[0]);
mesh_center.append(center[1]);
mesh_center.append(center[2]);
py::dict data;
data["ngsolve_version"] = "Netgen x.x"; // TODO
data["mesh_dim"] = 3; // TODO
data["mesh_center"] = mesh_center;
data["mesh_radius"] = box.Diam()/2;
data["order2d"] = 1;
data["order3d"] = 0;
data["draw_vol"] = false;
data["draw_surf"] = true;
data["funcdim"] = 0;
2021-08-13 19:46:49 +05:00
data["show_wireframe"] = true;
data["show_mesh"] = true;
data["Bezier_points"] = py::list{};
py::list points;
points.append(p[0]);
points.append(p[1]);
points.append(p[2]);
data["Bezier_trig_points"] = points;
data["funcmin"] = 0;
data["funcmax"] = 1;
data["mesh_regions_2d"] = index;
data["autoscale"] = false;
data["colors"] = colors;
data["names"] = names;
2021-08-13 19:46:49 +05:00
py::list edges;
edges.append(edge_p[0]);
edges.append(edge_p[1]);
data["edges"] = edges;
data["edge_names"] = edge_names;
data["edge_colors"] = edge_colors;
return data;
})
;
py::class_<TopoDS_Vertex, TopoDS_Shape> (m, "TopoDS_Vertex")
.def(py::init([] (const TopoDS_Shape & shape) {
return TopoDS::Vertex(shape);
}))
.def_property_readonly("p", [] (const TopoDS_Vertex & v) -> gp_Pnt {
return BRep_Tool::Pnt (v); })
;
py::class_<TopoDS_Edge, TopoDS_Shape> (m, "TopoDS_Edge")
.def(py::init([] (const TopoDS_Shape & shape) {
return TopoDS::Edge(shape);
}))
.def_property_readonly("start",
[](const TopoDS_Edge & e) {
double s0, s1;
auto curve = BRep_Tool::Curve(e, s0, s1);
return curve->Value(s0);
})
.def_property_readonly("end",
[](const TopoDS_Edge & e) {
double s0, s1;
auto curve = BRep_Tool::Curve(e, s0, s1);
return curve->Value(s1);
})
2021-08-10 23:28:49 +05:00
.def_property_readonly("start_tangent",
[](const TopoDS_Edge & e) {
double s0, s1;
auto curve = BRep_Tool::Curve(e, s0, s1);
gp_Pnt p; gp_Vec v;
curve->D1(s0, p, v);
return v;
})
.def_property_readonly("end_tangent",
[](const TopoDS_Edge & e) {
double s0, s1;
auto curve = BRep_Tool::Curve(e, s0, s1);
gp_Pnt p; gp_Vec v;
curve->D1(s1, p, v);
return v;
})
;
py::class_<TopoDS_Wire, TopoDS_Shape> (m, "TopoDS_Wire");
py::class_<TopoDS_Face, TopoDS_Shape> (m, "TopoDS_Face")
.def(py::init([] (const TopoDS_Shape & shape) {
return TopoDS::Face(shape);
}))
2021-08-06 20:43:01 +05:00
.def_property_readonly("surf", [] (TopoDS_Face face) -> Handle(Geom_Surface)
{
Handle(Geom_Surface) surf = BRep_Tool::Surface (face);
return surf;
})
2021-08-06 20:43:01 +05:00
.def("WorkPlane",[] (const TopoDS_Face & face) {
Handle(Geom_Surface) surf = BRep_Tool::Surface (face);
gp_Vec du, dv;
gp_Pnt p;
surf->D1 (0,0,p,du,dv);
auto ax = gp_Ax3(p, du^dv, du);
return make_shared<WorkPlane> (ax);
})
;
py::class_<TopoDS_Solid, TopoDS_Shape> (m, "TopoDS_Solid");
2021-08-06 20:43:01 +05:00
py::class_<Handle(Geom_Surface)> (m, "Geom_Surface")
.def("Value", [] (const Handle(Geom_Surface) & surf, double u, double v) {
return surf->Value(u, v); })
.def("D1", [] (const Handle(Geom_Surface) & surf, double u, double v) {
gp_Vec du, dv;
gp_Pnt p;
surf->D1 (u,v,p,du,dv);
return tuple(p,du,dv);
})
2021-08-12 00:54:45 +05:00
.def("Normal", [] (const Handle(Geom_Surface) & surf, double u, double v) {
GeomLProp_SLProps lprop(surf,u,v,1,1e-8);
if (lprop.IsNormalDefined())
return lprop.Normal();
throw Exception("normal not defined");
})
2021-08-06 20:43:01 +05:00
;
py::implicitly_convertible<TopoDS_Shape, TopoDS_Face>();
class ListOfShapesIterator
{
TopoDS_Shape * ptr;
public:
ListOfShapesIterator (TopoDS_Shape * aptr) : ptr(aptr) { }
ListOfShapesIterator operator++ () { return ListOfShapesIterator(++ptr); }
auto operator*() const { return CastShape(*ptr); }
bool operator!=(ListOfShapesIterator it2) const { return ptr != it2.ptr; }
bool operator==(ListOfShapesIterator it2) const { return ptr == it2.ptr; }
};
py::class_<ListOfShapes> (m, "ListOfShapes")
.def("__iter__", [](ListOfShapes &s) {
return py::make_iterator(ListOfShapesIterator(&*s.begin()),
ListOfShapesIterator(&*s.end()));
},
py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */)
.def("__getitem__", [](const ListOfShapes & list, size_t i) {
return CastShape(list[i]); })
.def("__getitem__", [](const ListOfShapes & self, py::slice inds) {
size_t start, step, n, stop;
if (!inds.compute(self.size(), &start, &stop, &step, &n))
throw py::error_already_set();
ListOfShapes sub;
sub.reserve(n);
for (size_t i = 0; i < n; i++)
sub.push_back (self[start+i*step]);
return sub;
})
.def("__add__", [](const ListOfShapes & l1, const ListOfShapes & l2) {
ListOfShapes l = l1;
for (auto s : l2) l.push_back(s);
return l;
} )
.def("__add__", [](const ListOfShapes & l1, py::list l2) {
ListOfShapes l = l1;
for (auto s : l2) l.push_back(py::cast<TopoDS_Shape>(s));
return l;
} )
.def("__len__", [](const ListOfShapes & l) { return l.size(); })
.def("Max", [] (ListOfShapes & shapes, gp_Vec dir)
{
double maxval = -1e99;
TopoDS_Shape maxshape;
for (auto shape : shapes)
{
GProp_GProps props;
gp_Pnt center;
switch (shape.ShapeType())
{
case TopAbs_VERTEX:
center = BRep_Tool::Pnt (TopoDS::Vertex(shape)); break;
case TopAbs_FACE:
BRepGProp::SurfaceProperties (shape, props);
center = props.CentreOfMass();
break;
default:
BRepGProp::LinearProperties(shape, props);
center = props.CentreOfMass();
}
double val = center.X()*dir.X() + center.Y()*dir.Y() + center.Z() * dir.Z();
if (val > maxval)
{
maxval = val;
maxshape = shape;
}
}
return CastShape(maxshape);
})
;
py::class_<Handle(Geom2d_Curve)> (m, "Geom2d_Curve")
.def("Trim", [](Handle(Geom2d_Curve) curve, double u1, double u2) -> Handle(Geom2d_Curve)
{
return new Geom2d_TrimmedCurve (curve, u1, u2);
})
.def("Value", [](Handle(Geom2d_Curve) curve, double s) {
return curve->Value(s);
})
.def_property_readonly("start", [](Handle(Geom2d_Curve) curve) {
return curve->Value(curve->FirstParameter());
})
.def_property_readonly("end", [](Handle(Geom2d_Curve) curve) {
return curve->Value(curve->LastParameter());
})
;
m.def("Sphere", [] (gp_Pnt cc, double r) {
return BRepPrimAPI_MakeSphere (cc, r).Solid();
});
m.def("Cylinder", [] (gp_Pnt cpnt, gp_Dir cdir, double r, double h) {
return BRepPrimAPI_MakeCylinder (gp_Ax2(cpnt, cdir), r, h).Solid();
}, py::arg("p"), py::arg("d"), py::arg("r"), py::arg("h"));
m.def("Cylinder", [] (gp_Ax2 ax, double r, double h) {
return BRepPrimAPI_MakeCylinder (ax, r, h).Solid();
}, py::arg("axis"), py::arg("r"), py::arg("h"));
m.def("Box", [] (gp_Pnt cp1, gp_Pnt cp2) {
return BRepPrimAPI_MakeBox (cp1, cp2).Solid();
});
m.def("Prism", [] (const TopoDS_Shape & face, gp_Vec vec) {
return BRepPrimAPI_MakePrism (face, vec).Shape();
});
m.def("Revolve", [] (const TopoDS_Shape & face,const gp_Ax1 &A, const double D) {
//comvert angle from deg to rad
return BRepPrimAPI_MakeRevol (face, A, D*M_PI/180).Shape();
});
m.def("Pipe", [] (const TopoDS_Wire & spine, const TopoDS_Shape & profile) {
return BRepOffsetAPI_MakePipe (spine, profile).Shape();
}, py::arg("spine"), py::arg("profile"));
// Handle(Geom2d_Ellipse) anEllipse1 = new Geom2d_Ellipse(anAx2d, aMajor, aMinor);
m.def("Ellipse", [] (const gp_Ax2d & ax, double major, double minor) -> Handle(Geom2d_Curve)
{
return new Geom2d_Ellipse(ax, major, minor);
});
m.def("Segment", [](gp_Pnt2d p1, gp_Pnt2d p2) -> Handle(Geom2d_Curve) {
Handle(Geom2d_TrimmedCurve) curve = GCE2d_MakeSegment(p1, p2);
return curve;
// return BRepBuilderAPI_MakeEdge(curve).Edge();
// return GCE2d_MakeSegment(p1, p2);
});
m.def("Circle", [](gp_Pnt2d p1, double r) -> Handle(Geom2d_Curve) {
Handle(Geom2d_Circle) curve = GCE2d_MakeCircle(p1, r);
return curve;
// gp_Ax2d ax; ax.SetLocation(p1);
// return new Geom2d_Circle(ax, r);
});
m.def("Glue", [] (const std::vector<TopoDS_Shape> shapes) -> TopoDS_Shape
{
BOPAlgo_Builder builder;
for (auto & s : shapes)
{
for (TopExp_Explorer e(s, TopAbs_SOLID); e.More(); e.Next())
builder.AddArgument(e.Current());
if (s.ShapeType() == TopAbs_FACE)
builder.AddArgument(s);
}
builder.Perform();
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
for (auto & s : shapes)
for (TopExp_Explorer e(s, TopAbs_SOLID); e.More(); e.Next())
{
auto prop = OCCGeometry::global_shape_properties[e.Current().TShape()];
for (auto mods : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[mods.TShape()].Merge(prop);
}
/*
{
auto name = OCCGeometry::global_shape_names[e.Current().TShape()];
for (auto mods : history->Modified(e.Current()))
OCCGeometry::global_shape_names[mods.TShape()] = name;
}
*/
#endif // OCC_HAVE_HISTORY
return builder.Shape();
});
m.def("Glue", [] (TopoDS_Shape shape) -> TopoDS_Shape
{
BOPAlgo_Builder builder;
for (TopExp_Explorer e(shape, TopAbs_SOLID); e.More(); e.Next())
builder.AddArgument(e.Current());
builder.Perform();
if (builder.HasErrors())
builder.DumpErrors(cout);
if (builder.HasWarnings())
builder.DumpWarnings(cout);
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
for (TopExp_Explorer e(shape, TopAbs_SOLID); e.More(); e.Next())
{
auto prop = OCCGeometry::global_shape_properties[e.Current().TShape()];
for (auto mods : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[mods.TShape()].Merge(prop);
}
#endif // OCC_HAVE_HISTORY
return builder.Shape();
});
// py::class_<Handle(Geom_TrimmedCurve)> (m, "Geom_TrimmedCurve")
// ;
m.def("Segment", [](gp_Pnt p1, gp_Pnt p2) {
Handle(Geom_TrimmedCurve) curve = GC_MakeSegment(p1, p2);
return BRepBuilderAPI_MakeEdge(curve).Edge();
});
m.def("Circle", [](gp_Pnt c, gp_Dir n, double r) {
Handle(Geom_Circle) curve = GC_MakeCircle (c, n, r);
return BRepBuilderAPI_MakeEdge(curve).Edge();
});
m.def("ArcOfCircle", [](gp_Pnt p1, gp_Pnt p2, gp_Pnt p3) {
Handle(Geom_TrimmedCurve) curve = GC_MakeArcOfCircle(p1, p2, p3);
return BRepBuilderAPI_MakeEdge(curve).Edge();
}, py::arg("p1"), py::arg("p2"), py::arg("p3"));
m.def("ArcOfCircle", [](gp_Pnt p1, gp_Vec v, gp_Pnt p2) {
Handle(Geom_TrimmedCurve) curve = GC_MakeArcOfCircle(p1, v, p2);
return BRepBuilderAPI_MakeEdge(curve).Edge();
}, py::arg("p1"), py::arg("v"), py::arg("p2"));
2021-08-10 23:28:49 +05:00
m.def("BSplineCurve", [](std::vector<gp_Pnt> vpoles, int degree) {
// not yet working ????
TColgp_Array1OfPnt poles(0, vpoles.size()-1);
TColStd_Array1OfReal knots(0, vpoles.size()+degree);
TColStd_Array1OfInteger mult(0, vpoles.size()+degree);
int cnt = 0;
try
{
for (int i = 0; i < vpoles.size(); i++)
{
poles.SetValue(i, vpoles[i]);
knots.SetValue(i, i);
mult.SetValue(i,1);
}
for (int i = vpoles.size(); i < vpoles.size()+degree+1; i++)
{
knots.SetValue(i, i);
mult.SetValue(i, 1);
}
Handle(Geom_Curve) curve = new Geom_BSplineCurve(poles, knots, mult, degree);
return BRepBuilderAPI_MakeEdge(curve).Edge();
}
catch (Standard_Failure & e)
{
stringstream errstr;
e.Print(errstr);
throw NgException("cannot create spline: "+errstr.str());
}
});
m.def("BezierCurve", [](std::vector<gp_Pnt> vpoles) {
TColgp_Array1OfPnt poles(0, vpoles.size()-1);
try
{
for (int i = 0; i < vpoles.size(); i++)
poles.SetValue(i, vpoles[i]);
Handle(Geom_Curve) curve = new Geom_BezierCurve(poles);
return BRepBuilderAPI_MakeEdge(curve).Edge();
}
catch (Standard_Failure & e)
{
stringstream errstr;
e.Print(errstr);
throw NgException("cannot create Bezier-spline: "+errstr.str());
}
});
m.def("Edge", [](Handle(Geom2d_Curve) curve2d, TopoDS_Face face) {
auto edge = BRepBuilderAPI_MakeEdge(curve2d, BRep_Tool::Surface (face)).Edge();
BRepLib::BuildCurves3d(edge);
return edge;
});
m.def("Wire", [](std::vector<TopoDS_Shape> edges) {
BRepBuilderAPI_MakeWire builder;
try
{
2021-08-10 23:28:49 +05:00
for (auto s : edges)
switch (s.ShapeType())
{
case TopAbs_EDGE:
builder.Add(TopoDS::Edge(s)); break;
case TopAbs_WIRE:
builder.Add(TopoDS::Wire(s)); break;
default:
throw Exception("can make wire only from edges and wires");
}
return builder.Wire();
}
catch (Standard_Failure & e)
{
2021-08-10 23:28:49 +05:00
stringstream errstr;
e.Print(errstr);
throw NgException("error in wire builder: "+errstr.str());
}
});
m.def("Face", [](TopoDS_Wire wire) {
return BRepBuilderAPI_MakeFace(wire).Face();
}, py::arg("w"));
m.def("Face", [](const TopoDS_Face & face, const TopoDS_Wire & wire) {
// return BRepBuilderAPI_MakeFace(face, wire).Face();
return BRepBuilderAPI_MakeFace(BRep_Tool::Surface (face), wire).Face();
}, py::arg("f"), py::arg("w"));
m.def("Face", [](const TopoDS_Face & face, std::vector<TopoDS_Wire> wires) {
// return BRepBuilderAPI_MakeFace(face, wire).Face();
cout << "build from list of wires" << endl;
auto surf = BRep_Tool::Surface (face);
BRepBuilderAPI_MakeFace builder(surf, 1e-8);
for (auto w : wires)
builder.Add(w);
return builder.Face();
}, py::arg("f"), py::arg("w"));
/*
not yet working .... ?
m.def("Face", [](std::vector<TopoDS_Wire> wires) {
cout << "face from wires" << endl;
BRepBuilderAPI_MakeFace builder;
for (auto w : wires)
{
cout << "add wire" << endl;
builder.Add(w);
}
return builder.Face();
}, py::arg("w"));
*/
m.def("MakeFillet", [](TopoDS_Shape shape, std::vector<TopoDS_Shape> edges, double r) {
throw Exception("call 'shape.MakeFilled'");
BRepFilletAPI_MakeFillet mkFillet(shape);
for (auto e : edges)
mkFillet.Add (r, TopoDS::Edge(e));
return mkFillet.Shape();
});
m.def("MakeThickSolid", [](TopoDS_Shape body, std::vector<TopoDS_Shape> facestoremove,
double offset, double tol) {
throw Exception("call 'shape.MakeThickSolid'");
TopTools_ListOfShape faces;
for (auto f : facestoremove)
faces.Append(f);
BRepOffsetAPI_MakeThickSolid maker;
maker.MakeThickSolidByJoin(body, faces, offset, tol);
return maker.Shape();
});
m.def("ThruSections", [](std::vector<TopoDS_Shape> wires)
{
BRepOffsetAPI_ThruSections aTool(Standard_True);
for (auto shape : wires)
aTool.AddWire(TopoDS::Wire(shape));
aTool.CheckCompatibility(Standard_False);
return aTool.Shape();
});
2021-08-06 20:43:01 +05:00
py::class_<WorkPlane, shared_ptr<WorkPlane>> (m, "WorkPlane")
.def(py::init<gp_Ax3, gp_Ax2d>(), py::arg("axis"), py::arg("pos")=gp_Ax2d())
.def("MoveTo", &WorkPlane::MoveTo)
.def("Direction", &WorkPlane::Direction)
.def("LineTo", &WorkPlane::LineTo)
.def("ArcTo", &WorkPlane::ArcTo)
.def("Arc", &WorkPlane::Arc)
2021-08-06 20:43:01 +05:00
.def("Rotate", &WorkPlane::Rotate)
.def("Line", [](WorkPlane&wp,double l) { return wp.Line(l); })
.def("Line", [](WorkPlane&wp,double h,double v) { return wp.Line(h,v); })
2021-08-07 00:33:54 +05:00
.def("Rectangle", &WorkPlane::Rectangle)
2021-08-14 15:47:12 +05:00
.def("Circle", &WorkPlane::Circle)
2021-08-07 00:33:54 +05:00
.def("Offset", &WorkPlane::Offset)
.def("Reverse", &WorkPlane::Reverse)
2021-08-06 20:43:01 +05:00
.def("Close", &WorkPlane::Close)
.def("Last", &WorkPlane::Last)
.def("Face", &WorkPlane::Face)
2021-08-14 01:39:20 +05:00
.def("Wires", &WorkPlane::Wires)
2021-08-06 20:43:01 +05:00
;
}
#endif // OCCGEOMETRY
#endif // NG_PYTHON