netgen/libsrc/core/taskmanager.hpp

1024 lines
25 KiB
C++
Raw Normal View History

#ifndef NETGEN_CORE_TASKMANAGER_HPP
#define NETGEN_CORE_TASKMANAGER_HPP
/*********************************************************************/
/* File: taskmanager.hpp */
/* Author: M. Hochsterger, J. Schoeberl */
/* Date: 10. Mar. 2015 */
/*********************************************************************/
#include <atomic>
#include <functional>
#include <list>
#include <ostream>
#include <thread>
#include "array.hpp"
#include "paje_trace.hpp"
namespace ngcore
{
using std::atomic;
using std::function;
class TaskInfo
{
public:
int task_nr;
int ntasks;
int thread_nr;
int nthreads;
// int node_nr;
// int nnodes;
};
NGCORE_API extern class TaskManager * task_manager;
class TaskManager
{
// PajeTrace *trace;
class alignas(64) NodeData : public AlignedAlloc<NodeData>
{
public:
atomic<int> start_cnt{0};
atomic<int> participate{0};
};
2019-07-09 21:07:19 +05:00
NGCORE_API static const function<void(TaskInfo&)> * func;
NGCORE_API static const function<void()> * startup_function;
NGCORE_API static const function<void()> * cleanup_function;
NGCORE_API static atomic<int> ntasks;
NGCORE_API static Exception * ex;
2019-07-09 21:07:19 +05:00
NGCORE_API static atomic<int> jobnr;
static atomic<int> complete[8]; // max nodes
static atomic<int> done;
static atomic<int> active_workers;
static atomic<int> workers_on_node[8]; // max nodes
// Array<atomic<int>*> sync;
2019-07-09 21:07:19 +05:00
NGCORE_API static int sleep_usecs;
NGCORE_API static bool sleep;
static NodeData *nodedata[8];
static int num_nodes;
NGCORE_API static int num_threads;
NGCORE_API static int max_threads;
#ifndef __clang__
static thread_local int thread_id;
#else
static __thread int thread_id;
#endif
NGCORE_API static bool use_paje_trace;
public:
2019-07-09 21:07:19 +05:00
NGCORE_API TaskManager();
NGCORE_API ~TaskManager();
2019-07-09 21:07:19 +05:00
NGCORE_API void StartWorkers();
NGCORE_API void StopWorkers();
void SuspendWorkers(int asleep_usecs = 1000 )
{
sleep_usecs = asleep_usecs;
sleep = true;
}
void ResumeWorkers() { sleep = false; }
2019-07-09 21:07:19 +05:00
NGCORE_API static void SetNumThreads(int amax_threads);
NGCORE_API static int GetMaxThreads() { return max_threads; }
// static int GetNumThreads() { return task_manager ? task_manager->num_threads : 1; }
2019-07-09 21:07:19 +05:00
NGCORE_API static int GetNumThreads() { return num_threads; }
2019-07-10 18:21:04 +05:00
NGCORE_API static int GetThreadId();
2019-07-09 21:07:19 +05:00
NGCORE_API int GetNumNodes() const { return num_nodes; }
static void SetPajeTrace (bool use) { use_paje_trace = use; }
NGCORE_API static bool ProcessTask();
NGCORE_API static void CreateJob (const function<void(TaskInfo&)> & afunc,
int antasks = task_manager->GetNumThreads());
static void SetStartupFunction (const function<void()> & func) { startup_function = &func; }
static void SetStartupFunction () { startup_function = nullptr; }
static void SetCleanupFunction (const function<void()> & func) { cleanup_function = &func; }
static void SetCleanupFunction () { cleanup_function = nullptr; }
void Done() { done = true; }
2019-07-09 21:07:19 +05:00
NGCORE_API void Loop(int thread_num);
2019-07-09 21:07:19 +05:00
NGCORE_API static std::list<std::tuple<std::string,double>> Timing ();
};
NGCORE_API void RunWithTaskManager (function<void()> alg);
// For Python context manager
2019-07-09 21:07:19 +05:00
NGCORE_API int EnterTaskManager ();
NGCORE_API void ExitTaskManager (int num_threads);
NETGEN_INLINE int TasksPerThread (int tpt)
{
// return task_manager ? tpt*task_manager->GetNumThreads() : 1;
return tpt*TaskManager::GetNumThreads();
}
class TotalCosts
{
size_t cost;
public:
TotalCosts (size_t _cost) : cost(_cost) { ; }
size_t operator ()() { return cost; }
};
template <typename TR, typename TFUNC>
NETGEN_INLINE void ParallelFor (T_Range<TR> r, TFUNC f,
int antasks = TaskManager::GetNumThreads(),
TotalCosts costs = 1000)
{
// if (task_manager && costs() >= 1000)
TaskManager::CreateJob
([r, f] (TaskInfo & ti)
{
auto myrange = r.Split (ti.task_nr, ti.ntasks);
for (auto i : myrange) f(i);
},
antasks);
/*
else
for (auto i : r) f(i);
*/
}
/*
template <typename TFUNC>
NETGEN_INLINE void ParallelFor (size_t n, TFUNC f,
int antasks = task_manager ? task_manager->GetNumThreads() : 0)
{
ParallelFor (IntRange (n), f, antasks);
}
*/
template <typename ...Args>
NETGEN_INLINE void ParallelFor (size_t n, Args...args)
{
ParallelFor (IntRange (n), args...);
}
template <typename TR, typename TFUNC>
NETGEN_INLINE void ParallelForRange (T_Range<TR> r, TFUNC f,
int antasks = TaskManager::GetNumThreads(),
TotalCosts costs = 1000)
{
// if (task_manager && costs() >= 1000)
TaskManager::CreateJob
([r, f] (TaskInfo & ti)
{
auto myrange = r.Split (ti.task_nr, ti.ntasks);
f(myrange);
},
antasks);
/*
else
f(r);
*/
}
/*
template <typename TFUNC>
NETGEN_INLINE void ParallelForRange (size_t n, TFUNC f,
int antasks = task_manager ? task_manager->GetNumThreads() : 0)
{
ParallelForRange (IntRange(n), f, antasks);
}
*/
template <typename ...Args>
NETGEN_INLINE void ParallelForRange (size_t n, Args...args)
{
ParallelForRange (IntRange(n), args...);
}
template <typename TFUNC>
NETGEN_INLINE void ParallelJob (TFUNC f,
int antasks = TaskManager::GetNumThreads())
{
TaskManager::CreateJob (f, antasks);
}
/*
Usage example:
ShareLoop myloop(100);
task_manager->CreateJob ([]()
{
for (int i : myloop)
cout << "i = " << i << endl;
});
*/
class SharedLoop
{
atomic<int> cnt;
IntRange r;
class SharedIterator
{
atomic<int> & cnt;
int myval;
int endval;
public:
SharedIterator (atomic<int> & acnt, int aendval, bool begin_iterator)
: cnt (acnt)
{
endval = aendval;
myval = begin_iterator ? cnt++ : endval;
if (myval > endval) myval = endval;
}
SharedIterator & operator++ ()
{
myval = cnt++;
if (myval > endval) myval = endval;
return *this;
}
int operator* () const { return myval; }
bool operator!= (const SharedIterator & it2) const { return myval != it2.myval; }
};
public:
SharedLoop (IntRange ar) : r(ar) { cnt = r.begin(); }
SharedIterator begin() { return SharedIterator (cnt, r.end(), true); }
SharedIterator end() { return SharedIterator (cnt, r.end(), false); }
};
/*
class alignas(4096) AtomicRange
{
mutex lock;
int begin;
int end;
public:
void Set (IntRange r)
{
lock_guard<mutex> guard(lock);
begin = r.begin();
end = r.end();
}
IntRange Get()
{
lock_guard<mutex> guard(lock);
return IntRange(begin, end);
}
bool PopFirst (int & first)
{
lock_guard<mutex> guard(lock);
bool non_empty = end > begin;
first = begin;
if (non_empty) begin++;
return non_empty;
}
bool PopHalf (IntRange & r)
{
lock_guard<mutex> guard(lock);
bool non_empty = end > begin;
if (non_empty)
{
int mid = (begin+end+1)/2;
r = IntRange(begin, mid);
begin = mid;
}
return non_empty;
}
};
*/
// lock free popfirst
// faster for large loops, bug slower for small loops (~1000) ????
/*
class alignas(4096) AtomicRange
{
mutex lock;
atomic<int> begin;
int end;
public:
void Set (IntRange r)
{
lock_guard<mutex> guard(lock);
// begin = r.begin();
begin.store(r.begin(), std::memory_order_relaxed);
end = r.end();
}
void SetNoLock (IntRange r)
{
begin.store(r.begin(), std::memory_order_relaxed);
end = r.end();
}
// IntRange Get()
// {
// lock_guard<mutex> guard(lock);
// return IntRange(begin, end);
// }
bool PopFirst (int & first)
{
// int oldbegin = begin;
int oldbegin = begin.load(std::memory_order_relaxed);
if (oldbegin >= end) return false;
while (!begin.compare_exchange_weak (oldbegin, oldbegin+1,
std::memory_order_relaxed, std::memory_order_relaxed))
if (oldbegin >= end) return false;
first = oldbegin;
return true;
}
bool PopHalf (IntRange & r)
{
// int oldbegin = begin;
int oldbegin = begin.load(std::memory_order_relaxed);
if (oldbegin >= end) return false;
lock_guard<mutex> guard(lock);
while (!begin.compare_exchange_weak (oldbegin, (oldbegin+end+1)/2,
std::memory_order_relaxed, std::memory_order_relaxed))
if (oldbegin >= end) return false;
r = IntRange(oldbegin, (oldbegin+end+1)/2);
return true;
}
};
// inline ostream & operator<< (ostream & ost, AtomicRange & r)
// {
// ost << r.Get();
// return ost;
// }
*/
class alignas(4096) AtomicRange : public AlignedAlloc<AtomicRange>
{
atomic<size_t> begin;
atomic<size_t> end;
public:
void Set (IntRange r)
{
begin.store(std::numeric_limits<size_t>::max(), std::memory_order_release);
end.store(r.end(), std::memory_order_release);
begin.store(r.begin(), std::memory_order_release);
}
void SetNoLock (IntRange r)
{
end.store(r.end(), std::memory_order_release);
begin.store(r.begin(), std::memory_order_release);
}
// IntRange Get()
// {
// lock_guard<mutex> guard(lock);
// return IntRange(begin, end);
// }
bool PopFirst (size_t & first)
{
first = begin++;
return first < end;
/*
// int oldbegin = begin;
size_t oldbegin = begin.load(std::memory_order_acquire);
if (oldbegin >= end) return false;
while (!begin.compare_exchange_weak (oldbegin, oldbegin+1,
std::memory_order_relaxed, std::memory_order_relaxed))
if (oldbegin >= end) return false;
first = oldbegin;
return true;
*/
}
bool PopHalf (IntRange & r)
{
// int oldbegin = begin;
size_t oldbegin = begin.load(std::memory_order_acquire);
size_t oldend = end.load(std::memory_order_acquire);
if (oldbegin >= oldend) return false;
// lock_guard<mutex> guard(lock);
while (!begin.compare_exchange_weak (oldbegin, (oldbegin+oldend+1)/2,
std::memory_order_relaxed, std::memory_order_relaxed))
{
oldend = end.load(std::memory_order_acquire);
if (oldbegin >= oldend) return false;
}
r = IntRange(oldbegin, (oldbegin+oldend+1)/2);
return true;
}
};
class SharedLoop2
{
Array<AtomicRange> ranges;
atomic<size_t> processed;
atomic<size_t> total;
atomic<int> participants;
class SharedIterator
{
FlatArray<AtomicRange> ranges;
atomic<size_t> & processed;
size_t total;
size_t myval;
size_t processed_by_me = 0;
int me;
int steal_from;
public:
SharedIterator (FlatArray<AtomicRange> _ranges, atomic<size_t> & _processed, size_t _total,
int _me, bool begin_it)
: ranges(_ranges), processed(_processed), total(_total)
{
if (begin_it)
{
// me = TaskManager::GetThreadId();
me = _me;
steal_from = me;
GetNext();
}
}
~SharedIterator()
{
if (processed_by_me)
processed += processed_by_me;
}
SharedIterator & operator++ () { GetNext(); return *this;}
void GetNext()
{
size_t nr;
if (ranges[me].PopFirst(nr))
{
processed_by_me++;
myval = nr;
return;
}
GetNext2();
}
void GetNext2()
{
processed += processed_by_me;
processed_by_me = 0;
// done with my work, going to steal ...
while (1)
{
if (processed >= total) return;
steal_from++;
if (steal_from == ranges.Size()) steal_from = 0;
// steal half of the work reserved for 'from':
IntRange steal;
if (ranges[steal_from].PopHalf(steal))
{
myval = steal.First();
processed_by_me++;
if (myval+1 < steal.Next())
ranges[me].Set (IntRange(myval+1, steal.Next()));
return;
}
}
}
size_t operator* () const { return myval; }
bool operator!= (const SharedIterator & it2) const { return processed < total; }
};
public:
SharedLoop2 ()
: ranges(TaskManager::GetNumThreads())
{ ; }
SharedLoop2 (IntRange r)
: ranges(TaskManager::GetNumThreads())
{
Reset (r);
}
void Reset (IntRange r)
{
for (size_t i = 0; i < ranges.Size(); i++)
ranges[i].SetNoLock (r.Split(i,ranges.Size()));
total.store(r.Size(), std::memory_order_relaxed);
participants.store(0, std::memory_order_relaxed);
processed.store(0, std::memory_order_release);
}
SharedIterator begin()
{
/*
int me = participants++;
if (me < ranges.Size())
return SharedIterator (ranges, processed, total, me, true);
else
// more participants than buckets. set processed to total, and the loop is terminated immediately
return SharedIterator (ranges, total, total, me, true);
*/
return SharedIterator (ranges, processed, total, TaskManager::GetThreadId(), true);
}
SharedIterator end() { return SharedIterator (ranges, processed, total, -1, false); }
};
class Partitioning
{
Array<size_t> part;
size_t total_costs;
public:
Partitioning () { ; }
template <typename T>
Partitioning (const Array<T> & apart) { part = apart; }
template <typename T>
Partitioning & operator= (const Array<T> & apart) { part = apart; return *this; }
size_t GetTotalCosts() const { return total_costs; }
template <typename TFUNC>
void Calc (size_t n, TFUNC costs, int size = task_manager ? task_manager->GetNumThreads() : 1)
{
Array<size_t> prefix (n);
/*
size_t sum = 0;
for (auto i : ngstd::Range(n))
{
sum += costs(i);
prefix[i] = sum;
}
total_costs = sum;
*/
Array<size_t> partial_sums(TaskManager::GetNumThreads()+1);
partial_sums[0] = 0;
ParallelJob
([&] (TaskInfo ti)
{
IntRange r = IntRange(n).Split(ti.task_nr, ti.ntasks);
size_t mysum = 0;
for (size_t i : r)
{
size_t c = costs(i);
mysum += c;
prefix[i] = c;
}
partial_sums[ti.task_nr+1] = mysum;
});
for (size_t i = 1; i < partial_sums.Size(); i++)
partial_sums[i] += partial_sums[i-1];
total_costs = partial_sums.Last();
ParallelJob
([&] (TaskInfo ti)
{
IntRange r = IntRange(n).Split(ti.task_nr, ti.ntasks);
size_t mysum = partial_sums[ti.task_nr];
for (size_t i : r)
{
mysum += prefix[i];
prefix[i] = mysum;
}
});
part.SetSize (size+1);
part[0] = 0;
for (int i = 1; i <= size; i++)
part[i] = BinSearch (prefix, total_costs*i/size);
}
size_t Size() const { return part.Size()-1; }
IntRange operator[] (size_t i) const { return ngcore::Range(part[i], part[i+1]); }
IntRange Range() const { return ngcore::Range(part[0], part[Size()]); }
private:
template <typename Tarray>
int BinSearch(const Tarray & v, size_t i) {
int n = v.Size();
if (n == 0) return 0;
int first = 0;
int last = n-1;
if(v[0]>i) return 0;
if(v[n-1] <= i) return n;
while(last-first>1) {
int m = (first+last)/2;
if(v[m]<i)
first = m;
else
last = m;
}
return first;
}
};
inline std::ostream & operator<< (std::ostream & ost, const Partitioning & part)
{
for (int i : Range(part.Size()))
ost << part[i] << " ";
return ost;
}
// tasks must be a multiple of part.size
template <typename TFUNC>
NETGEN_INLINE void ParallelFor (const Partitioning & part, TFUNC f, int tasks_per_thread = 1)
{
if (task_manager)
{
int ntasks = tasks_per_thread * task_manager->GetNumThreads();
if (ntasks % part.Size() != 0)
throw Exception ("tasks must be a multiple of part.size");
task_manager -> CreateJob
([&] (TaskInfo & ti)
{
int tasks_per_part = ti.ntasks / part.Size();
int mypart = ti.task_nr / tasks_per_part;
int num_in_part = ti.task_nr % tasks_per_part;
auto myrange = part[mypart].Split (num_in_part, tasks_per_part);
for (auto i : myrange) f(i);
}, ntasks);
}
else
{
for (auto i : part.Range())
f(i);
}
}
template <typename TFUNC>
NETGEN_INLINE void ParallelForRange (const Partitioning & part, TFUNC f,
int tasks_per_thread = 1, TotalCosts costs = 1000)
{
if (task_manager && costs() >= 1000)
{
int ntasks = tasks_per_thread * task_manager->GetNumThreads();
if (ntasks % part.Size() != 0)
throw Exception ("tasks must be a multiple of part.size");
task_manager -> CreateJob
([&] (TaskInfo & ti)
{
int tasks_per_part = ti.ntasks / part.Size();
int mypart = ti.task_nr / tasks_per_part;
int num_in_part = ti.task_nr % tasks_per_part;
auto myrange = part[mypart].Split (num_in_part, tasks_per_part);
f(myrange);
}, ntasks);
}
else
{
f(part.Range());
}
}
template <typename FUNC, typename OP, typename T>
auto ParallelReduce (size_t n, FUNC f, OP op, T initial1)
{
typedef decltype (op(initial1,initial1)) TRES;
TRES initial(initial1);
/*
for (size_t i = 0; i < n; i++)
initial = op(initial, f(i));
*/
Array<TRES> part_reduce(TaskManager::GetNumThreads());
ParallelJob ([&] (TaskInfo ti)
{
auto r = Range(n).Split(ti.task_nr, ti.ntasks);
auto var = initial;
for (auto i : r)
var = op(var, f(i));
part_reduce[ti.task_nr] = var;
});
for (auto v : part_reduce)
initial = op(initial, v);
return initial;
}
// // some suggar for working with arrays
//
// template <typename T> template <typename T2>
// const FlatArray<T> FlatArray<T>::operator= (ParallelValue<T2> val)
// {
// ParallelForRange (Size(),
// [this, val] (IntRange r)
// {
// for (auto i : r)
// (*this)[i] = val;
// });
// return *this;
// }
//
// template <typename T> template <typename T2>
// const FlatArray<T> FlatArray<T>::operator= (ParallelFunction<T2> func)
// {
// ParallelForRange (Size(),
// [this, func] (IntRange r)
// {
// for (auto i : r)
// (*this)[i] = func(i);
// });
// return *this;
// }
class Tasks
{
size_t num;
public:
explicit Tasks (size_t _num = TaskManager::GetNumThreads()) : num(_num) { ; }
auto GetNum() const { return num; }
};
/* currently not used, plus causing problems on MSVC 2017
template <typename T, typename std::enable_if<ngstd::has_call_operator<T>::value, int>::type = 0>
inline ParallelFunction<T> operator| (const T & func, Tasks tasks)
{
return func;
}
template <typename T, typename std::enable_if<!ngstd::has_call_operator<T>::value, int>::type = 0>
inline ParallelValue<T> operator| (const T & obj, Tasks tasks)
{
return obj;
}
inline Tasks operator "" _tasks_per_thread (unsigned long long n)
{
return Tasks(n * TaskManager::GetNumThreads());
}
*/
/*
thought to be used as: array = 1 | tasks
class DefaultTasks
{
public:
operator Tasks () const { return TaskManager::GetNumThreads(); }
};
static DefaultTasks tasks;
*/
#ifdef USE_NUMA
template <typename T>
class NumaInterleavedArray : public Array<T>
{
T * numa_ptr;
size_t numa_size;
public:
NumaInterleavedArray () { numa_size = 0; numa_ptr = nullptr; }
NumaInterleavedArray (size_t s)
: Array<T> (s, (T*)numa_alloc_interleaved(s*sizeof(T)))
{
numa_ptr = this->data;
numa_size = s;
}
~NumaInterleavedArray ()
{
numa_free (numa_ptr, numa_size*sizeof(T));
}
NumaInterleavedArray & operator= (T val)
{
Array<T>::operator= (val);
return *this;
}
NumaInterleavedArray & operator= (NumaInterleavedArray && a2)
{
Array<T>::operator= ((Array<T>&&)a2);
ngcore::Swap (numa_ptr, a2.numa_ptr);
ngcore::Swap (numa_size, a2.numa_size);
return *this;
}
void Swap (NumaInterleavedArray & b)
{
Array<T>::Swap(b);
ngcore::Swap (numa_ptr, b.numa_ptr);
ngcore::Swap (numa_size, b.numa_size);
}
void SetSize (size_t size)
{
2019-07-09 21:07:19 +05:00
std::cerr << "************************* NumaDistArray::SetSize not overloaded" << std::endl;
Array<T>::SetSize(size);
}
};
template <typename T>
class NumaDistributedArray : public Array<T>
{
T * numa_ptr;
size_t numa_size;
public:
NumaDistributedArray () { numa_size = 0; numa_ptr = nullptr; }
NumaDistributedArray (size_t s)
: Array<T> (s, (T*)numa_alloc_local(s*sizeof(T)))
{
numa_ptr = this->data;
numa_size = s;
/* int avail = */ numa_available(); // initialize libnuma
int num_nodes = numa_num_configured_nodes();
size_t pagesize = numa_pagesize();
int npages = ceil ( double(s)*sizeof(T) / pagesize );
// cout << "size = " << numa_size << endl;
// cout << "npages = " << npages << endl;
for (int i = 0; i < num_nodes; i++)
{
int beg = (i * npages) / num_nodes;
int end = ( (i+1) * npages) / num_nodes;
// cout << "node " << i << " : [" << beg << "-" << end << ")" << endl;
numa_tonode_memory(numa_ptr+beg*pagesize/sizeof(T), (end-beg)*pagesize, i);
}
}
~NumaDistributedArray ()
{
numa_free (numa_ptr, numa_size*sizeof(T));
}
NumaDistributedArray & operator= (NumaDistributedArray && a2)
{
Array<T>::operator= ((Array<T>&&)a2);
ngcore::Swap (numa_ptr, a2.numa_ptr);
ngcore::Swap (numa_size, a2.numa_size);
return *this;
}
void Swap (NumaDistributedArray & b)
{
Array<T>::Swap(b);
ngcore::Swap (numa_ptr, b.numa_ptr);
ngcore::Swap (numa_size, b.numa_size);
}
void SetSize (size_t size)
{
2019-07-09 21:07:19 +05:00
std::cerr << "************************* NumaDistArray::SetSize not overloaded" << std::endl;
Array<T>::SetSize(size);
}
};
template <typename T>
class NumaLocalArray : public Array<T>
{
T * numa_ptr;
size_t numa_size;
public:
NumaLocalArray () { numa_size = 0; numa_ptr = nullptr; }
NumaLocalArray (size_t s)
: Array<T> (s, (T*)numa_alloc_local(s*sizeof(T)))
{
numa_ptr = this->data;
numa_size = s;
}
~NumaLocalArray ()
{
numa_free (numa_ptr, numa_size*sizeof(T));
}
NumaLocalArray & operator= (T val)
{
Array<T>::operator= (val);
return *this;
}
NumaLocalArray & operator= (NumaLocalArray && a2)
{
Array<T>::operator= ((Array<T>&&)a2);
ngcore::Swap (numa_ptr, a2.numa_ptr);
ngcore::Swap (numa_size, a2.numa_size);
return *this;
}
void Swap (NumaLocalArray & b)
{
Array<T>::Swap(b);
ngcore::Swap (numa_ptr, b.numa_ptr);
ngcore::Swap (numa_size, b.numa_size);
}
void SetSize (size_t size)
{
2019-07-09 21:07:19 +05:00
std::cerr << "************************* NumaDistArray::SetSize not overloaded" << std::endl;
Array<T>::SetSize(size);
}
};
#else // USE_NUMA
template <typename T>
using NumaDistributedArray = Array<T>;
template <typename T>
using NumaInterleavedArray = Array<T>;
template <typename T>
using NumaLocalArray = Array<T>;
#endif // USE_NUMA
}
#endif // NETGEN_CORE_TASKMANAGER_HPP