smesh/src/SMESHUtils/SMESH_MAT2d.cxx

2008 lines
71 KiB
C++
Raw Normal View History

// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : SMESH_MAT2d.cxx
// Created : Thu May 28 17:49:53 2015
// Author : Edward AGAPOV (eap)
#include "SMESH_MAT2d.hxx"
#include <list>
#include <BRepAdaptor_CompCurve.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_MakeVertex.hxx>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B2d.hxx>
//#include <GCPnts_AbscissaPoint.hxx>
#include <GCPnts_TangentialDeflection.hxx>
// #include <GCPnts_UniformAbscissa.hxx>
// #include <GCPnts_UniformDeflection.hxx>
#include <Geom2d_Curve.hxx>
//#include <GeomAdaptor_Curve.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <TopExp.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
#ifdef _DEBUG_
#define _MYDEBUG_
#include "SMESH_File.hxx"
#include "SMESH_Comment.hxx"
#endif
using namespace std;
using boost::polygon::x;
using boost::polygon::y;
using SMESH_MAT2d::TVD;
using SMESH_MAT2d::TVDEdge;
using SMESH_MAT2d::TVDCell;
using SMESH_MAT2d::TVDVertex;
namespace
{
// Input data for construct_voronoi()
// -------------------------------------------------------------------------------------
struct InPoint
{
int _a, _b; // coordinates
double _param; // param on EDGE
InPoint(int x, int y, double param) : _a(x), _b(y), _param(param) {}
InPoint() : _a(0), _b(0), _param(0) {}
// working data
list< const TVDEdge* > _edges; // MA edges of a concave InPoint in CCW order
size_t index( const vector< InPoint >& inPoints ) const { return this - &inPoints[0]; }
bool operator==( const InPoint& other ) const { return _a == other._a && _b == other._b; }
bool operator==( const TVDVertex* v ) const { return ( Abs( _a - v->x() ) < 1. &&
Abs( _b - v->y() ) < 1. ); }
};
// -------------------------------------------------------------------------------------
struct InSegment
{
InPoint * _p0;
InPoint * _p1;
// working data
size_t _geomEdgeInd; // EDGE index within the FACE
const TVDCell* _cell;
list< const TVDEdge* > _edges; // MA edges in CCW order within _cell
InSegment( InPoint * p0, InPoint * p1, size_t iE)
: _p0(p0), _p1(p1), _geomEdgeInd(iE) {}
InSegment() : _p0(0), _p1(0), _geomEdgeInd(0) {}
const InPoint& point0() const { return *_p0; }
const InPoint& point1() const { return *_p1; }
inline bool isConnected( const TVDEdge* edge );
inline bool isExternal( const TVDEdge* edge );
static void setGeomEdgeToCell( const TVDCell* cell, size_t eID ) { cell->color( eID ); }
static size_t getGeomEdge( const TVDCell* cell ) { return cell->color(); }
};
// check if a TVDEdge begins at my end or ends at my start
inline bool InSegment::isConnected( const TVDEdge* edge )
{
return (( edge->vertex0() && edge->vertex1() )
&&
((Abs( edge->vertex0()->x() - _p1->_a ) < 1.&&
Abs( edge->vertex0()->y() - _p1->_b ) < 1. ) ||
(Abs( edge->vertex1()->x() - _p0->_a ) < 1.&&
Abs( edge->vertex1()->y() - _p0->_b ) < 1. )));
}
// check if a MA TVDEdge is outside of a domain
inline bool InSegment::isExternal( const TVDEdge* edge )
{
double dot = // x1*x2 + y1*y2; (x1,y1) - internal normal of InSegment
( _p0->_b - _p1->_b ) * ( 0.5 * ( edge->vertex0()->x() + edge->vertex1()->x() ) - _p0->_a ) +
( _p1->_a - _p0->_a ) * ( 0.5 * ( edge->vertex0()->y() + edge->vertex1()->y() ) - _p0->_b );
return dot < 0.;
}
// // -------------------------------------------------------------------------------------
// const size_t theExternMA = 111; // to mark external MA edges
// bool isExternal( const TVDEdge* edge )
// {
// return ( SMESH_MAT2d::Branch::getBndSegment( edge ) == theExternMA );
// }
// // mark external MA edges
// void markExternalEdges( const TVDEdge* edge )
// {
// if ( isExternal( edge ))
// return;
// SMESH_MAT2d::Branch::setBndSegment( theExternMA, edge );
// SMESH_MAT2d::Branch::setBndSegment( theExternMA, edge->twin() );
// if ( edge->is_primary() && edge->vertex1() )
// {
// const TVDVertex * v = edge->vertex1();
// edge = v->incident_edge();
// do {
// markExternalEdges( edge );
// edge = edge->rot_next();
// } while ( edge != v->incident_edge() );
// }
// }
// -------------------------------------------------------------------------------------
#ifdef _MYDEBUG_
// writes segments into a txt file readable by voronoi_visualizer
void inSegmentsToFile( vector< InSegment>& inSegments)
{
if ( inSegments.size() > 1000 )
return;
const char* fileName = "/misc/dn25/salome/eap/salome/misc/Code/C++/MAdebug.txt";
SMESH_File file(fileName, false );
file.remove();
file.openForWriting();
SMESH_Comment text;
text << "0\n"; // nb points
text << inSegments.size() << "\n"; // nb segments
for ( size_t i = 0; i < inSegments.size(); ++i )
{
text << inSegments[i]._p0->_a << " "
<< inSegments[i]._p0->_b << " "
<< inSegments[i]._p1->_a << " "
<< inSegments[i]._p1->_b << "\n";
}
text << "\n";
file.write( text.c_str(), text.size() );
cout << "Write " << fileName << endl;
}
void dumpEdge( const TVDEdge* edge )
{
cout << "*Edge_" << edge;
if ( !edge->vertex0() )
cout << " ( INF, INF";
else
cout << " ( " << edge->vertex0()->x() << ", " << edge->vertex0()->y();
if ( !edge->vertex1() )
cout << ") -> ( INF, INF";
else
cout << ") -> ( " << edge->vertex1()->x() << ", " << edge->vertex1()->y();
cout << ")\t cell=" << edge->cell()
<< " iBnd=" << edge->color()
<< " twin=" << edge->twin()
<< " twin_cell=" << edge->twin()->cell()
<< " prev=" << edge->prev() << " next=" << edge->next()
<< ( edge->is_primary() ? " MA " : " SCND" )
<< ( edge->is_linear() ? " LIN " : " CURV" )
<< endl;
}
void dumpCell( const TVDCell* cell )
{
cout << "**Cell_" << cell << " GEOM=" << cell->color() << " ";
cout << ( cell->contains_segment() ? " SEG " : " PNT " );
if ( cell-> is_degenerate() )
cout << " degen ";
else
{
cout << endl;
const TVDEdge* edge = cell->incident_edge();
size_t i = 0;
do {
edge = edge->next();
cout << " - " << ++i << " ";
dumpEdge( edge );
} while (edge != cell->incident_edge());
}
}
#else
void inSegmentsToFile( vector< InSegment>& inSegments) {}
2015-06-16 14:25:19 +05:00
void dumpEdge( const TVDEdge* edge ) {}
void dumpCell( const TVDCell* cell ) {}
#endif
}
// -------------------------------------------------------------------------------------
namespace boost {
namespace polygon {
template <>
struct geometry_concept<InPoint> {
typedef point_concept type;
};
template <>
struct point_traits<InPoint> {
typedef int coordinate_type;
static inline coordinate_type get(const InPoint& point, orientation_2d orient) {
return (orient == HORIZONTAL) ? point._a : point._b;
}
};
template <>
struct geometry_concept<InSegment> {
typedef segment_concept type;
};
template <>
struct segment_traits<InSegment> {
typedef int coordinate_type;
typedef InPoint point_type;
static inline point_type get(const InSegment& segment, direction_1d dir) {
return *(dir.to_int() ? segment._p1 : segment._p0);
}
};
} // namespace polygon
} // namespace boost
// -------------------------------------------------------------------------------------
namespace
{
const int theNoBrachID = 0;
double theScale[2]; // scale used in bndSegsToMesh()
const size_t theNoEdgeID = std::numeric_limits<size_t>::max() / 1000;
// -------------------------------------------------------------------------------------
/*!
* \brief Intermediate DS to create InPoint's
*/
struct UVU
{
gp_Pnt2d _uv;
double _u;
UVU( gp_Pnt2d uv, double u ): _uv(uv), _u(u) {}
InPoint getInPoint( double scale[2] )
{
return InPoint( int( _uv.X() * scale[0]), int( _uv.Y() * scale[1]), _u );
}
};
// -------------------------------------------------------------------------------------
/*!
* \brief Segment of EDGE, used to create BndPoints
*/
struct BndSeg
{
InSegment* _inSeg;
const TVDEdge* _edge;
double _uLast;
BndSeg* _prev; // previous BndSeg in FACE boundary
int _branchID; // negative ID means reverse direction
BndSeg( InSegment* seg, const TVDEdge* edge, double u ):
_inSeg(seg), _edge(edge), _uLast(u), _prev(0), _branchID( theNoBrachID ) {}
void setIndexToEdge( size_t id )
{
SMESH_MAT2d::Branch::setBndSegment( id, _edge );
}
int branchID() const { return Abs( _branchID ); }
size_t geomEdge() const { return _inSeg->_geomEdgeInd; }
static BndSeg* getBndSegOfEdge( const TVDEdge* edge,
vector< vector< BndSeg > >& bndSegsPerEdge )
{
BndSeg* seg = 0;
if ( edge )
{
size_t oppSegIndex = SMESH_MAT2d::Branch::getBndSegment( edge );
size_t oppEdgeIndex = SMESH_MAT2d::Branch::getGeomEdge ( edge );
if ( oppEdgeIndex < bndSegsPerEdge.size() &&
oppSegIndex < bndSegsPerEdge[ oppEdgeIndex ].size() )
{
seg = & bndSegsPerEdge[ oppEdgeIndex ][ oppSegIndex ];
}
}
return seg;
}
void setBranch( int branchID, vector< vector< BndSeg > >& bndSegsPerEdge )
{
_branchID = branchID;
// pass branch to an opposite BndSeg
if ( _edge )
if ( BndSeg* oppSeg = getBndSegOfEdge( _edge->twin(), bndSegsPerEdge ))
{
if ( oppSeg->_branchID == theNoBrachID )
oppSeg->_branchID = -branchID;
}
}
bool hasOppositeEdge()
{
if ( !_edge ) return false;
return ( _inSeg->getGeomEdge( _edge->twin()->cell() ) != theNoEdgeID );
}
// check a next segment in CW order
bool isSameBranch( const BndSeg& seg2 )
{
if ( !_edge || !seg2._edge )
return true;
const TVDCell* cell1 = this->_edge->twin()->cell();
const TVDCell* cell2 = seg2. _edge->twin()->cell();
if ( cell1 == cell2 )
return true;
const TVDEdge* edgeMedium1 = this->_edge->twin()->next();
const TVDEdge* edgeMedium2 = seg2. _edge->twin()->prev();
if ( edgeMedium1->is_secondary() && edgeMedium2->is_secondary() )
{
if ( edgeMedium1->twin() == edgeMedium2 )
return true;
// edgeMedium's are edges whose twin()->cell is built on an end point of inSegment
// and is located between cell1 and cell2
if ( edgeMedium1->twin() == edgeMedium2->twin() ) // is this possible???
return true;
if ( edgeMedium1->twin() == edgeMedium2->twin()->next() &&
edgeMedium1->twin()->cell()->contains_point() )
return true;
}
else if ( edgeMedium1->is_primary() && edgeMedium2->is_primary() )
{
if ( edgeMedium1->twin() == edgeMedium2 &&
SMESH_MAT2d::Branch::getBndSegment( edgeMedium1 ) ==
SMESH_MAT2d::Branch::getBndSegment( edgeMedium2 ))
// this is an ignored MA edge between inSegment's on one EDGE forming a convex corner
return true;
}
return false;
}
}; // struct BndSeg
// -------------------------------------------------------------------------------------
/*!
* \brief Iterator
*/
struct BranchIterator
{
int _i, _size;
const std::vector<const TVDEdge*> & _edges;
bool _closed;
BranchIterator(const std::vector<const TVDEdge*> & edges, int i )
:_i( i ), _size( edges.size() ), _edges( edges )
{
_closed = ( edges[0]->vertex1() == edges.back()->vertex0() || // closed branch
edges[0]->vertex0() == edges.back()->vertex1() );
}
const TVDEdge* operator++() { ++_i; return edge(); }
const TVDEdge* operator--() { --_i; return edge(); }
bool operator<( const BranchIterator& other ) { return _i < other._i; }
BranchIterator& operator=( const BranchIterator& other ) { _i = other._i; return *this; }
void set(int i) { _i = i; }
int index() const { return _i; }
int indexMod() const { return ( _i + _size ) % _size; }
const TVDEdge* edge() const {
return _closed ? _edges[ indexMod() ] : ( _i < 0 || _i >= _size ) ? 0 : _edges[ _i ];
}
const TVDEdge* edgePrev() { --_i; const TVDEdge* e = edge(); ++_i; return e; }
const TVDEdge* edgeNext() { ++_i; const TVDEdge* e = edge(); --_i; return e; }
};
//================================================================================
/*!
* \brief debug: to visually check found MA edges
*/
//================================================================================
void bndSegsToMesh( const vector< BndSeg >& bndSegs )
{
#ifdef _MYDEBUG_
if ( !getenv("bndSegsToMesh")) return;
map< const TVDVertex *, int > v2Node;
map< const TVDVertex *, int >::iterator v2n;
set< const TVDEdge* > addedEdges;
const char* fileName = "/misc/dn25/salome/eap/salome/misc/Code/C++/MAedges.py";
SMESH_File file(fileName, false );
file.remove();
file.openForWriting();
SMESH_Comment text;
text << "import salome, SMESH\n";
text << "salome.salome_init()\n";
text << "from salome.smesh import smeshBuilder\n";
text << "smesh = smeshBuilder.New(salome.myStudy)\n";
text << "m=smesh.Mesh()\n";
for ( size_t i = 0; i < bndSegs.size(); ++i )
{
if ( !bndSegs[i]._edge )
text << "# " << i << " NULL edge\n";
else if ( !bndSegs[i]._edge->vertex0() ||
!bndSegs[i]._edge->vertex1() )
text << "# " << i << " INFINITE edge\n";
else if ( addedEdges.insert( bndSegs[i]._edge ).second &&
addedEdges.insert( bndSegs[i]._edge->twin() ).second )
{
v2n = v2Node.insert( make_pair( bndSegs[i]._edge->vertex0(), v2Node.size() + 1 )).first;
int n0 = v2n->second;
if ( n0 == v2Node.size() )
text << "n" << n0 << " = m.AddNode( "
<< bndSegs[i]._edge->vertex0()->x() / theScale[0] << ", "
<< bndSegs[i]._edge->vertex0()->y() / theScale[1] << ", 0 )\n";
v2n = v2Node.insert( make_pair( bndSegs[i]._edge->vertex1(), v2Node.size() + 1 )).first;
int n1 = v2n->second;
if ( n1 == v2Node.size() )
text << "n" << n1 << " = m.AddNode( "
<< bndSegs[i]._edge->vertex1()->x() / theScale[0] << ", "
<< bndSegs[i]._edge->vertex1()->y() / theScale[1] << ", 0 )\n";
text << "e" << i << " = m.AddEdge([ n" << n0 << ", n" << n1 << " ])\n";
}
}
text << "\n";
file.write( text.c_str(), text.size() );
cout << "execfile( '" << fileName << "')" << endl;
#endif
}
//================================================================================
/*!
* \brief Computes length of a TVDEdge
*/
//================================================================================
double length( const TVDEdge* edge )
{
gp_XY d( edge->vertex0()->x() - edge->vertex1()->x(),
edge->vertex0()->y() - edge->vertex1()->y() );
return d.Modulus();
}
//================================================================================
/*!
* \brief Compute scale to have the same 2d proportions as in 3d
*/
//================================================================================
void computeProportionScale( const TopoDS_Face& face,
const Bnd_B2d& uvBox,
double scale[2])
{
scale[0] = scale[1] = 1.;
if ( uvBox.IsVoid() ) return;
TopLoc_Location loc;
Handle(Geom_Surface) surface = BRep_Tool::Surface( face, loc );
const int nbDiv = 30;
gp_XY uvMin = uvBox.CornerMin(), uvMax = uvBox.CornerMax();
gp_XY uvMid = 0.5 * ( uvMin + uvMax );
double du = ( uvMax.X() - uvMin.X() ) / nbDiv;
double dv = ( uvMax.Y() - uvMin.Y() ) / nbDiv;
double uLen3d = 0, vLen3d = 0;
gp_Pnt uPrevP = surface->Value( uvMin.X(), uvMid.Y() );
gp_Pnt vPrevP = surface->Value( uvMid.X(), uvMin.Y() );
for (int i = 1; i <= nbDiv; i++)
{
double u = uvMin.X() + du * i;
double v = uvMin.Y() + dv * i;
gp_Pnt uP = surface->Value( u, uvMid.Y() );
gp_Pnt vP = surface->Value( uvMid.X(), v );
uLen3d += uP.Distance( uPrevP );
vLen3d += vP.Distance( vPrevP );
uPrevP = uP;
vPrevP = vP;
}
scale[0] = uLen3d / ( uvMax.X() - uvMin.X() );
scale[1] = vLen3d / ( uvMax.Y() - uvMin.Y() );
}
//================================================================================
/*!
* \brief Fill input data for construct_voronoi()
*/
//================================================================================
bool makeInputData(const TopoDS_Face& face,
const std::vector< TopoDS_Edge >& edges,
const double minSegLen,
vector< InPoint >& inPoints,
vector< InSegment>& inSegments,
double scale[2])
{
const double theDiscrCoef = 0.5; // to decrease minSegLen for discretization
TopLoc_Location loc;
// discretize the EDGEs to get 2d points and segments
vector< vector< UVU > > uvuVec( edges.size() );
Bnd_B2d uvBox;
for ( size_t iE = 0; iE < edges.size(); ++iE )
{
vector< UVU > & points = uvuVec[ iE ];
double f,l;
Handle(Geom_Curve) c3d = BRep_Tool::Curve ( edges[ iE ], loc, f, l );
Handle(Geom2d_Curve) c2d = BRep_Tool::CurveOnSurface( edges[ iE ], face, f, l );
if ( c2d.IsNull() ) return false;
points.push_back( UVU( c2d->Value( f ), f ));
uvBox.Add( points.back()._uv );
Geom2dAdaptor_Curve c2dAdaptor (c2d, f,l );
double curDeflect = 0.3; //0.01; //Curvature deflection
double angDeflect = 0.2; // 0.09; //Angular deflection
GCPnts_TangentialDeflection discret(c2dAdaptor, angDeflect, curDeflect);
// if ( discret.NbPoints() > 2 )
// {
// cout << endl;
// do
// {
// discret.Initialize( c2dAdaptor, 100, curDeflect );
// cout << "C " << curDeflect << " " << discret.NbPoints() << endl;
// curDeflect *= 1.5;
// }
// while ( discret.NbPoints() > 5 );
// cout << endl;
// do
// {
// discret.Initialize( c2dAdaptor, angDeflect, 100 );
// cout << "A " << angDeflect << " " << discret.NbPoints() << endl;
// angDeflect *= 1.5;
// }
// while ( discret.NbPoints() > 5 );
// }
gp_Pnt p, pPrev;
if ( !c3d.IsNull() )
pPrev = c3d->Value( f );
if ( discret.NbPoints() > 2 )
for ( int i = 2; i <= discret.NbPoints(); i++ ) // skip the 1st point
{
double u = discret.Parameter(i);
if ( !c3d.IsNull() )
{
p = c3d->Value( u );
int nbDiv = int( p.Distance( pPrev ) / minSegLen / theDiscrCoef );
double dU = ( u - points.back()._u ) / nbDiv;
for ( int iD = 1; iD < nbDiv; ++iD )
{
double uD = points.back()._u + dU;
points.push_back( UVU( c2d->Value( uD ), uD ));
}
pPrev = p;
}
points.push_back( UVU( c2d->Value( u ), u ));
uvBox.Add( points.back()._uv );
}
// if ( !c3d.IsNull() )
// {
// vector<double> params;
// GeomAdaptor_Curve c3dAdaptor( c3d,f,l );
// if ( useDefl )
// {
// const double deflection = minSegLen * 0.1;
// GCPnts_UniformDeflection discret( c3dAdaptor, deflection, f, l, true );
// if ( !discret.IsDone() )
// return false;
// int nbP = discret.NbPoints();
// for ( int i = 2; i < nbP; i++ ) // skip 1st and last points
// params.push_back( discret.Parameter(i) );
// }
// else
// {
// double eLen = GCPnts_AbscissaPoint::Length( c3dAdaptor );
// int nbSeg = Max( 1, int( eLen / minSegLen / theDiscrCoef ));
// double segLen = eLen / nbSeg;
// GCPnts_UniformAbscissa discret( c3dAdaptor, segLen, f, l );
// int nbP = Min( discret.NbPoints(), nbSeg + 1 );
// for ( int i = 2; i < nbP; i++ ) // skip 1st and last points
// params.push_back( discret.Parameter(i) );
// }
// for ( size_t i = 0; i < params.size(); ++i )
// {
// points.push_back( UVU( c2d->Value( params[i] ), params[i] ));
// uvBox.Add( points.back()._uv );
// }
// }
if ( points.size() < 2 )
{
points.push_back( UVU( c2d->Value( l ), l ));
uvBox.Add( points.back()._uv );
}
if ( edges[ iE ].Orientation() == TopAbs_REVERSED )
std::reverse( points.begin(), points.end() );
}
// make connected EDGEs have same UV at shared VERTEX
TopoDS_Vertex vShared;
for ( size_t iE = 0; iE < edges.size(); ++iE )
{
size_t iE2 = (iE+1) % edges.size();
if ( !TopExp::CommonVertex( edges[iE], edges[iE2], vShared ))
continue;
if ( !vShared.IsSame( TopExp::LastVertex( edges[iE], true )))
return false;
vector< UVU > & points1 = uvuVec[ iE ];
vector< UVU > & points2 = uvuVec[ iE2 ];
gp_Pnt2d & uv1 = points1.back() ._uv;
gp_Pnt2d & uv2 = points2.front()._uv;
uv1 = uv2 = 0.5 * ( uv1.XY() + uv2.XY() );
}
// get scale to have the same 2d proportions as in 3d
computeProportionScale( face, uvBox, scale );
// make scale to have coordinates precise enough when converted to int
gp_XY uvMin = uvBox.CornerMin(), uvMax = uvBox.CornerMax();
uvMin.ChangeCoord(1) = uvMin.X() * scale[0];
uvMin.ChangeCoord(2) = uvMin.Y() * scale[1];
uvMax.ChangeCoord(1) = uvMax.X() * scale[0];
uvMax.ChangeCoord(2) = uvMax.Y() * scale[1];
double vMax[2] = { Max( Abs( uvMin.X() ), Abs( uvMax.X() )),
Max( Abs( uvMin.Y() ), Abs( uvMax.Y() )) };
int iMax = ( vMax[0] > vMax[1] ) ? 0 : 1;
const double precision = 1e-5;
double preciScale = Min( vMax[iMax] / precision,
std::numeric_limits<int>::max() / vMax[iMax] );
preciScale /= scale[iMax];
double roundedScale = 10; // to ease debug
while ( roundedScale * 10 < preciScale )
roundedScale *= 10.;
scale[0] *= roundedScale;
scale[1] *= roundedScale;
// create input points and segments
inPoints.clear();
inSegments.clear();
size_t nbPnt = 0;
for ( size_t iE = 0; iE < uvuVec.size(); ++iE )
nbPnt += uvuVec[ iE ].size();
inPoints.resize( nbPnt );
inSegments.reserve( nbPnt );
size_t iP = 0;
if ( face.Orientation() == TopAbs_REVERSED )
{
for ( int iE = uvuVec.size()-1; iE >= 0; --iE )
{
vector< UVU > & points = uvuVec[ iE ];
inPoints[ iP++ ] = points.back().getInPoint( scale );
for ( size_t i = points.size()-1; i >= 1; --i )
{
inPoints[ iP++ ] = points[i-1].getInPoint( scale );
inSegments.push_back( InSegment( & inPoints[ iP-2 ], & inPoints[ iP-1 ], iE ));
}
}
}
else
{
for ( size_t iE = 0; iE < uvuVec.size(); ++iE )
{
vector< UVU > & points = uvuVec[ iE ];
inPoints[ iP++ ] = points[0].getInPoint( scale );
for ( size_t i = 1; i < points.size(); ++i )
{
inPoints[ iP++ ] = points[i].getInPoint( scale );
inSegments.push_back( InSegment( & inPoints[ iP-2 ], & inPoints[ iP-1 ], iE ));
}
}
}
// debug
theScale[0] = scale[0];
theScale[1] = scale[1];
return true;
}
//================================================================================
/*!
* \brief Update a branch joined to another one
*/
//================================================================================
void updateJoinedBranch( vector< const TVDEdge* > & branchEdges,
const size_t newID,
vector< vector< BndSeg > > & bndSegs,
const bool reverse)
{
BndSeg *seg1, *seg2;
if ( reverse )
{
for ( size_t i = 0; i < branchEdges.size(); ++i )
{
if (( seg1 = BndSeg::getBndSegOfEdge( branchEdges[i], bndSegs )) &&
( seg2 = BndSeg::getBndSegOfEdge( branchEdges[i]->twin(), bndSegs )))
{
seg1->_branchID /= seg1->branchID();
seg2->_branchID /= seg2->branchID();
seg1->_branchID *= -newID;
seg2->_branchID *= -newID;
branchEdges[i] = branchEdges[i]->twin();
}
}
std::reverse( branchEdges.begin(), branchEdges.end() );
}
else
{
for ( size_t i = 0; i < branchEdges.size(); ++i )
{
if (( seg1 = BndSeg::getBndSegOfEdge( branchEdges[i], bndSegs )) &&
( seg2 = BndSeg::getBndSegOfEdge( branchEdges[i]->twin(), bndSegs )))
{
seg1->_branchID /= seg1->branchID();
seg2->_branchID /= seg2->branchID();
seg1->_branchID *= newID;
seg2->_branchID *= newID;
}
}
}
}
//================================================================================
/*!
* \brief Create MA branches and FACE boundary data
* \param [in] vd - voronoi diagram of \a inSegments
* \param [in] inPoints - FACE boundary points
* \param [in,out] inSegments - FACE boundary segments
* \param [out] branch - MA branches to fill
* \param [out] branchEnd - ends of MA branches to fill
* \param [out] boundary - FACE boundary to fill
*/
//================================================================================
void makeMA( const TVD& vd,
const bool ignoreCorners,
vector< InPoint >& inPoints,
vector< InSegment > & inSegments,
vector< SMESH_MAT2d::Branch >& branch,
vector< const SMESH_MAT2d::BranchEnd* >& branchPnt,
SMESH_MAT2d::Boundary& boundary )
{
// Associate MA cells with geom EDGEs
for (TVD::const_cell_iterator it = vd.cells().begin(); it != vd.cells().end(); ++it)
{
const TVDCell* cell = &(*it);
if ( cell->contains_segment() )
{
InSegment& seg = inSegments[ cell->source_index() ];
seg._cell = cell;
seg.setGeomEdgeToCell( cell, seg._geomEdgeInd );
}
else
{
InSegment::setGeomEdgeToCell( cell, theNoEdgeID );
}
}
vector< bool > inPntChecked( inPoints.size(), false );
// Find MA edges of each inSegment
for ( size_t i = 0; i < inSegments.size(); ++i )
{
InSegment& inSeg = inSegments[i];
// get edges around the cell lying on MA
bool hasSecondary = false;
const TVDEdge* edge = inSeg._cell->incident_edge();
do {
edge = edge->next(); // Returns the CCW next edge within the cell.
if ( edge->is_primary() && !inSeg.isExternal( edge ) )
inSeg._edges.push_back( edge ); // edge equidistant from two InSegments
else
hasSecondary = true;
} while (edge != inSeg._cell->incident_edge());
// there can be several continuous MA edges but maEdges can begin in the middle of
// a chain of continuous MA edges. Make the chain continuous.
list< const TVDEdge* >& maEdges = inSeg._edges;
if ( maEdges.empty() )
continue;
if ( hasSecondary )
while ( maEdges.back()->next() == maEdges.front() )
maEdges.splice( maEdges.end(), maEdges, maEdges.begin() );
// remove maEdges equidistant from two neighbor InSegments of the same geom EDGE
list< const TVDEdge* >::iterator e = maEdges.begin();
while ( e != maEdges.end() )
{
const TVDCell* cell2 = (*e)->twin()->cell(); // cell on the other side of a MA edge
size_t geoE2 = InSegment::getGeomEdge( cell2 );
bool toRemove = ( inSeg._geomEdgeInd == geoE2 && inSeg.isConnected( *e ));
if ( toRemove )
e = maEdges.erase( e );
else
++e;
}
if ( maEdges.empty() )
continue;
// add MA edges corresponding to concave InPoints
for ( int is2nd = 0; is2nd < 2; ++is2nd ) // loop on two ends of inSeg
{
InPoint& inPnt = *( is2nd ? inSeg._p1 : inSeg._p0 );
size_t pInd = inPnt.index( inPoints );
if ( inPntChecked[ pInd ] )
continue;
if ( pInd > 0 &&
inPntChecked[ pInd-1 ] &&
inPoints[ pInd-1 ] == inPnt )
continue;
inPntChecked[ pInd ] = true;
const TVDEdge* maE = is2nd ? maEdges.front() : maEdges.back();
if ( inPnt == ( is2nd ? maE->vertex0() : maE->vertex1() ))
continue;
const TVDEdge* edge = // a secondary TVDEdge connecting inPnt and maE
is2nd ? maE->prev() : maE->next();
while ( inSeg.isConnected( edge ))
{
if ( edge->is_primary() ) break; // this should not happen
const TVDEdge* edge2 = edge->twin(); // we are in a neighbor cell, add MA edges to inPnt
if ( inSeg.getGeomEdge( edge2->cell() ) != theNoEdgeID )
break; // cell of an InSegment
bool hasInfinite = false;
list< const TVDEdge* > pointEdges;
edge = edge2;
do
{
edge = edge->next(); // Returns the CCW next edge within the cell.
if ( edge->is_infinite() )
hasInfinite = true;
else if ( edge->is_primary() && !inSeg.isExternal( edge ))
pointEdges.push_back( edge );
}
while ( edge != edge2 && !hasInfinite );
if ( hasInfinite || pointEdges.empty() )
break;
inPnt._edges.splice( inPnt._edges.end(), pointEdges );
inSeg.setGeomEdgeToCell( edge->cell(), inSeg._geomEdgeInd );
edge = is2nd ? inPnt._edges.front()->prev() : inPnt._edges.back()->next();
}
} // add MA edges corresponding to concave InPoints
} // loop on inSegments to find corresponding MA edges
// -------------------------------------------
// Create Branches and BndPoints for each EDGE
// -------------------------------------------
if ( inPoints.front() == inPoints.back() /*&& !inPoints[0]._edges.empty()*/ )
{
inPntChecked[0] = false; // do not use the 1st point twice
//InSegment::setGeomEdgeToCell( inPoints[0]._edges.back()->cell(), theNoEdgeID );
inPoints[0]._edges.clear();
}
2015-08-14 15:31:06 +05:00
// Divide InSegment's into BndSeg's (so that each BndSeg corresponds to one MA edge)
vector< vector< BndSeg > > bndSegsPerEdge( boundary.nbEdges() ); // all BndSeg's
{
vector< BndSeg > bndSegs; // bndSeg's of a current EDGE
size_t prevGeomEdge = theNoEdgeID;
list< const TVDEdge* >::reverse_iterator e;
for ( size_t i = 0; i < inSegments.size(); ++i )
{
InSegment& inSeg = inSegments[i];
if ( inSeg._geomEdgeInd != prevGeomEdge )
{
if ( !bndSegs.empty() )
bndSegsPerEdge[ prevGeomEdge ].swap( bndSegs );
prevGeomEdge = inSeg._geomEdgeInd;
}
// segments around 1st concave point
size_t ip0 = inSeg._p0->index( inPoints );
if ( inPntChecked[ ip0 ] )
for ( e = inSeg._p0->_edges.rbegin(); e != inSeg._p0->_edges.rend(); ++e )
bndSegs.push_back( BndSeg( &inSeg, *e, inSeg._p0->_param ));
inPntChecked[ ip0 ] = false;
// segments of InSegment's
const size_t nbMaEdges = inSeg._edges.size();
switch ( nbMaEdges ) {
case 0: // "around" circle center
bndSegs.push_back( BndSeg( &inSeg, 0, inSeg._p1->_param )); break;
case 1:
bndSegs.push_back( BndSeg( &inSeg, inSeg._edges.back(), inSeg._p1->_param )); break;
default:
gp_XY inSegDir( inSeg._p1->_a - inSeg._p0->_a,
inSeg._p1->_b - inSeg._p0->_b );
const double inSegLen2 = inSegDir.SquareModulus();
e = inSeg._edges.rbegin();
for ( size_t iE = 1; iE < nbMaEdges; ++e, ++iE )
{
gp_XY toMA( (*e)->vertex0()->x() - inSeg._p0->_a,
(*e)->vertex0()->y() - inSeg._p0->_b );
double r = toMA * inSegDir / inSegLen2;
double u = r * inSeg._p1->_param + ( 1. - r ) * inSeg._p0->_param;
bndSegs.push_back( BndSeg( &inSeg, *e, u ));
}
bndSegs.push_back( BndSeg( &inSeg, *e, inSeg._p1->_param ));
}
// segments around 2nd concave point
size_t ip1 = inSeg._p1->index( inPoints );
if ( inPntChecked[ ip1 ] )
for ( e = inSeg._p1->_edges.rbegin(); e != inSeg._p1->_edges.rend(); ++e )
bndSegs.push_back( BndSeg( &inSeg, *e, inSeg._p1->_param ));
inPntChecked[ ip1 ] = false;
}
if ( !bndSegs.empty() )
bndSegsPerEdge[ prevGeomEdge ].swap( bndSegs );
}
// prepare to MA branch search
for ( size_t iE = 0; iE < bndSegsPerEdge.size(); ++iE )
{
// 1) make TVDEdge's know it's BndSeg to enable passing branchID to
// an opposite BndSeg in BndSeg::setBranch(); geom EDGE ID is known from TVDCell
// 2) connect bndSegs via BndSeg::_prev
vector< BndSeg >& bndSegs = bndSegsPerEdge[ iE ];
if ( bndSegs.empty() ) continue;
for ( size_t i = 1; i < bndSegs.size(); ++i )
{
bndSegs[i]._prev = & bndSegs[i-1];
bndSegs[i].setIndexToEdge( i );
}
// look for the last bndSeg of previous EDGE to set bndSegs[0]._prev
const InPoint& p0 = bndSegs[0]._inSeg->point0();
for ( size_t iE2 = 0; iE2 < bndSegsPerEdge.size(); ++iE2 )
if ( p0 == bndSegsPerEdge[ iE2 ].back()._inSeg->point1() )
{
bndSegs[0]._prev = & bndSegsPerEdge[ iE2 ].back();
break;
}
bndSegs[0].setIndexToEdge( 0 );
}
//bndSegsToMesh( bndSegsPerEdge ); // debug: visually check found MA edges
// Find TVDEdge's of Branches and associate them with bndSegs
vector< vector<const TVDEdge*> > branchEdges;
branchEdges.reserve( boundary.nbEdges() * 4 );
map< const TVDVertex*, SMESH_MAT2d::BranchEndType > endType;
int branchID = 1; // we code orientation as branchID sign
branchEdges.resize( branchID );
for ( size_t iE = 0; iE < bndSegsPerEdge.size(); ++iE )
{
vector< BndSeg >& bndSegs = bndSegsPerEdge[ iE ];
for ( size_t i = 0; i < bndSegs.size(); ++i )
{
if ( bndSegs[i].branchID() )
{
if ( bndSegs[i]._prev &&
bndSegs[i]._branchID == -bndSegs[i]._prev->_branchID &&
bndSegs[i]._edge )
{
SMESH_MAT2d::BranchEndType type =
( bndSegs[i]._inSeg->isConnected( bndSegs[i]._edge ) ?
SMESH_MAT2d::BE_ON_VERTEX :
SMESH_MAT2d::BE_END );
endType.insert( make_pair( bndSegs[i]._edge->vertex1(), type ));
}
continue;
}
if ( !bndSegs[i]._prev &&
!bndSegs[i].hasOppositeEdge() )
continue;
if ( !bndSegs[i]._prev ||
!bndSegs[i]._prev->isSameBranch( bndSegs[i] ))
{
branchEdges.resize(( branchID = branchEdges.size()) + 1 );
if ( bndSegs[i]._edge && bndSegs[i]._prev )
endType.insert( make_pair( bndSegs[i]._edge->vertex1(), SMESH_MAT2d::BE_BRANCH_POINT ));
}
else if ( bndSegs[i]._prev->_branchID )
{
branchID = bndSegs[i]._prev->_branchID; // with sign
}
else if ( bndSegs[i]._edge ) // 1st bndSeg of a WIRE
{
branchEdges.resize(( branchID = branchEdges.size()) + 1 );
if ( bndSegs[i]._inSeg->isConnected( bndSegs[i]._edge ))
{
if ( bndSegs[i]._inSeg->point0() == bndSegs[i]._edge->vertex1() )
endType.insert( make_pair( bndSegs[i]._edge->vertex1(), SMESH_MAT2d::BE_ON_VERTEX ));
else
endType.insert( make_pair( bndSegs[i]._edge->vertex0(), SMESH_MAT2d::BE_ON_VERTEX ));
}
}
bndSegs[i].setBranch( branchID, bndSegsPerEdge ); // set to i-th and to the opposite bndSeg
if ( bndSegs[i].hasOppositeEdge() )
branchEdges[ bndSegs[i].branchID() ].push_back( bndSegs[i]._edge );
}
}
// join the 1st and the last branch edges if it is the same branch
// if ( bndSegs.back().branchID() != bndSegs.front().branchID() &&
// bndSegs.back().isSameBranch( bndSegs.front() ))
// {
// vector<const TVDEdge*> & br1 = branchEdges[ bndSegs.front().branchID() ];
// vector<const TVDEdge*> & br2 = branchEdges[ bndSegs.back().branchID() ];
// br1.insert( br1.begin(), br2.begin(), br2.end() );
// br2.clear();
// }
// remove branches ending at BE_ON_VERTEX
vector<bool> isBranchRemoved( branchEdges.size(), false );
if ( ignoreCorners && branchEdges.size() > 2 && !branchEdges[2].empty() )
{
// find branches to remove
map< const TVDVertex*, SMESH_MAT2d::BranchEndType >::iterator v2et;
for ( size_t iB = 1; iB < branchEdges.size(); ++iB )
{
if ( branchEdges[iB].empty() )
continue;
const TVDVertex* v0 = branchEdges[iB][0]->vertex1();
const TVDVertex* v1 = branchEdges[iB].back()->vertex0();
v2et = endType.find( v0 );
if ( v2et != endType.end() && v2et->second == SMESH_MAT2d::BE_ON_VERTEX )
isBranchRemoved[ iB ] = true;
v2et = endType.find( v1 );
if ( v2et != endType.end() && v2et->second == SMESH_MAT2d::BE_ON_VERTEX )
isBranchRemoved[ iB ] = true;
}
// try to join not removed branches into one
for ( size_t iB = 1; iB < branchEdges.size(); ++iB )
{
if ( branchEdges[iB].empty() || isBranchRemoved[iB] )
continue;
const TVDVertex* v0 = branchEdges[iB][0]->vertex1();
const TVDVertex* v1 = branchEdges[iB].back()->vertex0();
v2et = endType.find( v0 );
if ( v2et == endType.end() || v2et->second != SMESH_MAT2d::BE_BRANCH_POINT )
v0 = 0;
v2et = endType.find( v1 );
if ( v2et == endType.end() || v2et->second != SMESH_MAT2d::BE_BRANCH_POINT )
v1 = 0;
if ( !v0 && !v1 )
continue;
for ( int isV0 = 0; isV0 < 2; ++isV0 )
{
const TVDVertex* v = isV0 ? v0 : v1;
size_t iBrToJoin = 0;
for ( size_t iB2 = 1; iB2 < branchEdges.size(); ++iB2 )
{
if ( branchEdges[iB2].empty() || isBranchRemoved[iB2] || iB == iB2 )
continue;
const TVDVertex* v02 = branchEdges[iB2][0]->vertex1();
const TVDVertex* v12 = branchEdges[iB2].back()->vertex0();
if ( v == v02 || v == v12 )
{
if ( iBrToJoin > 0 )
{
iBrToJoin = 0;
break; // more than 2 not removed branches meat at a TVDVertex
}
iBrToJoin = iB2;
}
}
if ( iBrToJoin > 0 )
{
vector<const TVDEdge*>& branch = branchEdges[ iBrToJoin ];
const TVDVertex* v02 = branch[0]->vertex1();
const TVDVertex* v12 = branch.back()->vertex0();
updateJoinedBranch( branch, iB, bndSegsPerEdge, /*reverse=*/(v0 == v02 || v1 == v12 ));
if ( v0 == v02 || v0 == v12 )
branchEdges[iB].insert( branchEdges[iB].begin(), branch.begin(), branch.end() );
else
branchEdges[iB].insert( branchEdges[iB].end(), branch.begin(), branch.end() );
branch.clear();
}
}
} // loop on branchEdges
} // if ( ignoreCorners )
// associate branchIDs and the input branch vector (arg)
vector< SMESH_MAT2d::Branch* > branchByID( branchEdges.size(), 0 );
int nbBranches = 0;
for ( size_t i = 0; i < branchEdges.size(); ++i )
{
nbBranches += ( !branchEdges[i].empty() );
}
branch.resize( nbBranches );
size_t iBr = 0;
for ( size_t brID = 1; brID < branchEdges.size(); ++brID ) // 1st - not removed
{
if ( !branchEdges[ brID ].empty() && !isBranchRemoved[ brID ])
branchByID[ brID ] = & branch[ iBr++ ];
}
for ( size_t brID = 1; brID < branchEdges.size(); ++brID ) // then - removed
{
if ( !branchEdges[ brID ].empty() && isBranchRemoved[ brID ])
branchByID[ brID ] = & branch[ iBr++ ];
}
// Fill in BndPoints of each EDGE of the boundary
//size_t iSeg = 0;
int edgeInd = -1, dInd = 0;
for ( size_t iE = 0; iE < bndSegsPerEdge.size(); ++iE )
{
vector< BndSeg >& bndSegs = bndSegsPerEdge[ iE ];
SMESH_MAT2d::BndPoints & bndPoints = boundary.getPoints( iE );
// make TVDEdge know an index of bndSegs within BndPoints
for ( size_t i = 0; i < bndSegs.size(); ++i )
if ( bndSegs[i]._edge )
SMESH_MAT2d::Branch::setBndSegment( i, bndSegs[i]._edge );
// parameters on EDGE
bndPoints._params.reserve( bndSegs.size() + 1 );
bndPoints._params.push_back( bndSegs[ 0 ]._inSeg->_p0->_param );
for ( size_t i = 0; i < bndSegs.size(); ++i )
bndPoints._params.push_back( bndSegs[ i ]._uLast );
// MA edges
bndPoints._maEdges.reserve( bndSegs.size() );
for ( size_t i = 0; i < bndSegs.size(); ++i )
{
const size_t brID = bndSegs[ i ].branchID();
const SMESH_MAT2d::Branch* br = branchByID[ brID ];
if ( bndSegs[ i ]._edge && !branchEdges[ brID ].empty() )
{
edgeInd += dInd;
if (( edgeInd < 0 ||
edgeInd >= (int) branchEdges[ brID ].size() ) ||
( branchEdges[ brID ][ edgeInd ] != bndSegs[ i ]._edge &&
branchEdges[ brID ][ edgeInd ]->twin() != bndSegs[ i ]._edge ))
{
if ( bndSegs[ i ]._branchID < 0 )
{
dInd = -1;
for ( edgeInd = branchEdges[ brID ].size() - 1; edgeInd > 0; --edgeInd )
if ( branchEdges[ brID ][ edgeInd ]->twin() == bndSegs[ i ]._edge )
break;
}
else // bndSegs[ i ]._branchID > 0
{
dInd = +1;
for ( edgeInd = 0; edgeInd < branchEdges[ brID ].size(); ++edgeInd )
if ( branchEdges[ brID ][ edgeInd ] == bndSegs[ i ]._edge )
break;
}
}
}
else
{
// no MA edge, bndSeg corresponds to an end point of a branch
if ( bndPoints._maEdges.empty() )
edgeInd = 0;
else
edgeInd = branchEdges[ brID ].size();
2015-08-14 15:31:06 +05:00
dInd = bndSegs[ i ]._branchID > 0 ? +1 : -1;
}
bndPoints._maEdges.push_back( make_pair( br, ( 1 + edgeInd ) * dInd ));
} // loop on bndSegs of an EDGE
} // loop on all bndSegs to construct Boundary
// Initialize branches
// find a not removed branch
size_t iBrNorRemoved = 0;
for ( size_t brID = 1; brID < branchEdges.size(); ++brID )
if ( !branchEdges[brID].empty() && !isBranchRemoved[brID] )
{
iBrNorRemoved = brID;
break;
}
// fill the branches with MA edges
for ( size_t brID = 1; brID < branchEdges.size(); ++brID )
if ( !branchEdges[brID].empty() )
{
branchByID[ brID ]->init( branchEdges[brID], & boundary, endType );
}
// mark removed branches
for ( size_t brID = 1; brID < branchEdges.size(); ++brID )
if ( isBranchRemoved[brID] && iBrNorRemoved > 0 )
{
SMESH_MAT2d::Branch* branch = branchByID[ brID ];
SMESH_MAT2d::Branch* mainBranch = branchByID[ iBrNorRemoved ];
bool is1stBrPnt = ( branch->getEnd(0)->_type == SMESH_MAT2d::BE_BRANCH_POINT );
const TVDVertex* branchVextex =
is1stBrPnt ? branch->getEnd(0)->_vertex : branch->getEnd(1)->_vertex;
SMESH_MAT2d::BranchPoint bp = mainBranch->getPoint( branchVextex );
branch->setRemoved( bp );
}
// set branches to branch ends
for ( size_t i = 0; i < branch.size(); ++i )
if ( !branch[i].isRemoved() )
branch[i].setBranchesToEnds( branch );
// fill branchPnt arg
map< const TVDVertex*, const SMESH_MAT2d::BranchEnd* > v2end;
for ( size_t i = 0; i < branch.size(); ++i )
{
if ( branch[i].getEnd(0)->_branches.size() > 2 )
v2end.insert( make_pair( branch[i].getEnd(0)->_vertex, branch[i].getEnd(0) ));
if ( branch[i].getEnd(1)->_branches.size() > 2 )
v2end.insert( make_pair( branch[i].getEnd(1)->_vertex, branch[i].getEnd(1) ));
}
branchPnt.resize( v2end.size() );
map< const TVDVertex*, const SMESH_MAT2d::BranchEnd* >::iterator v2e = v2end.begin();
for ( size_t i = 0; v2e != v2end.end(); ++v2e, ++i )
branchPnt[ i ] = v2e->second;
} // makeMA()
} // namespace
//================================================================================
/*!
* \brief MedialAxis constructor
* \param [in] face - a face to create MA for
* \param [in] edges - edges of the face (possibly not all) on the order they
* encounter in the face boundary.
* \param [in] minSegLen - minimal length of a mesh segment used to discretize
* the edges. It is used to define precision of MA approximation
*/
//================================================================================
SMESH_MAT2d::MedialAxis::MedialAxis(const TopoDS_Face& face,
const std::vector< TopoDS_Edge >& edges,
const double minSegLen,
const bool ignoreCorners):
_face( face ), _boundary( edges.size() )
{
// input to construct_voronoi()
vector< InPoint > inPoints;
vector< InSegment> inSegments;
if ( !makeInputData( face, edges, minSegLen, inPoints, inSegments, _scale ))
return;
inSegmentsToFile( inSegments );
// build voronoi diagram
construct_voronoi( inSegments.begin(), inSegments.end(), &_vd );
// make MA data
makeMA( _vd, ignoreCorners, inPoints, inSegments, _branch, _branchPnt, _boundary );
// count valid branches
_nbBranches = _branch.size();
for ( size_t i = 0; i < _branch.size(); ++i )
if ( _branch[i].isRemoved() )
--_nbBranches;
}
//================================================================================
/*!
* \brief Returns the i-th branch
*/
//================================================================================
const SMESH_MAT2d::Branch* SMESH_MAT2d::MedialAxis::getBranch(size_t i) const
{
return i < _nbBranches ? &_branch[i] : 0;
}
//================================================================================
/*!
* \brief Return UVs of ends of MA edges of a branch
*/
//================================================================================
void SMESH_MAT2d::MedialAxis::getPoints( const Branch* branch,
std::vector< gp_XY >& points) const
{
branch->getPoints( points, _scale );
}
//================================================================================
/*!
* \brief Returns a BranchPoint corresponding to a given point on a geom EDGE
2015-08-14 15:31:06 +05:00
* \param [in] iEdge - index of geom EDGE within a vector passed at MA construction
* \param [in] u - parameter of the point on EDGE curve
* \param [out] p - the found BranchPoint
* \return bool - is OK
*/
//================================================================================
bool SMESH_MAT2d::Boundary::getBranchPoint( const std::size_t iEdge,
double u,
BranchPoint& p ) const
{
if ( iEdge >= _pointsPerEdge.size() || _pointsPerEdge[iEdge]._params.empty() )
return false;
const BndPoints& points = _pointsPerEdge[ iEdge ];
const bool edgeReverse = ( points._params[0] > points._params.back() );
if ( u < ( edgeReverse ? points._params.back() : points._params[0] ))
u = edgeReverse ? points._params.back() : points._params[0];
else if ( u > ( edgeReverse ? points._params[0] : points._params.back()) )
u = edgeReverse ? points._params[0] : points._params.back();
double r = ( u - points._params[0] ) / ( points._params.back() - points._params[0] );
int i = int( r * double( points._maEdges.size()-1 ));
if ( edgeReverse )
{
while ( points._params[i ] < u ) --i;
while ( points._params[i+1] > u ) ++i;
}
else
{
while ( points._params[i ] > u ) --i;
while ( points._params[i+1] < u ) ++i;
}
double edgeParam = ( u - points._params[i] ) / ( points._params[i+1] - points._params[i] );
if ( !points._maEdges[ i ].second ) // no branch at the EDGE end, look for a closest branch
{
if ( i < points._maEdges.size() / 2 ) // near 1st point
{
while ( i < points._maEdges.size()-1 && !points._maEdges[ i ].second )
++i;
edgeParam = edgeReverse;
}
else // near last point
{
while ( i > 0 && !points._maEdges[ i ].second )
--i;
edgeParam = !edgeReverse;
}
}
const std::pair< const Branch*, int >& maE = points._maEdges[ i ];
bool maReverse = ( maE.second < 0 );
2015-08-14 15:31:06 +05:00
p._branch = maE.first;
p._iEdge = ( maReverse ? -maE.second : maE.second ) - 1; // countered from 1 to store sign
p._edgeParam = ( maE.first && maReverse ) ? ( 1. - edgeParam ) : edgeParam;
return true;
}
//================================================================================
/*!
* \brief Returns a BranchPoint corresponding to a given BoundaryPoint on a geom EDGE
* \param [in] bp - the BoundaryPoint
* \param [out] p - the found BranchPoint
* \return bool - is OK
*/
//================================================================================
bool SMESH_MAT2d::Boundary::getBranchPoint( const BoundaryPoint& bp,
BranchPoint& p ) const
{
return getBranchPoint( bp._edgeIndex, bp._param, p );
}
//================================================================================
/*!
* \brief Check if a given boundary segment is a null-length segment on a concave
* boundary corner.
* \param [in] iEdge - index of a geom EDGE
* \param [in] iSeg - index of a boundary segment
* \return bool - true if the segment is on concave corner
*/
//================================================================================
bool SMESH_MAT2d::Boundary::isConcaveSegment( std::size_t iEdge, std::size_t iSeg ) const
{
if ( iEdge >= _pointsPerEdge.size() || _pointsPerEdge[iEdge]._params.empty() )
return false;
const BndPoints& points = _pointsPerEdge[ iEdge ];
if ( points._params.size() <= iSeg+1 )
return false;
return Abs( points._params[ iSeg ] - points._params[ iSeg+1 ]) < 1e-20;
}
//================================================================================
/*!
* \brief Moves (changes _param) a given BoundaryPoint to a closest EDGE end
*/
//================================================================================
bool SMESH_MAT2d::Boundary::moveToClosestEdgeEnd( BoundaryPoint& bp ) const
{
if ( bp._edgeIndex >= _pointsPerEdge.size() )
return false;
const BndPoints& points = _pointsPerEdge[ bp._edgeIndex ];
if ( Abs( bp._param - points._params[0]) < Abs( points._params.back() - bp._param ))
bp._param = points._params[0];
else
bp._param = points._params.back();
return true;
}
//================================================================================
/*!
* \brief Creates a 3d curve corresponding to a Branch
* \param [in] branch - the Branch
* \return Adaptor3d_Curve* - the new curve the caller is to delete
*/
//================================================================================
Adaptor3d_Curve* SMESH_MAT2d::MedialAxis::make3DCurve(const Branch& branch) const
{
Handle(Geom_Surface) surface = BRep_Tool::Surface( _face );
if ( surface.IsNull() )
return 0;
vector< gp_XY > uv;
branch.getPoints( uv, _scale );
if ( uv.size() < 2 )
return 0;
vector< TopoDS_Vertex > vertex( uv.size() );
for ( size_t i = 0; i < uv.size(); ++i )
vertex[i] = BRepBuilderAPI_MakeVertex( surface->Value( uv[i].X(), uv[i].Y() ));
TopoDS_Wire aWire;
BRep_Builder aBuilder;
aBuilder.MakeWire(aWire);
for ( size_t i = 1; i < vertex.size(); ++i )
{
TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( vertex[i-1], vertex[i] );
aBuilder.Add( aWire, edge );
}
// if ( myEdge.size() == 2 && FirstVertex().IsSame( LastVertex() ))
// aWire.Closed(true); // issue 0021141
return new BRepAdaptor_CompCurve( aWire );
}
//================================================================================
/*!
* \brief Copy points of an EDGE
*/
//================================================================================
void SMESH_MAT2d::Branch::init( vector<const TVDEdge*>& maEdges,
const Boundary* boundary,
map< const TVDVertex*, BranchEndType > endType )
{
if ( maEdges.empty() ) return;
_boundary = boundary;
_maEdges.swap( maEdges );
_params.reserve( _maEdges.size() + 1 );
_params.push_back( 0. );
for ( size_t i = 0; i < _maEdges.size(); ++i )
_params.push_back( _params.back() + length( _maEdges[i] ));
for ( size_t i = 1; i < _params.size(); ++i )
_params[i] /= _params.back();
_endPoint1._vertex = _maEdges.front()->vertex1();
_endPoint2._vertex = _maEdges.back ()->vertex0();
if ( endType.count( _endPoint1._vertex ))
_endPoint1._type = endType[ _endPoint1._vertex ];
if ( endType.count( _endPoint2._vertex ))
_endPoint2._type = endType[ _endPoint2._vertex ];
}
//================================================================================
/*!
* \brief fills BranchEnd::_branches of its ends
*/
//================================================================================
void SMESH_MAT2d::Branch::setBranchesToEnds( const vector< Branch >& branches )
{
for ( size_t i = 0; i < branches.size(); ++i )
{
if ( this->_endPoint1._vertex == branches[i]._endPoint1._vertex ||
this->_endPoint1._vertex == branches[i]._endPoint2._vertex )
this->_endPoint1._branches.push_back( &branches[i] );
if ( this->_endPoint2._vertex == branches[i]._endPoint1._vertex ||
this->_endPoint2._vertex == branches[i]._endPoint2._vertex )
this->_endPoint2._branches.push_back( &branches[i] );
}
}
//================================================================================
/*!
* \brief returns a BranchPoint corresponding to a TVDVertex
*/
//================================================================================
SMESH_MAT2d::BranchPoint SMESH_MAT2d::Branch::getPoint( const TVDVertex* vertex ) const
{
BranchPoint p;
p._branch = this;
p._iEdge = 0;
if ( vertex == _maEdges[0]->vertex1() )
{
p._edgeParam = 0;
}
else
{
for ( ; p._iEdge < _maEdges.size(); ++p._iEdge )
if ( vertex == _maEdges[ p._iEdge ]->vertex0() )
{
p._edgeParam = _params[ p._iEdge ];
break;
}
}
return p;
}
//================================================================================
/*!
* \brief Sets a proxy point for a removed branch
* \param [in] proxyPoint - a point of another branch to which all points of this
* branch are mapped
*/
//================================================================================
void SMESH_MAT2d::Branch::setRemoved( const BranchPoint& proxyPoint )
{
_proxyPoint = proxyPoint;
}
//================================================================================
/*!
* \brief Returns points on two EDGEs, equidistant from a given point of this Branch
* \param [in] param - [0;1] normalized param on the Branch
* \param [out] bp1 - BoundaryPoint on EDGE with a lower index
* \param [out] bp2 - BoundaryPoint on EDGE with a higher index
* \return bool - true if the BoundaryPoint's found
*/
//================================================================================
bool SMESH_MAT2d::Branch::getBoundaryPoints(double param,
BoundaryPoint& bp1,
BoundaryPoint& bp2 ) const
{
if ( param < _params[0] || param > _params.back() )
return false;
// look for an index of a MA edge by param
double ip = param * _params.size();
size_t i = size_t( Min( int( _maEdges.size()-1), int( ip )));
while ( param < _params[i ] ) --i;
while ( param > _params[i+1] ) ++i;
double r = ( param - _params[i] ) / ( _params[i+1] - _params[i] );
return getBoundaryPoints( i, r, bp1, bp2 );
}
//================================================================================
/*!
* \brief Returns points on two EDGEs, equidistant from a given point of this Branch
* \param [in] iMAEdge - index of a MA edge within this Branch
* \param [in] maEdgeParam - [0;1] normalized param on the \a iMAEdge
* \param [out] bp1 - BoundaryPoint on EDGE with a lower index
* \param [out] bp2 - BoundaryPoint on EDGE with a higher index
* \return bool - true if the BoundaryPoint's found
*/
//================================================================================
bool SMESH_MAT2d::Branch::getBoundaryPoints(std::size_t iMAEdge,
double maEdgeParam,
BoundaryPoint& bp1,
BoundaryPoint& bp2 ) const
{
if ( isRemoved() )
return _proxyPoint._branch->getBoundaryPoints( _proxyPoint, bp1, bp2 );
if ( iMAEdge > _maEdges.size() )
return false;
if ( iMAEdge == _maEdges.size() )
iMAEdge = _maEdges.size() - 1;
size_t iGeom1 = getGeomEdge( _maEdges[ iMAEdge ] );
size_t iGeom2 = getGeomEdge( _maEdges[ iMAEdge ]->twin() );
size_t iSeg1 = getBndSegment( _maEdges[ iMAEdge ] );
size_t iSeg2 = getBndSegment( _maEdges[ iMAEdge ]->twin() );
return ( _boundary->getPoint( iGeom1, iSeg1, maEdgeParam, bp1 ) &&
_boundary->getPoint( iGeom2, iSeg2, maEdgeParam, bp2 ));
}
//================================================================================
/*!
* \brief Returns points on two EDGEs, equidistant from a given point of this Branch
*/
//================================================================================
bool SMESH_MAT2d::Branch::getBoundaryPoints(const BranchPoint& p,
BoundaryPoint& bp1,
BoundaryPoint& bp2 ) const
{
return ( p._branch ? p._branch : this )->getBoundaryPoints( p._iEdge, p._edgeParam, bp1, bp2 );
}
//================================================================================
/*!
* \brief Return a parameter of a BranchPoint normalized within this Branch
*/
//================================================================================
bool SMESH_MAT2d::Branch::getParameter(const BranchPoint & p, double & u ) const
{
2015-08-14 15:31:06 +05:00
if ( this != p._branch && p._branch )
return p._branch->getParameter( p, u );
if ( isRemoved() )
return _proxyPoint._branch->getParameter( _proxyPoint, u );
if ( p._iEdge > _params.size()-1 )
return false;
if ( p._iEdge == _params.size()-1 )
return u = 1.;
u = ( _params[ p._iEdge ] * ( 1 - p._edgeParam ) +
_params[ p._iEdge+1 ] * p._edgeParam );
return true;
}
//================================================================================
/*!
* \brief Check type of both ends
*/
//================================================================================
bool SMESH_MAT2d::Branch::hasEndOfType(BranchEndType type) const
{
return ( _endPoint1._type == type || _endPoint2._type == type );
}
//================================================================================
/*!
* \brief Returns MA points
* \param [out] points - the 2d points
* \param [in] scale - the scale that was used to scale the 2d space of MA
*/
//================================================================================
void SMESH_MAT2d::Branch::getPoints( std::vector< gp_XY >& points,
const double scale[2]) const
{
points.resize( _maEdges.size() + 1 );
points[0].SetCoord( _maEdges[0]->vertex1()->x() / scale[0], // CCW order! -> vertex1 not vertex0
_maEdges[0]->vertex1()->y() / scale[1] );
for ( size_t i = 0; i < _maEdges.size(); ++i )
points[i+1].SetCoord( _maEdges[i]->vertex0()->x() / scale[0],
_maEdges[i]->vertex0()->y() / scale[1] );
}
//================================================================================
/*!
* \brief Return indices of EDGEs equidistant from this branch
*/
//================================================================================
void SMESH_MAT2d::Branch::getGeomEdges( std::vector< std::size_t >& edgeIDs1,
std::vector< std::size_t >& edgeIDs2 ) const
{
edgeIDs1.push_back( getGeomEdge( _maEdges[0] ));
edgeIDs2.push_back( getGeomEdge( _maEdges[0]->twin() ));
for ( size_t i = 1; i < _maEdges.size(); ++i )
{
size_t ie1 = getGeomEdge( _maEdges[i] );
size_t ie2 = getGeomEdge( _maEdges[i]->twin() );
if ( edgeIDs1.back() != ie1 ) edgeIDs1.push_back( ie1 );
if ( edgeIDs2.back() != ie2 ) edgeIDs2.push_back( ie2 );
}
}
//================================================================================
/*!
* \brief Looks for a BranchPoint position around a concave VERTEX
*/
//================================================================================
bool SMESH_MAT2d::Branch::addDivPntForConcaVertex( std::vector< std::size_t >& edgeIDs1,
std::vector< std::size_t >& edgeIDs2,
std::vector< BranchPoint >& divPoints,
const vector<const TVDEdge*>& maEdges,
const vector<const TVDEdge*>& maEdgesTwin,
int & i) const
{
// if there is a concave vertex between EDGEs
// then position of a dividing BranchPoint is undefined, it is somewhere
// on an arc-shaped part of the Branch around the concave vertex.
// Chose this position by a VERTEX of the opposite EDGE, or put it in the middle
// of the arc if there is no opposite VERTEX.
// All null-length segments around a VERTEX belong to one of EDGEs.
BranchPoint divisionPnt;
divisionPnt._branch = this;
BranchIterator iCur( maEdges, i );
size_t ie1 = getGeomEdge( maEdges [i] );
size_t ie2 = getGeomEdge( maEdgesTwin[i] );
size_t iSeg1 = getBndSegment( iCur.edgePrev() );
size_t iSeg2 = getBndSegment( iCur.edge() );
bool isConcaPrev = _boundary->isConcaveSegment( edgeIDs1.back(), iSeg1 );
bool isConcaNext = _boundary->isConcaveSegment( ie1, iSeg2 );
if ( !isConcaNext && !isConcaPrev )
return false;
bool isConcaveV = false;
const TVDEdge* maE;
BranchIterator iPrev( maEdges, i ), iNext( maEdges, i );
--iPrev;
if ( isConcaNext ) // all null-length segments follow
{
// look for a VERTEX of the opposite EDGE
// iNext - next after all null-length segments
while ( maE = ++iNext )
{
iSeg2 = getBndSegment( maE );
if ( !_boundary->isConcaveSegment( ie1, iSeg2 ))
break;
}
bool vertexFound = false;
for ( ++iCur; iCur < iNext; ++iCur )
{
ie2 = getGeomEdge( maEdgesTwin[ iCur.indexMod() ] );
if ( ie2 != edgeIDs2.back() )
{
// opposite VERTEX found
divisionPnt._iEdge = iCur.indexMod();
divisionPnt._edgeParam = 0;
divPoints.push_back( divisionPnt );
edgeIDs1.push_back( ie1 );
edgeIDs2.push_back( ie2 );
vertexFound = true;
}
}
if ( vertexFound )
{
--iNext;
iPrev = iNext; // not to add a BP in the moddle
i = iNext.indexMod();
isConcaveV = true;
}
}
else if ( isConcaPrev )
{
// all null-length segments passed, find their beginning
while ( maE = iPrev.edgePrev() )
{
iSeg1 = getBndSegment( maE );
if ( _boundary->isConcaveSegment( edgeIDs1.back(), iSeg1 ))
--iPrev;
else
break;
}
}
if ( iPrev.index() < i-1 || iNext.index() > i )
{
// no VERTEX on the opposite EDGE, put the Branch Point in the middle
divisionPnt._iEdge = iPrev.indexMod();
++iPrev;
double par1 = _params[ iPrev.indexMod() ], par2 = _params[ iNext.indexMod() ];
double midPar = 0.5 * ( par1 + par2 );
for ( ; _params[ iPrev.indexMod() ] < midPar; ++iPrev )
divisionPnt._iEdge = iPrev.indexMod();
divisionPnt._edgeParam =
( _params[ iPrev.indexMod() ] - midPar ) /
( _params[ iPrev.indexMod() ] - _params[ divisionPnt._iEdge ] );
divPoints.push_back( divisionPnt );
isConcaveV = true;
}
return isConcaveV;
}
//================================================================================
/*!
* \brief Return indices of opposite parts of EDGEs equidistant from this branch
* \param [out] edgeIDs1 - EDGE index opposite to the edgeIDs2[i]-th EDGE
* \param [out] edgeIDs2 - EDGE index opposite to the edgeIDs1[i]-th EDGE
* \param [out] divPoints - BranchPoint's located between two successive unique
* pairs of EDGE indices. A \a divPoints[i] can separate e.g. two following pairs
* of EDGE indices < 0, 2 > and < 0, 1 >. Number of \a divPoints is one less
* than number of \a edgeIDs
*/
//================================================================================
void SMESH_MAT2d::Branch::getOppositeGeomEdges( std::vector< std::size_t >& edgeIDs1,
std::vector< std::size_t >& edgeIDs2,
std::vector< BranchPoint >& divPoints) const
{
edgeIDs1.clear();
edgeIDs2.clear();
divPoints.clear();
std::vector<const TVDEdge*> twins( _maEdges.size() );
for ( size_t i = 0; i < _maEdges.size(); ++i )
twins[i] = _maEdges[i]->twin();
BranchIterator maIter ( _maEdges, 0 );
BranchIterator twIter ( twins, 0 );
// size_t lastConcaE1 = _boundary.nbEdges();
// size_t lastConcaE2 = _boundary.nbEdges();
// if ( maIter._closed ) // closed branch
// {
// edgeIDs1.push_back( getGeomEdge( _maEdges.back() ));
// edgeIDs2.push_back( getGeomEdge( _maEdges.back()->twin() ));
// }
// else
{
edgeIDs1.push_back( getGeomEdge( maIter.edge() ));
edgeIDs2.push_back( getGeomEdge( twIter.edge() ));
}
BranchPoint divisionPnt;
divisionPnt._branch = this;
for ( ++maIter, ++twIter; maIter.index() < _maEdges.size(); ++maIter, ++twIter )
{
size_t ie1 = getGeomEdge( maIter.edge() );
size_t ie2 = getGeomEdge( twIter.edge() );
bool otherE1 = ( edgeIDs1.back() != ie1 );
bool otherE2 = ( edgeIDs2.back() != ie2 );
if ( !otherE1 && !otherE2 && maIter._closed )
{
int iSegPrev1 = getBndSegment( maIter.edgePrev() );
int iSegCur1 = getBndSegment( maIter.edge() );
otherE1 = Abs( iSegPrev1 - iSegCur1 ) != 1;
int iSegPrev2 = getBndSegment( twIter.edgePrev() );
int iSegCur2 = getBndSegment( twIter.edge() );
otherE2 = Abs( iSegPrev2 - iSegCur2 ) != 1;
}
if ( otherE1 || otherE2 )
{
bool isConcaveV = false;
if ( otherE1 && !otherE2 )
{
isConcaveV = addDivPntForConcaVertex( edgeIDs1, edgeIDs2, divPoints,
_maEdges, twins, maIter._i );
}
if ( !otherE1 && otherE2 )
{
isConcaveV = addDivPntForConcaVertex( edgeIDs2, edgeIDs1, divPoints,
twins, _maEdges, maIter._i );
}
if ( isConcaveV )
{
ie1 = getGeomEdge( maIter.edge() );
ie2 = getGeomEdge( twIter.edge() );
}
if ( !isConcaveV || otherE1 || otherE2 )
{
edgeIDs1.push_back( ie1 );
edgeIDs2.push_back( ie2 );
}
if ( divPoints.size() < edgeIDs1.size() - 1 )
{
divisionPnt._iEdge = maIter.index();
divisionPnt._edgeParam = 0;
divPoints.push_back( divisionPnt );
}
} // if ( edgeIDs1.back() != ie1 || edgeIDs2.back() != ie2 )
} // loop on _maEdges
}
//================================================================================
/*!
* \brief Store data of boundary segments in TVDEdge
*/
//================================================================================
void SMESH_MAT2d::Branch::setGeomEdge( std::size_t geomIndex, const TVDEdge* maEdge )
{
if ( maEdge ) maEdge->cell()->color( geomIndex );
}
std::size_t SMESH_MAT2d::Branch::getGeomEdge( const TVDEdge* maEdge )
{
return maEdge ? maEdge->cell()->color() : std::string::npos;
}
void SMESH_MAT2d::Branch::setBndSegment( std::size_t segIndex, const TVDEdge* maEdge )
{
if ( maEdge ) maEdge->color( segIndex );
}
std::size_t SMESH_MAT2d::Branch::getBndSegment( const TVDEdge* maEdge )
{
return maEdge ? maEdge->color() : std::string::npos;
}
//================================================================================
/*!
* \brief Returns a boundary point on a given EDGE
* \param [in] iEdge - index of the EDGE within MedialAxis
* \param [in] iSeg - index of a boundary segment within this Branch
* \param [in] u - [0;1] normalized param within \a iSeg-th segment
* \param [out] bp - the found BoundaryPoint
* \return bool - true if the BoundaryPoint is found
*/
//================================================================================
bool SMESH_MAT2d::Boundary::getPoint( std::size_t iEdge,
std::size_t iSeg,
double u,
BoundaryPoint& bp ) const
{
if ( iEdge >= _pointsPerEdge.size() )
return false;
if ( iSeg+1 >= _pointsPerEdge[ iEdge ]._params.size() )
return false;
// This method is called by Branch that can have an opposite orientation,
// hence u is inverted depending on orientation coded as a sign of _maEdge index
bool isReverse = ( _pointsPerEdge[ iEdge ]._maEdges[ iSeg ].second < 0 );
if ( isReverse )
u = 1. - u;
double p0 = _pointsPerEdge[ iEdge ]._params[ iSeg ];
double p1 = _pointsPerEdge[ iEdge ]._params[ iSeg+1 ];
bp._param = p0 * ( 1. - u ) + p1 * u;
bp._edgeIndex = iEdge;
return true;
}