smesh/src/StdMeshers/StdMeshers_Prism_3D.cxx

2406 lines
86 KiB
C++
Raw Normal View History

2010-05-14 21:32:37 +06:00
// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE
2009-02-17 10:27:49 +05:00
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
2009-02-17 10:27:49 +05:00
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
2009-02-17 10:27:49 +05:00
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
2009-02-17 10:27:49 +05:00
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
2010-05-14 21:32:37 +06:00
2009-02-17 10:27:49 +05:00
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : StdMeshers_Prism_3D.cxx
// Module : SMESH
// Created : Fri Oct 20 11:37:07 2006
// Author : Edward AGAPOV (eap)
2009-02-17 10:27:49 +05:00
//
#include "StdMeshers_Prism_3D.hxx"
#include "StdMeshers_ProjectionUtils.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMDS_VolumeOfNodes.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMESH_Comment.hxx"
#include "utilities.h"
#include <BRep_Tool.hxx>
#include <Bnd_B3d.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2d_Line.hxx>
#include <Geom_Curve.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <TopoDS.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
using namespace std;
#define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; }
#define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z())
#define SHOWYXZ(msg, xyz) // {\
// gp_Pnt p (xyz); \
// cout << msg << " ("<< p.X() << "; " <<p.Y() << "; " <<p.Z() << ") " <<endl;\
// }
typedef StdMeshers_ProjectionUtils TAssocTool;
typedef SMESH_Comment TCom;
enum { ID_BOT_FACE = SMESH_Block::ID_Fxy0,
ID_TOP_FACE = SMESH_Block::ID_Fxy1,
BOTTOM_EDGE = 0, TOP_EDGE, V0_EDGE, V1_EDGE, // edge IDs in face
NB_WALL_FACES = 4 }; //
namespace {
//================================================================================
/*!
* \brief Return iterator pointing to node column for the given parameter
* \param columnsMap - node column map
* \param parameter - parameter
* \retval TParam2ColumnMap::iterator - result
*
* it returns closest left column
*/
//================================================================================
TParam2ColumnIt getColumn( const TParam2ColumnMap* columnsMap,
const double parameter )
{
TParam2ColumnIt u_col = columnsMap->upper_bound( parameter );
if ( u_col != columnsMap->begin() )
--u_col;
return u_col; // return left column
}
//================================================================================
/*!
* \brief Return nodes around given parameter and a ratio
* \param column - node column
* \param param - parameter
* \param node1 - lower node
* \param node2 - upper node
* \retval double - ratio
*/
//================================================================================
double getRAndNodes( const TNodeColumn* column,
const double param,
const SMDS_MeshNode* & node1,
const SMDS_MeshNode* & node2)
{
if ( param >= 1.0 || column->size() == 1) {
node1 = node2 = column->back();
return 0;
}
int i = int( param * ( column->size() - 1 ));
double u0 = double( i )/ double( column->size() - 1 );
double r = ( param - u0 ) * ( column->size() - 1 );
node1 = (*column)[ i ];
node2 = (*column)[ i + 1];
return r;
}
//================================================================================
/*!
* \brief Compute boundary parameters of face parts
* \param nbParts - nb of parts to split columns into
* \param columnsMap - node columns of the face to split
* \param params - computed parameters
*/
//================================================================================
void splitParams( const int nbParts,
const TParam2ColumnMap* columnsMap,
vector< double > & params)
{
params.clear();
params.reserve( nbParts + 1 );
TParam2ColumnIt last_par_col = --columnsMap->end();
double par = columnsMap->begin()->first; // 0.
double parLast = last_par_col->first;
params.push_back( par );
for ( int i = 0; i < nbParts - 1; ++ i )
{
double partSize = ( parLast - par ) / double ( nbParts - i );
TParam2ColumnIt par_col = getColumn( columnsMap, par + partSize );
if ( par_col->first == par ) {
++par_col;
if ( par_col == last_par_col ) {
while ( i < nbParts - 1 )
params.push_back( par + partSize * i++ );
break;
}
}
par = par_col->first;
params.push_back( par );
}
params.push_back( parLast ); // 1.
}
//================================================================================
/*!
* \brief Return coordinate system for z-th layer of nodes
*/
//================================================================================
gp_Ax2 getLayerCoordSys(const int z,
const vector< const TNodeColumn* >& columns,
int& xColumn)
{
// gravity center of a layer
gp_XYZ O(0,0,0);
int vertexCol = -1;
for ( int i = 0; i < columns.size(); ++i )
{
O += gpXYZ( (*columns[ i ])[ z ]);
if ( vertexCol < 0 &&
columns[ i ]->front()->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
vertexCol = i;
}
O /= columns.size();
// Z axis
gp_Vec Z(0,0,0);
int iPrev = columns.size()-1;
for ( int i = 0; i < columns.size(); ++i )
{
gp_Vec v1( O, gpXYZ( (*columns[ iPrev ])[ z ]));
gp_Vec v2( O, gpXYZ( (*columns[ i ] )[ z ]));
Z += v1 ^ v2;
iPrev = i;
}
if ( vertexCol >= 0 )
{
O = gpXYZ( (*columns[ vertexCol ])[ z ]);
}
if ( xColumn < 0 || xColumn >= columns.size() )
{
// select a column for X dir
double maxDist = 0;
for ( int i = 0; i < columns.size(); ++i )
{
double dist = ( O - gpXYZ((*columns[ i ])[ z ])).SquareModulus();
if ( dist > maxDist )
{
xColumn = i;
maxDist = dist;
}
}
}
// X axis
gp_Vec X( O, gpXYZ( (*columns[ xColumn ])[ z ]));
return gp_Ax2( O, Z, X);
}
2010-05-14 21:32:37 +06:00
//================================================================================
/*!
* \brief Removes submeshes meshed with regular grid from given list
* \retval int - nb of removed submeshes
*/
//================================================================================
int removeQuasiQuads(list< SMESH_subMesh* >& notQuadSubMesh)
{
int oldNbSM = notQuadSubMesh.size();
SMESHDS_Mesh* mesh = notQuadSubMesh.front()->GetFather()->GetMeshDS();
list< SMESH_subMesh* >::iterator smIt = notQuadSubMesh.begin();
#define __NEXT_SM { ++smIt; continue; }
while ( smIt != notQuadSubMesh.end() )
{
SMESH_subMesh* faceSm = *smIt;
SMESHDS_SubMesh* faceSmDS = faceSm->GetSubMeshDS();
int nbQuads = faceSmDS->NbElements();
if ( nbQuads == 0 ) __NEXT_SM;
// get oredered edges
list< TopoDS_Edge > orderedEdges;
list< int > nbEdgesInWires;
TopoDS_Vertex V000;
int nbWires = SMESH_Block::GetOrderedEdges( TopoDS::Face( faceSm->GetSubShape() ),
V000, orderedEdges, nbEdgesInWires );
if ( nbWires != 1 || nbEdgesInWires.front() <= 4 )
__NEXT_SM;
// get nb of segements on edges
list<int> nbSegOnEdge;
list< TopoDS_Edge >::iterator edge = orderedEdges.begin();
for ( ; edge != orderedEdges.end(); ++edge )
{
if ( SMESHDS_SubMesh* edgeSmDS = mesh->MeshElements( *edge ))
nbSegOnEdge.push_back( edgeSmDS->NbElements() );
else
nbSegOnEdge.push_back(0);
}
// unite nbSegOnEdge of continues edges
int nbEdges = nbEdgesInWires.front();
list<int>::iterator nbSegIt = nbSegOnEdge.begin();
for ( edge = orderedEdges.begin(); edge != orderedEdges.end(); )
{
const TopoDS_Edge& e1 = *edge++;
const TopoDS_Edge& e2 = ( edge == orderedEdges.end() ? orderedEdges.front() : *edge );
if ( SMESH_Algo::IsContinuous( e1, e2 ))
{
// common vertex of continues edges must be shared by two 2D mesh elems of geom face
TopoDS_Vertex vCommon = TopExp::LastVertex( e1, true );
const SMDS_MeshNode* vNode = SMESH_Algo::VertexNode( vCommon, mesh );
int nbF = 0;
if ( vNode )
{
SMDS_ElemIteratorPtr fIt = vNode->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
nbF += faceSmDS->Contains( fIt->next() );
}
list<int>::iterator nbSegIt1 = nbSegIt++;
if ( !vNode || nbF == 2 ) // !vNode - two edges can be meshed as one
{
// unite
if ( nbSegIt == nbSegOnEdge.end() ) nbSegIt = nbSegOnEdge.begin();
*nbSegIt += *nbSegIt1;
nbSegOnEdge.erase( nbSegIt1 );
--nbEdges;
}
}
else
{
++nbSegIt;
}
}
vector<int> nbSegVec( nbSegOnEdge.begin(), nbSegOnEdge.end());
if ( nbSegVec.size() == 4 &&
nbSegVec[0] == nbSegVec[2] &&
nbSegVec[1] == nbSegVec[3] &&
nbSegVec[0] * nbSegVec[1] == nbQuads
)
smIt = notQuadSubMesh.erase( smIt );
else
__NEXT_SM;
}
return oldNbSM - notQuadSubMesh.size();
}
}
//=======================================================================
//function : StdMeshers_Prism_3D
//purpose :
//=======================================================================
StdMeshers_Prism_3D::StdMeshers_Prism_3D(int hypId, int studyId, SMESH_Gen* gen)
:SMESH_3D_Algo(hypId, studyId, gen)
{
_name = "Prism_3D";
2009-12-10 19:52:59 +05:00
_shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit per shape type
myProjectTriangles = false;
}
//================================================================================
/*!
* \brief Destructor
*/
//================================================================================
StdMeshers_Prism_3D::~StdMeshers_Prism_3D()
{}
//=======================================================================
//function : CheckHypothesis
//purpose :
//=======================================================================
bool StdMeshers_Prism_3D::CheckHypothesis(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
// Check shape geometry
/* PAL16229
aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY;
// find not quadrangle faces
list< TopoDS_Shape > notQuadFaces;
int nbEdge, nbWire, nbFace = 0;
TopExp_Explorer exp( aShape, TopAbs_FACE );
for ( ; exp.More(); exp.Next() ) {
++nbFace;
const TopoDS_Shape& face = exp.Current();
nbEdge = TAssocTool::Count( face, TopAbs_EDGE, 0 );
nbWire = TAssocTool::Count( face, TopAbs_WIRE, 0 );
if ( nbEdge!= 4 || nbWire!= 1 ) {
if ( !notQuadFaces.empty() ) {
if ( TAssocTool::Count( notQuadFaces.back(), TopAbs_EDGE, 0 ) != nbEdge ||
TAssocTool::Count( notQuadFaces.back(), TopAbs_WIRE, 0 ) != nbWire )
RETURN_BAD_RESULT("Different not quad faces");
}
notQuadFaces.push_back( face );
}
}
if ( !notQuadFaces.empty() )
{
if ( notQuadFaces.size() != 2 )
RETURN_BAD_RESULT("Bad nb not quad faces: " << notQuadFaces.size());
// check total nb faces
nbEdge = TAssocTool::Count( notQuadFaces.back(), TopAbs_EDGE, 0 );
if ( nbFace != nbEdge + 2 )
RETURN_BAD_RESULT("Bad nb of faces: " << nbFace << " but must be " << nbEdge + 2);
}
*/
// no hypothesis
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape)
{
SMESH_MesherHelper helper( theMesh );
myHelper = &helper;
myHelper->IsQuadraticSubMesh( theShape );
// Analyse mesh and geomerty to find block subshapes and submeshes
if ( !myBlock.Init( myHelper, theShape ))
return error( myBlock.GetError());
SMESHDS_Mesh* meshDS = theMesh.GetMeshDS();
int volumeID = meshDS->ShapeToIndex( theShape );
// To compute coordinates of a node inside a block, it is necessary to know
// 1. normalized parameters of the node by which
// 2. coordinates of node projections on all block sub-shapes are computed
// So we fill projections on vertices at once as they are same for all nodes
myShapeXYZ.resize( myBlock.NbSubShapes() );
for ( int iV = SMESH_Block::ID_FirstV; iV < SMESH_Block::ID_FirstE; ++iV ) {
myBlock.VertexPoint( iV, myShapeXYZ[ iV ]);
SHOWYXZ("V point " <<iV << " ", myShapeXYZ[ iV ]);
}
// Projections on the top and bottom faces are taken from nodes existing
// on these faces; find correspondence between bottom and top nodes
myBotToColumnMap.clear();
2010-05-14 21:32:37 +06:00
if ( !assocOrProjBottom2Top() ) // it also fills myBotToColumnMap
return false;
// Create nodes inside the block
// try to use transformation (issue 0020680)
vector<gp_Trsf> trsf;
if ( myBlock.GetLayersTransformation(trsf))
{
// loop on nodes inside the bottom face
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.begin();
for ( ; bot_column != myBotToColumnMap.end(); ++bot_column )
{
const TNode& tBotNode = bot_column->first; // bottom TNode
if ( tBotNode.GetPositionType() != SMDS_TOP_FACE )
continue; // node is not inside face
// column nodes; middle part of the column are zero pointers
TNodeColumn& column = bot_column->second;
TNodeColumn::iterator columnNodes = column.begin();
for ( int z = 0; columnNodes != column.end(); ++columnNodes, ++z)
{
const SMDS_MeshNode* & node = *columnNodes;
if ( node ) continue; // skip bottom or top node
gp_XYZ coords = tBotNode.GetCoords();
trsf[z-1].Transforms( coords );
node = meshDS->AddNode( coords.X(), coords.Y(), coords.Z() );
meshDS->SetNodeInVolume( node, volumeID );
}
} // loop on bottom nodes
}
else // use block approach
{
// loop on nodes inside the bottom face
TNode prevBNode;
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.begin();
for ( ; bot_column != myBotToColumnMap.end(); ++bot_column )
{
const TNode& tBotNode = bot_column->first; // bottom TNode
if ( tBotNode.GetPositionType() != SMDS_TOP_FACE )
continue; // node is not inside face
// column nodes; middle part of the column are zero pointers
TNodeColumn& column = bot_column->second;
// compute bottom node parameters
gp_XYZ paramHint(-1,-1,-1);
if ( prevBNode.IsNeighbor( tBotNode ))
paramHint = prevBNode.GetParams();
if ( !myBlock.ComputeParameters( tBotNode.GetCoords(), tBotNode.ChangeParams(),
ID_BOT_FACE, paramHint ))
return error(TCom("Can't compute normalized parameters for node ")
<< tBotNode.myNode->GetID() << " on the face #"
<< myBlock.SubMesh( ID_BOT_FACE )->GetId() );
prevBNode = tBotNode;
myShapeXYZ[ ID_BOT_FACE ] = tBotNode.GetCoords();
gp_XYZ botParams = tBotNode.GetParams();
// compute top node parameters
myShapeXYZ[ ID_TOP_FACE ] = gpXYZ( column.back() );
gp_XYZ topParams = botParams;
topParams.SetZ( 1 );
if ( column.size() > 2 ) {
gp_Pnt topCoords = myShapeXYZ[ ID_TOP_FACE ];
if ( !myBlock.ComputeParameters( topCoords, topParams, ID_TOP_FACE, topParams ))
return error(TCom("Can't compute normalized parameters ")
<< "for node " << column.back()->GetID()
<< " on the face #"<< column.back()->getshapeId() );
}
// vertical loop
TNodeColumn::iterator columnNodes = column.begin();
for ( int z = 0; columnNodes != column.end(); ++columnNodes, ++z)
{
const SMDS_MeshNode* & node = *columnNodes;
if ( node ) continue; // skip bottom or top node
// params of a node to create
double rz = (double) z / (double) ( column.size() - 1 );
gp_XYZ params = botParams * ( 1 - rz ) + topParams * rz;
// set coords on all faces and nodes
const int nbSideFaces = 4;
int sideFaceIDs[nbSideFaces] = { SMESH_Block::ID_Fx0z,
SMESH_Block::ID_Fx1z,
SMESH_Block::ID_F0yz,
SMESH_Block::ID_F1yz };
for ( int iF = 0; iF < nbSideFaces; ++iF )
if ( !setFaceAndEdgesXYZ( sideFaceIDs[ iF ], params, z ))
return false;
// compute coords for a new node
gp_XYZ coords;
if ( !SMESH_Block::ShellPoint( params, myShapeXYZ, coords ))
return error("Can't compute coordinates by normalized parameters");
SHOWYXZ("TOPFacePoint ",myShapeXYZ[ ID_TOP_FACE]);
SHOWYXZ("BOT Node "<< tBotNode.myNode->GetID(),gpXYZ(tBotNode.myNode));
SHOWYXZ("ShellPoint ",coords);
// create a node
node = meshDS->AddNode( coords.X(), coords.Y(), coords.Z() );
meshDS->SetNodeInVolume( node, volumeID );
}
} // loop on bottom nodes
}
// Create volumes
SMESHDS_SubMesh* smDS = myBlock.SubMeshDS( ID_BOT_FACE );
if ( !smDS ) return error(COMPERR_BAD_INPUT_MESH, "Null submesh");
// loop on bottom mesh faces
SMDS_ElemIteratorPtr faceIt = smDS->GetElements();
while ( faceIt->more() )
{
const SMDS_MeshElement* face = faceIt->next();
if ( !face || face->GetType() != SMDSAbs_Face )
continue;
int nbNodes = face->NbNodes();
if ( face->IsQuadratic() )
nbNodes /= 2;
// find node columns for each node
vector< const TNodeColumn* > columns( nbNodes );
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* n = face->GetNode( i );
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) {
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.find( n );
if ( bot_column == myBotToColumnMap.end() )
return error(TCom("No nodes found above node ") << n->GetID() );
columns[ i ] = & bot_column->second;
}
else {
columns[ i ] = myBlock.GetNodeColumn( n );
if ( !columns[ i ] )
return error(TCom("No side nodes found above node ") << n->GetID() );
}
}
// create prisms
AddPrisms( columns, myHelper );
} // loop on bottom mesh faces
return true;
}
//=======================================================================
//function : Evaluate
//purpose :
//=======================================================================
bool StdMeshers_Prism_3D::Evaluate(SMESH_Mesh& theMesh,
2009-12-10 19:52:59 +05:00
const TopoDS_Shape& theShape,
MapShapeNbElems& aResMap)
{
// find face contains only triangles
vector < SMESH_subMesh * >meshFaces;
TopTools_SequenceOfShape aFaces;
int NumBase = 0, i = 0, NbQFs = 0;
for (TopExp_Explorer exp(theShape, TopAbs_FACE); exp.More(); exp.Next()) {
i++;
aFaces.Append(exp.Current());
SMESH_subMesh *aSubMesh = theMesh.GetSubMesh(exp.Current());
meshFaces.push_back(aSubMesh);
MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i-1]);
if( anIt==aResMap.end() ) {
SMESH_ComputeErrorPtr& smError = aSubMesh->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
std::vector<int> aVec = (*anIt).second;
int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
int nbqua = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
if( nbtri==0 && nbqua>0 ) {
NbQFs++;
}
if( nbtri>0 ) {
NumBase = i;
}
}
if(NbQFs<4) {
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
aResMap.insert(std::make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
if(NumBase==0) NumBase = 1; // only quads => set 1 faces as base
// find number of 1d elems for base face
int nb1d = 0;
TopTools_MapOfShape Edges1;
for (TopExp_Explorer exp(aFaces.Value(NumBase), TopAbs_EDGE); exp.More(); exp.Next()) {
Edges1.Add(exp.Current());
SMESH_subMesh *sm = theMesh.GetSubMesh(exp.Current());
if( sm ) {
MapShapeNbElemsItr anIt = aResMap.find(sm);
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
}
}
// find face opposite to base face
int OppNum = 0;
for(i=1; i<=6; i++) {
if(i==NumBase) continue;
bool IsOpposite = true;
for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) {
if( Edges1.Contains(exp.Current()) ) {
2009-12-10 19:52:59 +05:00
IsOpposite = false;
break;
}
}
if(IsOpposite) {
OppNum = i;
break;
}
}
// find number of 2d elems on side faces
int nb2d = 0;
for(i=1; i<=6; i++) {
if( i==OppNum || i==NumBase ) continue;
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] );
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
}
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[NumBase-1] );
std::vector<int> aVec = (*anIt).second;
bool IsQuadratic = (aVec[SMDSEntity_Quad_Triangle]>aVec[SMDSEntity_Triangle]) ||
(aVec[SMDSEntity_Quad_Quadrangle]>aVec[SMDSEntity_Quadrangle]);
int nb2d_face0_3 = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
int nb2d_face0_4 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
int nb0d_face0 = aVec[SMDSEntity_Node];
int nb1d_face0_int = ( nb2d_face0_3*3 + nb2d_face0_4*4 - nb1d ) / 2;
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(IsQuadratic) {
aResVec[SMDSEntity_Quad_Penta] = nb2d_face0_3 * ( nb2d/nb1d );
aResVec[SMDSEntity_Quad_Hexa] = nb2d_face0_4 * ( nb2d/nb1d );
aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
}
else {
aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
aResVec[SMDSEntity_Penta] = nb2d_face0_3 * ( nb2d/nb1d );
aResVec[SMDSEntity_Hexa] = nb2d_face0_4 * ( nb2d/nb1d );
}
SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
aResMap.insert(std::make_pair(sm,aResVec));
return true;
}
//================================================================================
/*!
* \brief Create prisms
* \param columns - columns of nodes generated from nodes of a mesh face
* \param helper - helper initialized by mesh and shape to add prisms to
*/
//================================================================================
void StdMeshers_Prism_3D::AddPrisms( vector<const TNodeColumn*> & columns,
SMESH_MesherHelper* helper)
{
SMESHDS_Mesh * meshDS = helper->GetMeshDS();
int shapeID = helper->GetSubShapeID();
int nbNodes = columns.size();
int nbZ = columns[0]->size();
if ( nbZ < 2 ) return;
// find out orientation
bool isForward = true;
SMDS_VolumeTool vTool;
int z = 1;
switch ( nbNodes ) {
case 3: {
const SMDS_MeshNode* botNodes[3] = { (*columns[0])[z-1],
(*columns[1])[z-1],
(*columns[2])[z-1] };
const SMDS_MeshNode* topNodes[3] = { (*columns[0])[z],
(*columns[1])[z],
(*columns[2])[z] };
SMDS_VolumeOfNodes tmpVol ( botNodes[0], botNodes[1], botNodes[2],
topNodes[0], topNodes[1], topNodes[2]);
vTool.Set( &tmpVol );
isForward = vTool.IsForward();
break;
}
case 4: {
const SMDS_MeshNode* botNodes[4] = { (*columns[0])[z-1], (*columns[1])[z-1],
(*columns[2])[z-1], (*columns[3])[z-1] };
const SMDS_MeshNode* topNodes[4] = { (*columns[0])[z], (*columns[1])[z],
(*columns[2])[z], (*columns[3])[z] };
SMDS_VolumeOfNodes tmpVol ( botNodes[0], botNodes[1], botNodes[2], botNodes[3],
topNodes[0], topNodes[1], topNodes[2], topNodes[3]);
vTool.Set( &tmpVol );
isForward = vTool.IsForward();
break;
}
}
// vertical loop on columns
for ( z = 1; z < nbZ; ++z )
{
SMDS_MeshElement* vol = 0;
switch ( nbNodes ) {
case 3: {
const SMDS_MeshNode* botNodes[3] = { (*columns[0])[z-1],
(*columns[1])[z-1],
(*columns[2])[z-1] };
const SMDS_MeshNode* topNodes[3] = { (*columns[0])[z],
(*columns[1])[z],
(*columns[2])[z] };
if ( isForward )
vol = helper->AddVolume( botNodes[0], botNodes[1], botNodes[2],
topNodes[0], topNodes[1], topNodes[2]);
else
vol = helper->AddVolume( topNodes[0], topNodes[1], topNodes[2],
botNodes[0], botNodes[1], botNodes[2]);
break;
}
case 4: {
const SMDS_MeshNode* botNodes[4] = { (*columns[0])[z-1], (*columns[1])[z-1],
(*columns[2])[z-1], (*columns[3])[z-1] };
const SMDS_MeshNode* topNodes[4] = { (*columns[0])[z], (*columns[1])[z],
(*columns[2])[z], (*columns[3])[z] };
if ( isForward )
vol = helper->AddVolume( botNodes[0], botNodes[1], botNodes[2], botNodes[3],
topNodes[0], topNodes[1], topNodes[2], topNodes[3]);
else
vol = helper->AddVolume( topNodes[0], topNodes[1], topNodes[2], topNodes[3],
botNodes[0], botNodes[1], botNodes[2], botNodes[3]);
break;
}
default:
// polyhedron
vector<const SMDS_MeshNode*> nodes( 2*nbNodes + 4*nbNodes);
vector<int> quantities( 2 + nbNodes, 4 );
quantities[0] = quantities[1] = nbNodes;
columns.resize( nbNodes + 1 );
columns[ nbNodes ] = columns[ 0 ];
for ( int i = 0; i < nbNodes; ++i ) {
nodes[ i ] = (*columns[ i ])[z-1]; // bottom
nodes[ i+nbNodes ] = (*columns[ i ])[z ]; // top
// side
int di = 2*nbNodes + 4*i - 1;
nodes[ di ] = (*columns[i ])[z-1];
nodes[ di+1 ] = (*columns[i+1])[z-1];
nodes[ di+2 ] = (*columns[i+1])[z ];
nodes[ di+3 ] = (*columns[i ])[z ];
}
vol = meshDS->AddPolyhedralVolume( nodes, quantities );
}
if ( vol && shapeID > 0 )
meshDS->SetMeshElementOnShape( vol, shapeID );
}
}
//================================================================================
/*!
* \brief Find correspondence between bottom and top nodes
* If elements on the bottom and top faces are topologically different,
* and projection is possible and allowed, perform the projection
* \retval bool - is a success or not
*/
//================================================================================
bool StdMeshers_Prism_3D::assocOrProjBottom2Top()
{
SMESH_subMesh * botSM = myBlock.SubMesh( ID_BOT_FACE );
SMESH_subMesh * topSM = myBlock.SubMesh( ID_TOP_FACE );
SMESHDS_SubMesh * botSMDS = botSM->GetSubMeshDS();
SMESHDS_SubMesh * topSMDS = topSM->GetSubMeshDS();
if ( !botSMDS || botSMDS->NbElements() == 0 )
return error(TCom("No elememts on face #") << botSM->GetId());
bool needProject = false;
if ( !topSMDS ||
botSMDS->NbElements() != topSMDS->NbElements() ||
botSMDS->NbNodes() != topSMDS->NbNodes())
{
MESSAGE("nb elem bot " << botSMDS->NbElements() << " top " << topSMDS->NbElements());
MESSAGE("nb node bot " << botSMDS->NbNodes() << " top " << topSMDS->NbNodes());
if ( myBlock.HasNotQuadElemOnTop() )
return error(TCom("Mesh on faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" );
needProject = true;
}
if ( 0/*needProject && !myProjectTriangles*/ )
return error(TCom("Mesh on faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" );
///RETURN_BAD_RESULT("Need to project but not allowed");
if ( needProject )
{
return projectBottomToTop();
}
TopoDS_Face botFace = TopoDS::Face( myBlock.Shape( ID_BOT_FACE ));
TopoDS_Face topFace = TopoDS::Face( myBlock.Shape( ID_TOP_FACE ));
// associate top and bottom faces
TAssocTool::TShapeShapeMap shape2ShapeMap;
if ( !TAssocTool::FindSubShapeAssociation( botFace, myBlock.Mesh(),
topFace, myBlock.Mesh(),
shape2ShapeMap) )
return error(TCom("Topology of faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" );
// Find matching nodes of top and bottom faces
TNodeNodeMap n2nMap;
if ( ! TAssocTool::FindMatchingNodesOnFaces( botFace, myBlock.Mesh(),
topFace, myBlock.Mesh(),
shape2ShapeMap, n2nMap ))
return error(TCom("Mesh on faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" );
// Fill myBotToColumnMap
int zSize = myBlock.VerticalSize();
//TNode prevTNode;
TNodeNodeMap::iterator bN_tN = n2nMap.begin();
for ( ; bN_tN != n2nMap.end(); ++bN_tN )
{
const SMDS_MeshNode* botNode = bN_tN->first;
const SMDS_MeshNode* topNode = bN_tN->second;
if ( botNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE )
continue; // wall columns are contained in myBlock
// create node column
2010-05-14 21:32:37 +06:00
TNode bN( botNode );
TNode2ColumnMap::iterator bN_col =
myBotToColumnMap.insert( make_pair ( bN, TNodeColumn() )).first;
TNodeColumn & column = bN_col->second;
column.resize( zSize );
column.front() = botNode;
column.back() = topNode;
}
return true;
}
//================================================================================
/*!
* \brief Remove quadrangles from the top face and
* create triangles there by projection from the bottom
* \retval bool - a success or not
*/
//================================================================================
bool StdMeshers_Prism_3D::projectBottomToTop()
{
SMESH_subMesh * botSM = myBlock.SubMesh( ID_BOT_FACE );
SMESH_subMesh * topSM = myBlock.SubMesh( ID_TOP_FACE );
SMESHDS_SubMesh * botSMDS = botSM->GetSubMeshDS();
SMESHDS_SubMesh * topSMDS = topSM->GetSubMeshDS();
if ( topSMDS )
topSM->ComputeStateEngine( SMESH_subMesh::CLEAN );
SMESHDS_Mesh* meshDS = myBlock.MeshDS();
int shapeID = myHelper->GetSubShapeID();
int topFaceID = meshDS->ShapeToIndex( topSM->GetSubShape() );
// Fill myBotToColumnMap
int zSize = myBlock.VerticalSize();
TNode prevTNode;
SMDS_NodeIteratorPtr nIt = botSMDS->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* botNode = nIt->next();
if ( botNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE )
continue; // strange
// compute bottom node params
TNode bN( botNode );
gp_XYZ paramHint(-1,-1,-1);
if ( prevTNode.IsNeighbor( bN ))
paramHint = prevTNode.GetParams();
if ( !myBlock.ComputeParameters( bN.GetCoords(), bN.ChangeParams(),
ID_BOT_FACE, paramHint ))
return error(TCom("Can't compute normalized parameters for node ")
<< botNode->GetID() << " on the face #"<< botSM->GetId() );
prevTNode = bN;
// compute top node coords
gp_XYZ topXYZ; gp_XY topUV;
if ( !myBlock.FacePoint( ID_TOP_FACE, bN.GetParams(), topXYZ ) ||
!myBlock.FaceUV ( ID_TOP_FACE, bN.GetParams(), topUV ))
return error(TCom("Can't compute coordinates "
"by normalized parameters on the face #")<< topSM->GetId() );
SMDS_MeshNode * topNode = meshDS->AddNode( topXYZ.X(),topXYZ.Y(),topXYZ.Z() );
meshDS->SetNodeOnFace( topNode, topFaceID, topUV.X(), topUV.Y() );
// create node column
TNode2ColumnMap::iterator bN_col =
myBotToColumnMap.insert( make_pair ( bN, TNodeColumn() )).first;
TNodeColumn & column = bN_col->second;
column.resize( zSize );
column.front() = botNode;
column.back() = topNode;
}
// Create top faces
// loop on bottom mesh faces
SMDS_ElemIteratorPtr faceIt = botSMDS->GetElements();
while ( faceIt->more() )
{
const SMDS_MeshElement* face = faceIt->next();
if ( !face || face->GetType() != SMDSAbs_Face )
continue;
int nbNodes = face->NbNodes();
if ( face->IsQuadratic() )
nbNodes /= 2;
// find top node in columns for each bottom node
vector< const SMDS_MeshNode* > nodes( nbNodes );
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* n = face->GetNode( nbNodes - i - 1 );
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) {
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.find( n );
if ( bot_column == myBotToColumnMap.end() )
return error(TCom("No nodes found above node ") << n->GetID() );
nodes[ i ] = bot_column->second.back();
}
else {
const TNodeColumn* column = myBlock.GetNodeColumn( n );
if ( !column )
return error(TCom("No side nodes found above node ") << n->GetID() );
nodes[ i ] = column->back();
}
}
// create a face, with reversed orientation
SMDS_MeshElement* newFace = 0;
switch ( nbNodes ) {
case 3: {
newFace = myHelper->AddFace(nodes[0], nodes[1], nodes[2]);
break;
}
case 4: {
newFace = myHelper->AddFace( nodes[0], nodes[1], nodes[2], nodes[3] );
break;
}
default:
newFace = meshDS->AddPolygonalFace( nodes );
}
if ( newFace && shapeID > 0 )
meshDS->SetMeshElementOnShape( newFace, shapeID );
}
return true;
}
//================================================================================
/*!
* \brief Set projection coordinates of a node to a face and it's subshapes
* \param faceID - the face given by in-block ID
* \param params - node normalized parameters
* \retval bool - is a success
*/
//================================================================================
bool StdMeshers_Prism_3D::setFaceAndEdgesXYZ( const int faceID, const gp_XYZ& params, int z )
{
// find base and top edges of the face
enum { BASE = 0, TOP, LEFT, RIGHT };
vector< int > edgeVec; // 0-base, 1-top
SMESH_Block::GetFaceEdgesIDs( faceID, edgeVec );
myBlock.EdgePoint( edgeVec[ BASE ], params, myShapeXYZ[ edgeVec[ BASE ]]);
myBlock.EdgePoint( edgeVec[ TOP ], params, myShapeXYZ[ edgeVec[ TOP ]]);
SHOWYXZ("\nparams ", params);
SHOWYXZ("TOP is " <<edgeVec[ TOP ], myShapeXYZ[ edgeVec[ TOP]]);
SHOWYXZ("BASE is "<<edgeVec[ BASE], myShapeXYZ[ edgeVec[ BASE]]);
if ( faceID == SMESH_Block::ID_Fx0z || faceID == SMESH_Block::ID_Fx1z )
{
myBlock.EdgePoint( edgeVec[ LEFT ], params, myShapeXYZ[ edgeVec[ LEFT ]]);
myBlock.EdgePoint( edgeVec[ RIGHT ], params, myShapeXYZ[ edgeVec[ RIGHT ]]);
SHOWYXZ("VER "<<edgeVec[ LEFT], myShapeXYZ[ edgeVec[ LEFT]]);
SHOWYXZ("VER "<<edgeVec[ RIGHT], myShapeXYZ[ edgeVec[ RIGHT]]);
}
myBlock.FacePoint( faceID, params, myShapeXYZ[ faceID ]);
SHOWYXZ("FacePoint "<<faceID, myShapeXYZ[ faceID]);
return true;
}
//================================================================================
/*!
* \brief Return true if this node and other one belong to one face
*/
//================================================================================
bool TNode::IsNeighbor( const TNode& other ) const
{
if ( !other.myNode || !myNode ) return false;
SMDS_ElemIteratorPtr fIt = other.myNode->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
if ( fIt->next()->GetNodeIndex( myNode ) >= 0 )
return true;
return false;
}
//================================================================================
/*!
* \brief Constructor. Initialization is needed
*/
//================================================================================
StdMeshers_PrismAsBlock::StdMeshers_PrismAsBlock()
{
mySide = 0;
}
StdMeshers_PrismAsBlock::~StdMeshers_PrismAsBlock()
{
if ( mySide ) {
delete mySide; mySide = 0;
}
}
//================================================================================
/*!
* \brief Initialization.
* \param helper - helper loaded with mesh and 3D shape
* \param shape3D - a closed shell or solid
* \retval bool - false if a mesh or a shape are KO
*/
//================================================================================
bool StdMeshers_PrismAsBlock::Init(SMESH_MesherHelper* helper,
const TopoDS_Shape& shape3D)
{
if ( mySide ) {
delete mySide; mySide = 0;
}
vector< TSideFace* > sideFaces( NB_WALL_FACES, 0 );
vector< pair< double, double> > params ( NB_WALL_FACES );
mySide = new TSideFace( sideFaces, params );
myHelper = helper;
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
SMESH_Block::init();
myShapeIDMap.Clear();
myShapeIndex2ColumnMap.clear();
int wallFaceIds[ NB_WALL_FACES ] = { // to walk around a block
SMESH_Block::ID_Fx0z, SMESH_Block::ID_F1yz,
SMESH_Block::ID_Fx1z, SMESH_Block::ID_F0yz
};
myError = SMESH_ComputeError::New();
// -------------------------------------------------------------
// Look for top and bottom faces: not quadrangle ones or meshed
// with not quadrangle elements
// -------------------------------------------------------------
list< SMESH_subMesh* > notQuadGeomSubMesh;
list< SMESH_subMesh* > notQuadElemSubMesh;
int nbFaces = 0;
//
SMESH_subMesh* mainSubMesh = myHelper->GetMesh()->GetSubMeshContaining( shape3D );
if ( !mainSubMesh ) return error(COMPERR_BAD_INPUT_MESH,"Null submesh of shape3D");
// analyse face submeshes
SMESH_subMeshIteratorPtr smIt = mainSubMesh->getDependsOnIterator(false,false);
while ( smIt->more() )
{
SMESH_subMesh* sm = smIt->next();
const TopoDS_Shape& face = sm->GetSubShape();
if ( face.ShapeType() != TopAbs_FACE )
continue;
nbFaces++;
// is quadrangle face?
list< TopoDS_Edge > orderedEdges;
list< int > nbEdgesInWires;
TopoDS_Vertex V000;
int nbWires = GetOrderedEdges( TopoDS::Face( face ),
V000, orderedEdges, nbEdgesInWires );
if ( nbWires != 1 || nbEdgesInWires.front() != 4 )
notQuadGeomSubMesh.push_back( sm );
// look for not quadrangle mesh elements
if ( SMESHDS_SubMesh* smDS = sm->GetSubMeshDS() ) {
bool hasNotQuad = false;
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
while ( eIt->more() && !hasNotQuad ) {
const SMDS_MeshElement* elem = eIt->next();
if ( elem->GetType() == SMDSAbs_Face ) {
int nbNodes = elem->NbNodes();
if ( elem->IsQuadratic() )
nbNodes /= 2;
hasNotQuad = ( nbNodes != 4 );
}
}
if ( hasNotQuad )
notQuadElemSubMesh.push_back( sm );
}
else {
return error(COMPERR_BAD_INPUT_MESH,TCom("Not meshed face #")<<sm->GetId());
}
// check if a quadrangle face is meshed with a quadranglar grid
if ( notQuadGeomSubMesh.back() != sm &&
notQuadElemSubMesh.back() != sm )
{
// count nb edges on face sides
vector< int > nbEdges;
nbEdges.reserve( nbEdgesInWires.front() );
for ( list< TopoDS_Edge >::iterator edge = orderedEdges.begin();
edge != orderedEdges.end(); ++edge )
{
if ( SMESHDS_SubMesh* smDS = meshDS->MeshElements( *edge ))
nbEdges.push_back ( smDS->NbElements() );
else
nbEdges.push_back ( 0 );
}
int nbQuads = sm->GetSubMeshDS()->NbElements();
if ( nbEdges[0] * nbEdges[1] != nbQuads ||
nbEdges[0] != nbEdges[2] ||
nbEdges[1] != nbEdges[3] )
notQuadElemSubMesh.push_back( sm );
}
}
// ----------------------------------------------------------------------
2010-05-14 21:32:37 +06:00
// Analyse mesh and topology of faces: choose the bottom submesh.
// If there are not quadrangle geom faces, they are top and bottom ones.
// Not quadrangle geom faces must be only on top and bottom.
// ----------------------------------------------------------------------
SMESH_subMesh * botSM = 0;
SMESH_subMesh * topSM = 0;
int nbNotQuad = notQuadGeomSubMesh.size();
int nbNotQuadMeshed = notQuadElemSubMesh.size();
bool hasNotQuad = ( nbNotQuad || nbNotQuadMeshed );
// detect bad cases
if ( nbNotQuadMeshed > 2 )
2010-05-14 21:32:37 +06:00
{
return error(COMPERR_BAD_INPUT_MESH,
TCom("More than 2 faces with not quadrangle elements: ")
<<nbNotQuadMeshed);
2010-05-14 21:32:37 +06:00
}
int nbQuasiQuads = 0;
if ( nbNotQuad > 0 && nbNotQuad != 2 )
{
// Issue 0020843 - one of side faces is quasi-quadrilateral.
// Remove from notQuadGeomSubMesh faces meshed with regular grid
nbQuasiQuads = removeQuasiQuads( notQuadGeomSubMesh );
nbNotQuad -= nbQuasiQuads;
if ( nbNotQuad > 0 && nbNotQuad != 2 )
return error(COMPERR_BAD_SHAPE,
TCom("More than 2 not quadrilateral faces: ")
<<nbNotQuad);
}
// get found submeshes
if ( hasNotQuad )
{
if ( nbNotQuadMeshed > 0 ) botSM = notQuadElemSubMesh.front();
else botSM = notQuadGeomSubMesh.front();
if ( nbNotQuadMeshed > 1 ) topSM = notQuadElemSubMesh.back();
else if ( nbNotQuad > 1 ) topSM = notQuadGeomSubMesh.back();
}
// detect other bad cases
if ( nbNotQuad == 2 && nbNotQuadMeshed > 0 ) {
bool ok = false;
if ( nbNotQuadMeshed == 1 )
ok = ( find( notQuadGeomSubMesh.begin(),
notQuadGeomSubMesh.end(), botSM ) != notQuadGeomSubMesh.end() );
else
ok = ( notQuadGeomSubMesh == notQuadElemSubMesh );
if ( !ok )
return error(COMPERR_BAD_INPUT_MESH, "Side face meshed with not quadrangle elements");
}
myNotQuadOnTop = ( nbNotQuadMeshed > 1 );
MESSAGE("myNotQuadOnTop " << myNotQuadOnTop << " nbNotQuadMeshed " << nbNotQuadMeshed);
// ----------------------------------------------------------
if ( nbNotQuad == 0 ) // Standard block of 6 quadrangle faces ?
{
// SMESH_Block will perform geometry analysis, we need just to find 2
// connected vertices on top and bottom
TopoDS_Vertex Vbot, Vtop;
if ( nbNotQuadMeshed > 0 ) // Look for vertices
{
TopTools_IndexedMapOfShape edgeMap;
TopExp::MapShapes( botSM->GetSubShape(), TopAbs_EDGE, edgeMap );
// vertex 1 is any vertex of the bottom face
Vbot = TopExp::FirstVertex( TopoDS::Edge( edgeMap( 1 )));
// vertex 2 is end vertex of edge sharing Vbot and not belonging to the bottom face
TopTools_ListIteratorOfListOfShape ancestIt = Mesh()->GetAncestors( Vbot );
for ( ; Vtop.IsNull() && ancestIt.More(); ancestIt.Next() )
{
const TopoDS_Shape & ancestor = ancestIt.Value();
if ( ancestor.ShapeType() == TopAbs_EDGE && !edgeMap.FindIndex( ancestor ))
{
TopoDS_Vertex V1, V2;
TopExp::Vertices( TopoDS::Edge( ancestor ), V1, V2);
if ( Vbot.IsSame ( V1 )) Vtop = V2;
else if ( Vbot.IsSame ( V2 )) Vtop = V1;
// check that Vtop belongs to shape3D
TopExp_Explorer exp( shape3D, TopAbs_VERTEX );
for ( ; exp.More(); exp.Next() )
if ( Vtop.IsSame( exp.Current() ))
break;
if ( !exp.More() )
Vtop.Nullify();
}
}
}
// get shell from shape3D
TopoDS_Shell shell;
TopExp_Explorer exp( shape3D, TopAbs_SHELL );
int nbShell = 0;
for ( ; exp.More(); exp.Next(), ++nbShell )
shell = TopoDS::Shell( exp.Current() );
// if ( nbShell != 1 )
// RETURN_BAD_RESULT("There must be 1 shell in the block");
// Load geometry in SMESH_Block
if ( !SMESH_Block::FindBlockShapes( shell, Vbot, Vtop, myShapeIDMap )) {
if ( !hasNotQuad )
return error(COMPERR_BAD_SHAPE, "Can't detect top and bottom of a prism");
}
else {
if ( !botSM ) botSM = Mesh()->GetSubMeshContaining( myShapeIDMap( ID_BOT_FACE ));
if ( !topSM ) topSM = Mesh()->GetSubMeshContaining( myShapeIDMap( ID_TOP_FACE ));
}
} // end Standard block of 6 quadrangle faces
// --------------------------------------------------------
// Here the top and bottom faces are found
if ( nbNotQuadMeshed == 2 ) // roughly check correspondence of horiz meshes
{
// SMESHDS_SubMesh* topSMDS = topSM->GetSubMeshDS();
// SMESHDS_SubMesh* botSMDS = botSM->GetSubMeshDS();
// if ( topSMDS->NbNodes() != botSMDS->NbNodes() ||
// topSMDS->NbElements() != botSMDS->NbElements() )
// RETURN_BAD_RESULT("Top mesh doesn't correspond to bottom one");
}
// ---------------------------------------------------------
// If there are not quadrangle geom faces, we emulate
// a block of 6 quadrangle faces.
// Load SMESH_Block with faces and edges geometry
// ---------------------------------------------------------
// find vertex 000 - the one with smallest coordinates (for easy DEBUG :-)
TopoDS_Vertex V000;
double minVal = DBL_MAX, minX, val;
for ( TopExp_Explorer exp( botSM->GetSubShape(), TopAbs_VERTEX );
exp.More(); exp.Next() )
{
const TopoDS_Vertex& v = TopoDS::Vertex( exp.Current() );
gp_Pnt P = BRep_Tool::Pnt( v );
val = P.X() + P.Y() + P.Z();
if ( val < minVal || ( val == minVal && P.X() < minX )) {
V000 = v;
minVal = val;
minX = P.X();
}
}
// Get ordered bottom edges
list< TopoDS_Edge > orderedEdges;
list< int > nbVertexInWires;
SMESH_Block::GetOrderedEdges( TopoDS::Face( botSM->GetSubShape().Reversed() ),
V000, orderedEdges, nbVertexInWires );
// if ( nbVertexInWires.size() != 1 )
// RETURN_BAD_RESULT("Wrong prism geometry");
// Get Wall faces corresponding to the ordered bottom edges
list< TopoDS_Face > wallFaces;
if ( !GetWallFaces( Mesh(), shape3D, botSM->GetSubShape(), orderedEdges, wallFaces))
return error(COMPERR_BAD_SHAPE, "Can't find side faces");
// Find columns of wall nodes and calculate edges' lengths
// --------------------------------------------------------
myParam2ColumnMaps.clear();
myParam2ColumnMaps.resize( orderedEdges.size() ); // total nb edges
int iE, nbEdges = nbVertexInWires.front(); // nb outer edges
vector< double > edgeLength( nbEdges );
map< double, int > len2edgeMap;
list< TopoDS_Edge >::iterator edgeIt = orderedEdges.begin();
list< TopoDS_Face >::iterator faceIt = wallFaces.begin();
for ( iE = 0; iE < nbEdges; ++edgeIt, ++faceIt )
{
TParam2ColumnMap & faceColumns = myParam2ColumnMaps[ iE ];
if ( !myHelper->LoadNodeColumns( faceColumns, *faceIt, *edgeIt, meshDS ))
return error(COMPERR_BAD_INPUT_MESH, TCom("Can't find regular quadrangle mesh ")
<< "on a side face #" << MeshDS()->ShapeToIndex( *faceIt ));
SHOWYXZ("\np1 F "<<iE, gpXYZ(faceColumns.begin()->second.front() ));
SHOWYXZ("p2 F "<<iE, gpXYZ(faceColumns.rbegin()->second.front() ));
SHOWYXZ("V First "<<iE, BRep_Tool::Pnt( TopExp::FirstVertex(*edgeIt,true )));
edgeLength[ iE ] = SMESH_Algo::EdgeLength( *edgeIt );
if ( nbEdges < NB_WALL_FACES ) // fill map used to split faces
{
SMESHDS_SubMesh* smDS = meshDS->MeshElements( *edgeIt);
if ( !smDS )
return error(COMPERR_BAD_INPUT_MESH, TCom("Null submesh on the edge #")
<< MeshDS()->ShapeToIndex( *edgeIt ));
// assure length uniqueness
edgeLength[ iE ] *= smDS->NbNodes() + edgeLength[ iE ] / ( 1000 + iE );
len2edgeMap[ edgeLength[ iE ]] = iE;
}
++iE;
}
// Load columns of internal edges (forming holes)
// and fill map ShapeIndex to TParam2ColumnMap for them
for ( ; edgeIt != orderedEdges.end() ; ++edgeIt, ++faceIt )
{
TParam2ColumnMap & faceColumns = myParam2ColumnMaps[ iE ];
if ( !myHelper->LoadNodeColumns( faceColumns, *faceIt, *edgeIt, meshDS ))
return error(COMPERR_BAD_INPUT_MESH, TCom("Can't find regular quadrangle mesh ")
<< "on a side face #" << MeshDS()->ShapeToIndex( *faceIt ));
// edge columns
int id = MeshDS()->ShapeToIndex( *edgeIt );
bool isForward = true; // meaningless for intenal wires
myShapeIndex2ColumnMap[ id ] = make_pair( & faceColumns, isForward );
// columns for vertices
// 1
const SMDS_MeshNode* n0 = faceColumns.begin()->second.front();
id = n0->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( & faceColumns, isForward );
// 2
const SMDS_MeshNode* n1 = faceColumns.rbegin()->second.front();
id = n1->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( & faceColumns, isForward );
// SHOWYXZ("\np1 F "<<iE, gpXYZ(faceColumns.begin()->second.front() ));
// SHOWYXZ("p2 F "<<iE, gpXYZ(faceColumns.rbegin()->second.front() ));
// SHOWYXZ("V First "<<iE, BRep_Tool::Pnt( TopExp::FirstVertex(*edgeIt,true )));
++iE;
}
// Create 4 wall faces of a block
// -------------------------------
if ( nbEdges <= NB_WALL_FACES ) // ************* Split faces if necessary
{
map< int, int > iE2nbSplit;
if ( nbEdges != NB_WALL_FACES ) // define how to split
{
if ( len2edgeMap.size() != nbEdges )
RETURN_BAD_RESULT("Uniqueness of edge lengths not assured");
map< double, int >::reverse_iterator maxLen_i = len2edgeMap.rbegin();
map< double, int >::reverse_iterator midLen_i = ++len2edgeMap.rbegin();
double maxLen = maxLen_i->first;
double midLen = ( len2edgeMap.size() == 1 ) ? 0 : midLen_i->first;
switch ( nbEdges ) {
case 1: // 0-th edge is split into 4 parts
iE2nbSplit.insert( make_pair( 0, 4 )); break;
case 2: // either the longest edge is split into 3 parts, or both edges into halves
if ( maxLen / 3 > midLen / 2 ) {
iE2nbSplit.insert( make_pair( maxLen_i->second, 3 ));
}
else {
iE2nbSplit.insert( make_pair( maxLen_i->second, 2 ));
iE2nbSplit.insert( make_pair( midLen_i->second, 2 ));
}
break;
case 3:
// split longest into halves
iE2nbSplit.insert( make_pair( maxLen_i->second, 2 ));
}
}
// Create TSideFace's
faceIt = wallFaces.begin();
edgeIt = orderedEdges.begin();
int iSide = 0;
for ( iE = 0; iE < nbEdges; ++edgeIt, ++faceIt )
{
// split?
map< int, int >::iterator i_nb = iE2nbSplit.find( iE );
if ( i_nb != iE2nbSplit.end() ) {
// split!
int nbSplit = i_nb->second;
vector< double > params;
splitParams( nbSplit, &myParam2ColumnMaps[ iE ], params );
bool isForward = ( edgeIt->Orientation() == TopAbs_FORWARD );
for ( int i = 0; i < nbSplit; ++i ) {
double f = ( isForward ? params[ i ] : params[ nbSplit - i-1 ]);
double l = ( isForward ? params[ i+1 ] : params[ nbSplit - i ]);
TSideFace* comp = new TSideFace( myHelper, wallFaceIds[ iSide ],
*faceIt, *edgeIt,
&myParam2ColumnMaps[ iE ], f, l );
mySide->SetComponent( iSide++, comp );
}
}
else {
TSideFace* comp = new TSideFace( myHelper, wallFaceIds[ iSide ],
*faceIt, *edgeIt,
&myParam2ColumnMaps[ iE ]);
mySide->SetComponent( iSide++, comp );
}
++iE;
}
}
else { // **************************** Unite faces
// unite first faces
int nbExraFaces = nbEdges - 3;
int iSide = 0, iE;
double u0 = 0, sumLen = 0;
for ( iE = 0; iE < nbExraFaces; ++iE )
sumLen += edgeLength[ iE ];
vector< TSideFace* > components( nbExraFaces );
vector< pair< double, double> > params( nbExraFaces );
faceIt = wallFaces.begin();
edgeIt = orderedEdges.begin();
for ( iE = 0; iE < nbExraFaces; ++edgeIt, ++faceIt )
{
components[ iE ] = new TSideFace( myHelper, wallFaceIds[ iSide ],
*faceIt, *edgeIt,
&myParam2ColumnMaps[ iE ]);
double u1 = u0 + edgeLength[ iE ] / sumLen;
params[ iE ] = make_pair( u0 , u1 );
u0 = u1;
++iE;
}
mySide->SetComponent( iSide++, new TSideFace( components, params ));
// fill the rest faces
for ( ; iE < nbEdges; ++faceIt, ++edgeIt )
{
TSideFace* comp = new TSideFace( myHelper, wallFaceIds[ iSide ],
*faceIt, *edgeIt,
&myParam2ColumnMaps[ iE ]);
mySide->SetComponent( iSide++, comp );
++iE;
}
}
// Fill geometry fields of SMESH_Block
// ------------------------------------
TopoDS_Face botF = TopoDS::Face( botSM->GetSubShape() );
TopoDS_Face topF = TopoDS::Face( topSM->GetSubShape() );
vector< int > botEdgeIdVec;
SMESH_Block::GetFaceEdgesIDs( ID_BOT_FACE, botEdgeIdVec );
bool isForward[NB_WALL_FACES] = { true, true, true, true };
Adaptor2d_Curve2d* botPcurves[NB_WALL_FACES];
Adaptor2d_Curve2d* topPcurves[NB_WALL_FACES];
for ( int iF = 0; iF < NB_WALL_FACES; ++iF )
{
TSideFace * sideFace = mySide->GetComponent( iF );
if ( !sideFace )
RETURN_BAD_RESULT("NULL TSideFace");
int fID = sideFace->FaceID();
// fill myShapeIDMap
if ( sideFace->InsertSubShapes( myShapeIDMap ) != 8 &&
!sideFace->IsComplex())
MESSAGE( ": Warning : InsertSubShapes() < 8 on side " << iF );
// side faces geometry
Adaptor2d_Curve2d* pcurves[NB_WALL_FACES];
if ( !sideFace->GetPCurves( pcurves ))
RETURN_BAD_RESULT("TSideFace::GetPCurves() failed");
SMESH_Block::TFace& tFace = myFace[ fID - ID_FirstF ];
tFace.Set( fID, sideFace->Surface(), pcurves, isForward );
SHOWYXZ( endl<<"F "<< iF << " id " << fID << " FRW " << sideFace->IsForward(), sideFace->Value(0,0));
// edges 3D geometry
vector< int > edgeIdVec;
SMESH_Block::GetFaceEdgesIDs( fID, edgeIdVec );
for ( int isMax = 0; isMax < 2; ++isMax ) {
{
int eID = edgeIdVec[ isMax ];
SMESH_Block::TEdge& tEdge = myEdge[ eID - ID_FirstE ];
tEdge.Set( eID, sideFace->HorizCurve(isMax), true);
SHOWYXZ(eID<<" HOR"<<isMax<<"(0)", sideFace->HorizCurve(isMax)->Value(0));
SHOWYXZ(eID<<" HOR"<<isMax<<"(1)", sideFace->HorizCurve(isMax)->Value(1));
}
{
int eID = edgeIdVec[ isMax+2 ];
SMESH_Block::TEdge& tEdge = myEdge[ eID - ID_FirstE ];
tEdge.Set( eID, sideFace->VertiCurve(isMax), true);
SHOWYXZ(eID<<" VER"<<isMax<<"(0)", sideFace->VertiCurve(isMax)->Value(0));
SHOWYXZ(eID<<" VER"<<isMax<<"(1)", sideFace->VertiCurve(isMax)->Value(1));
// corner points
vector< int > vertexIdVec;
SMESH_Block::GetEdgeVertexIDs( eID, vertexIdVec );
myPnt[ vertexIdVec[0] - ID_FirstV ] = tEdge.GetCurve()->Value(0).XYZ();
myPnt[ vertexIdVec[1] - ID_FirstV ] = tEdge.GetCurve()->Value(1).XYZ();
}
}
// pcurves on horizontal faces
for ( iE = 0; iE < NB_WALL_FACES; ++iE ) {
if ( edgeIdVec[ BOTTOM_EDGE ] == botEdgeIdVec[ iE ] ) {
botPcurves[ iE ] = sideFace->HorizPCurve( false, botF );
topPcurves[ iE ] = sideFace->HorizPCurve( true, topF );
break;
}
}
//sideFace->dumpNodes( 4 ); // debug
}
// horizontal faces geometry
{
SMESH_Block::TFace& tFace = myFace[ ID_BOT_FACE - ID_FirstF ];
tFace.Set( ID_BOT_FACE, new BRepAdaptor_Surface( botF ), botPcurves, isForward );
SMESH_Block::Insert( botF, ID_BOT_FACE, myShapeIDMap );
}
{
SMESH_Block::TFace& tFace = myFace[ ID_TOP_FACE - ID_FirstF ];
tFace.Set( ID_TOP_FACE, new BRepAdaptor_Surface( topF ), topPcurves, isForward );
SMESH_Block::Insert( topF, ID_TOP_FACE, myShapeIDMap );
}
// Fill map ShapeIndex to TParam2ColumnMap
// ----------------------------------------
list< TSideFace* > fList;
list< TSideFace* >::iterator fListIt;
fList.push_back( mySide );
for ( fListIt = fList.begin(); fListIt != fList.end(); ++fListIt)
{
int nb = (*fListIt)->NbComponents();
for ( int i = 0; i < nb; ++i ) {
if ( TSideFace* comp = (*fListIt)->GetComponent( i ))
fList.push_back( comp );
}
if ( TParam2ColumnMap* cols = (*fListIt)->GetColumns()) {
// columns for a base edge
int id = MeshDS()->ShapeToIndex( (*fListIt)->BaseEdge() );
bool isForward = (*fListIt)->IsForward();
myShapeIndex2ColumnMap[ id ] = make_pair( cols, isForward );
// columns for vertices
const SMDS_MeshNode* n0 = cols->begin()->second.front();
id = n0->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( cols, isForward );
const SMDS_MeshNode* n1 = cols->rbegin()->second.front();
id = n1->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( cols, !isForward );
}
}
// gp_XYZ testPar(0.25, 0.25, 0), testCoord;
// if ( !FacePoint( ID_BOT_FACE, testPar, testCoord ))
// RETURN_BAD_RESULT("TEST FacePoint() FAILED");
// SHOWYXZ("IN TEST PARAM" , testPar);
// SHOWYXZ("OUT TEST CORD" , testCoord);
// if ( !ComputeParameters( testCoord, testPar , ID_BOT_FACE))
// RETURN_BAD_RESULT("TEST ComputeParameters() FAILED");
// SHOWYXZ("OUT TEST PARAM" , testPar);
return true;
}
//================================================================================
/*!
* \brief Return pointer to column of nodes
* \param node - bottom node from which the returned column goes up
* \retval const TNodeColumn* - the found column
*/
//================================================================================
const TNodeColumn* StdMeshers_PrismAsBlock::GetNodeColumn(const SMDS_MeshNode* node) const
{
int sID = node->getshapeId();
map<int, pair< TParam2ColumnMap*, bool > >::const_iterator col_frw =
myShapeIndex2ColumnMap.find( sID );
if ( col_frw != myShapeIndex2ColumnMap.end() ) {
const TParam2ColumnMap* cols = col_frw->second.first;
TParam2ColumnIt u_col = cols->begin();
for ( ; u_col != cols->end(); ++u_col )
if ( u_col->second[ 0 ] == node )
return & u_col->second;
}
return 0;
}
//=======================================================================
//function : GetLayersTransformation
//purpose : Return transformations to get coordinates of nodes of each layer
// by nodes of the bottom. Layer is a set of nodes at a certain step
// from bottom to top.
//=======================================================================
bool StdMeshers_PrismAsBlock::GetLayersTransformation(vector<gp_Trsf> & trsf) const
{
const int zSize = VerticalSize();
if ( zSize < 3 ) return true;
trsf.resize( zSize - 2 );
// Select some node columns by which we will define coordinate system of layers
vector< const TNodeColumn* > columns;
{
const TopoDS_Shape& baseFace = Shape(ID_BOT_FACE);
list< TopoDS_Edge > orderedEdges;
list< int > nbEdgesInWires;
GetOrderedEdges( TopoDS::Face( baseFace ), TopoDS_Vertex(), orderedEdges, nbEdgesInWires );
bool isReverse;
list< TopoDS_Edge >::iterator edgeIt = orderedEdges.begin();
for ( int iE = 0; iE < nbEdgesInWires.front(); ++iE, ++edgeIt )
{
const TParam2ColumnMap& u2colMap =
GetParam2ColumnMap( myHelper->GetMeshDS()->ShapeToIndex( *edgeIt ), isReverse );
isReverse = ( edgeIt->Orientation() == TopAbs_REVERSED );
double f = u2colMap.begin()->first, l = u2colMap.rbegin()->first;
if ( isReverse ) swap ( f, l );
const int nbCol = 5;
for ( int i = 0; i < nbCol; ++i )
{
double u = f + i/double(nbCol) * ( l - f );
const TNodeColumn* col = & getColumn( & u2colMap, u )->second;
if ( columns.empty() || col != columns.back() )
columns.push_back( col );
}
}
}
// Find tolerance to check transformations
double tol2;
{
Bnd_B3d bndBox;
for ( int i = 0; i < columns.size(); ++i )
bndBox.Add( gpXYZ( columns[i]->front() ));
tol2 = bndBox.SquareExtent() * 4 * 1e-4;
}
// Compute transformations
int xCol = -1;
gp_Trsf fromCsZ, toCs0;
gp_Ax3 cs0 = getLayerCoordSys(0, columns, xCol );
//double dist0 = cs0.Location().Distance( gpXYZ( (*columns[0])[0]));
toCs0.SetTransformation( cs0 );
for ( int z = 1; z < zSize-1; ++z )
{
gp_Ax3 csZ = getLayerCoordSys(z, columns, xCol );
//double distZ = csZ.Location().Distance( gpXYZ( (*columns[0])[z]));
fromCsZ.SetTransformation( csZ );
fromCsZ.Invert();
gp_Trsf& t = trsf[ z-1 ];
t = fromCsZ * toCs0;
//t.SetScaleFactor( distZ/dist0 ); - it does not work properly, wrong base point
// check a transformation
for ( int i = 0; i < columns.size(); ++i )
{
gp_Pnt p0 = gpXYZ( (*columns[i])[0] );
gp_Pnt pz = gpXYZ( (*columns[i])[z] );
t.Transforms( p0.ChangeCoord() );
if ( p0.SquareDistance( pz ) > tol2 )
return false;
}
}
return true;
}
//================================================================================
/*!
* \brief Check curve orientation of a bootom edge
* \param meshDS - mesh DS
* \param columnsMap - node columns map of side face
* \param bottomEdge - the bootom edge
* \param sideFaceID - side face in-block ID
* \retval bool - true if orientation coinside with in-block froward orientation
*/
//================================================================================
bool StdMeshers_PrismAsBlock::IsForwardEdge(SMESHDS_Mesh* meshDS,
const TParam2ColumnMap& columnsMap,
const TopoDS_Edge & bottomEdge,
const int sideFaceID)
{
bool isForward = false;
if ( TAssocTool::IsClosedEdge( bottomEdge ))
{
isForward = ( bottomEdge.Orientation() == TopAbs_FORWARD );
}
else
{
const TNodeColumn& firstCol = columnsMap.begin()->second;
const SMDS_MeshNode* bottomNode = firstCol[0];
TopoDS_Shape firstVertex = SMESH_MesherHelper::GetSubShapeByNode( bottomNode, meshDS );
isForward = ( firstVertex.IsSame( TopExp::FirstVertex( bottomEdge, true )));
}
// on 2 of 4 sides first vertex is end
if ( sideFaceID == ID_Fx1z || sideFaceID == ID_F0yz )
isForward = !isForward;
return isForward;
}
//================================================================================
/*!
* \brief Find wall faces by bottom edges
* \param mesh - the mesh
* \param mainShape - the prism
* \param bottomFace - the bottom face
* \param bottomEdges - edges bounding the bottom face
* \param wallFaces - faces list to fill in
*/
//================================================================================
bool StdMeshers_PrismAsBlock::GetWallFaces( SMESH_Mesh* mesh,
const TopoDS_Shape & mainShape,
const TopoDS_Shape & bottomFace,
const std::list< TopoDS_Edge >& bottomEdges,
std::list< TopoDS_Face >& wallFaces)
{
wallFaces.clear();
TopTools_IndexedMapOfShape faceMap;
TopExp::MapShapes( mainShape, TopAbs_FACE, faceMap );
list< TopoDS_Edge >::const_iterator edge = bottomEdges.begin();
for ( ; edge != bottomEdges.end(); ++edge )
{
TopTools_ListIteratorOfListOfShape ancestIt = mesh->GetAncestors( *edge );
for ( ; ancestIt.More(); ancestIt.Next() )
{
const TopoDS_Shape& ancestor = ancestIt.Value();
if ( ancestor.ShapeType() == TopAbs_FACE && // face
!bottomFace.IsSame( ancestor ) && // not bottom
faceMap.FindIndex( ancestor )) // belongs to the prism
{
wallFaces.push_back( TopoDS::Face( ancestor ));
break;
}
}
}
return ( wallFaces.size() == bottomEdges.size() );
}
//================================================================================
/*!
* \brief Constructor
* \param faceID - in-block ID
* \param face - geom face
* \param columnsMap - map of node columns
* \param first - first normalized param
* \param last - last normalized param
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::TSideFace(SMESH_MesherHelper* helper,
const int faceID,
const TopoDS_Face& face,
const TopoDS_Edge& baseEdge,
TParam2ColumnMap* columnsMap,
const double first,
const double last):
myID( faceID ),
myParamToColumnMap( columnsMap ),
myBaseEdge( baseEdge ),
myHelper( helper )
{
mySurface.Initialize( face );
myParams.resize( 1 );
myParams[ 0 ] = make_pair( first, last );
myIsForward = StdMeshers_PrismAsBlock::IsForwardEdge( myHelper->GetMeshDS(),
*myParamToColumnMap,
myBaseEdge, myID );
}
//================================================================================
/*!
* \brief Constructor of complex side face
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::
TSideFace(const vector< TSideFace* >& components,
const vector< pair< double, double> > & params)
:myID( components[0] ? components[0]->myID : 0 ),
myParamToColumnMap( 0 ),
myParams( params ),
myIsForward( true ),
myComponents( components ),
myHelper( components[0] ? components[0]->myHelper : 0 )
{}
//================================================================================
/*!
* \brief Copy constructor
* \param other - other side
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::TSideFace( const TSideFace& other )
{
myID = other.myID;
mySurface = other.mySurface;
myBaseEdge = other.myBaseEdge;
myParams = other.myParams;
myIsForward = other.myIsForward;
myHelper = other.myHelper;
myParamToColumnMap = other.myParamToColumnMap;
myComponents.resize( other.myComponents.size());
for (int i = 0 ; i < myComponents.size(); ++i )
myComponents[ i ] = new TSideFace( *other.myComponents[ i ]);
}
//================================================================================
/*!
* \brief Deletes myComponents
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::~TSideFace()
{
for (int i = 0 ; i < myComponents.size(); ++i )
if ( myComponents[ i ] )
delete myComponents[ i ];
}
//================================================================================
/*!
* \brief Return geometry of the vertical curve
* \param isMax - true means curve located closer to (1,1,1) block point
* \retval Adaptor3d_Curve* - curve adaptor
*/
//================================================================================
Adaptor3d_Curve* StdMeshers_PrismAsBlock::TSideFace::VertiCurve(const bool isMax) const
{
if ( !myComponents.empty() ) {
if ( isMax )
return myComponents.back()->VertiCurve(isMax);
else
return myComponents.front()->VertiCurve(isMax);
}
double f = myParams[0].first, l = myParams[0].second;
if ( !myIsForward ) std::swap( f, l );
return new TVerticalEdgeAdaptor( myParamToColumnMap, isMax ? l : f );
}
//================================================================================
/*!
* \brief Return geometry of the top or bottom curve
* \param isTop -
* \retval Adaptor3d_Curve* -
*/
//================================================================================
Adaptor3d_Curve* StdMeshers_PrismAsBlock::TSideFace::HorizCurve(const bool isTop) const
{
return new THorizontalEdgeAdaptor( this, isTop );
}
//================================================================================
/*!
* \brief Return pcurves
* \param pcurv - array of 4 pcurves
* \retval bool - is a success
*/
//================================================================================
bool StdMeshers_PrismAsBlock::TSideFace::GetPCurves(Adaptor2d_Curve2d* pcurv[4]) const
{
int iEdge[ 4 ] = { BOTTOM_EDGE, TOP_EDGE, V0_EDGE, V1_EDGE };
for ( int i = 0 ; i < 4 ; ++i ) {
Handle(Geom2d_Line) line;
switch ( iEdge[ i ] ) {
case TOP_EDGE:
line = new Geom2d_Line( gp_Pnt2d( 0, 1 ), gp::DX2d() ); break;
case BOTTOM_EDGE:
line = new Geom2d_Line( gp::Origin2d(), gp::DX2d() ); break;
case V0_EDGE:
line = new Geom2d_Line( gp::Origin2d(), gp::DY2d() ); break;
case V1_EDGE:
line = new Geom2d_Line( gp_Pnt2d( 1, 0 ), gp::DY2d() ); break;
}
pcurv[ i ] = new Geom2dAdaptor_Curve( line, 0, 1 );
}
return true;
}
//================================================================================
/*!
* \brief Returns geometry of pcurve on a horizontal face
* \param isTop - is top or bottom face
* \param horFace - a horizontal face
* \retval Adaptor2d_Curve2d* - curve adaptor
*/
//================================================================================
Adaptor2d_Curve2d*
StdMeshers_PrismAsBlock::TSideFace::HorizPCurve(const bool isTop,
const TopoDS_Face& horFace) const
{
return new TPCurveOnHorFaceAdaptor( this, isTop, horFace );
}
//================================================================================
/*!
* \brief Return a component corresponding to parameter
* \param U - parameter along a horizontal size
* \param localU - parameter along a horizontal size of a component
* \retval TSideFace* - found component
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace*
StdMeshers_PrismAsBlock::TSideFace::GetComponent(const double U,double & localU) const
{
localU = U;
if ( myComponents.empty() )
return const_cast<TSideFace*>( this );
int i;
for ( i = 0; i < myComponents.size(); ++i )
if ( U < myParams[ i ].second )
break;
if ( i >= myComponents.size() )
i = myComponents.size() - 1;
double f = myParams[ i ].first, l = myParams[ i ].second;
localU = ( U - f ) / ( l - f );
return myComponents[ i ];
}
//================================================================================
/*!
* \brief Find node columns for a parameter
* \param U - parameter along a horizontal edge
* \param col1 - the 1st found column
* \param col2 - the 2nd found column
* \retval r - normalized position of U between the found columns
*/
//================================================================================
double StdMeshers_PrismAsBlock::TSideFace::GetColumns(const double U,
TParam2ColumnIt & col1,
TParam2ColumnIt & col2) const
{
double u = U, r = 0;
if ( !myComponents.empty() ) {
TSideFace * comp = GetComponent(U,u);
return comp->GetColumns( u, col1, col2 );
}
if ( !myIsForward )
u = 1 - u;
double f = myParams[0].first, l = myParams[0].second;
u = f + u * ( l - f );
col1 = col2 = getColumn( myParamToColumnMap, u );
if ( ++col2 == myParamToColumnMap->end() ) {
--col2;
r = 0.5;
}
else {
double uf = col1->first;
double ul = col2->first;
r = ( u - uf ) / ( ul - uf );
}
return r;
}
//================================================================================
/*!
* \brief Return coordinates by normalized params
* \param U - horizontal param
* \param V - vertical param
* \retval gp_Pnt - result point
*/
//================================================================================
gp_Pnt StdMeshers_PrismAsBlock::TSideFace::Value(const Standard_Real U,
const Standard_Real V) const
{
if ( !myComponents.empty() ) {
double u;
TSideFace * comp = GetComponent(U,u);
return comp->Value( u, V );
}
TParam2ColumnIt u_col1, u_col2;
double vR, hR = GetColumns( U, u_col1, u_col2 );
const SMDS_MeshNode* n1 = 0;
const SMDS_MeshNode* n2 = 0;
const SMDS_MeshNode* n3 = 0;
const SMDS_MeshNode* n4 = 0;
// BEGIN issue 0020680: EDF 1252 SMESH: Bad cell created by Radial prism in center of torus
// Workaround for a wrongly located point returned by mySurface.Value() for
// UV located near boundary of BSpline surface.
// To bypass the problem, we take point from 3D curve of edge.
// It solves pb of the bloc_fiss_new.py
const double tol = 1e-3;
if ( V < tol || V+tol >= 1. )
{
n1 = V < tol ? u_col1->second.front() : u_col1->second.back();
n3 = V < tol ? u_col2->second.front() : u_col2->second.back();
TopoDS_Edge edge;
if ( V < tol )
{
edge = myBaseEdge;
}
else
{
TopoDS_Shape s = myHelper->GetSubShapeByNode( n1, myHelper->GetMeshDS() );
if ( s.ShapeType() != TopAbs_EDGE )
s = myHelper->GetSubShapeByNode( n3, myHelper->GetMeshDS() );
if ( s.ShapeType() == TopAbs_EDGE )
edge = TopoDS::Edge( s );
}
if ( !edge.IsNull() )
{
double u1 = myHelper->GetNodeU( edge, n1 );
double u3 = myHelper->GetNodeU( edge, n3 );
double u = u1 * ( 1 - hR ) + u3 * hR;
TopLoc_Location loc; double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( edge,loc,f,l );
return curve->Value( u ).Transformed( loc );
}
}
// END issue 0020680: EDF 1252 SMESH: Bad cell created by Radial prism in center of torus
vR = getRAndNodes( & u_col1->second, V, n1, n2 );
vR = getRAndNodes( & u_col2->second, V, n3, n4 );
gp_XY uv1 = myHelper->GetNodeUV( mySurface.Face(), n1, n4);
gp_XY uv2 = myHelper->GetNodeUV( mySurface.Face(), n2, n3);
gp_XY uv12 = uv1 * ( 1 - vR ) + uv2 * vR;
gp_XY uv3 = myHelper->GetNodeUV( mySurface.Face(), n3, n2);
gp_XY uv4 = myHelper->GetNodeUV( mySurface.Face(), n4, n1);
gp_XY uv34 = uv3 * ( 1 - vR ) + uv4 * vR;
gp_XY uv = uv12 * ( 1 - hR ) + uv34 * hR;
gp_Pnt p = mySurface.Value( uv.X(), uv.Y() );
return p;
}
//================================================================================
/*!
* \brief Return boundary edge
* \param edge - edge index
* \retval TopoDS_Edge - found edge
*/
//================================================================================
TopoDS_Edge StdMeshers_PrismAsBlock::TSideFace::GetEdge(const int iEdge) const
{
if ( !myComponents.empty() ) {
switch ( iEdge ) {
case V0_EDGE : return myComponents.front()->GetEdge( iEdge );
case V1_EDGE : return myComponents.back() ->GetEdge( iEdge );
default: return TopoDS_Edge();
}
}
TopoDS_Shape edge;
const SMDS_MeshNode* node = 0;
SMESHDS_Mesh * meshDS = myHelper->GetMesh()->GetMeshDS();
TNodeColumn* column;
switch ( iEdge ) {
case TOP_EDGE:
case BOTTOM_EDGE:
column = & (( ++myParamToColumnMap->begin())->second );
node = ( iEdge == TOP_EDGE ) ? column->back() : column->front();
edge = myHelper->GetSubShapeByNode ( node, meshDS );
if ( edge.ShapeType() == TopAbs_VERTEX ) {
column = & ( myParamToColumnMap->begin()->second );
node = ( iEdge == TOP_EDGE ) ? column->back() : column->front();
}
break;
case V0_EDGE:
case V1_EDGE: {
bool back = ( iEdge == V1_EDGE );
if ( !myIsForward ) back = !back;
if ( back )
column = & ( myParamToColumnMap->rbegin()->second );
else
column = & ( myParamToColumnMap->begin()->second );
if ( column->size() > 0 )
edge = myHelper->GetSubShapeByNode( (*column)[ 1 ], meshDS );
if ( edge.IsNull() || edge.ShapeType() == TopAbs_VERTEX )
node = column->front();
break;
}
default:;
}
if ( !edge.IsNull() && edge.ShapeType() == TopAbs_EDGE )
return TopoDS::Edge( edge );
// find edge by 2 vertices
TopoDS_Shape V1 = edge;
TopoDS_Shape V2 = myHelper->GetSubShapeByNode( node, meshDS );
if ( V2.ShapeType() == TopAbs_VERTEX && !V2.IsSame( V1 ))
{
TopTools_ListIteratorOfListOfShape ancestIt =
myHelper->GetMesh()->GetAncestors( V1 );
for ( ; ancestIt.More(); ancestIt.Next() )
{
const TopoDS_Shape & ancestor = ancestIt.Value();
if ( ancestor.ShapeType() == TopAbs_EDGE )
for ( TopExp_Explorer e( ancestor, TopAbs_VERTEX ); e.More(); e.Next() )
if ( V2.IsSame( e.Current() ))
return TopoDS::Edge( ancestor );
}
}
return TopoDS_Edge();
}
//================================================================================
/*!
* \brief Fill block subshapes
* \param shapeMap - map to fill in
* \retval int - nb inserted subshapes
*/
//================================================================================
int StdMeshers_PrismAsBlock::TSideFace::InsertSubShapes(TBlockShapes& shapeMap) const
{
int nbInserted = 0;
// Insert edges
vector< int > edgeIdVec;
SMESH_Block::GetFaceEdgesIDs( myID, edgeIdVec );
for ( int i = BOTTOM_EDGE; i <=V1_EDGE ; ++i ) {
TopoDS_Edge e = GetEdge( i );
if ( !e.IsNull() ) {
nbInserted += SMESH_Block::Insert( e, edgeIdVec[ i ], shapeMap);
}
}
// Insert corner vertices
TParam2ColumnIt col1, col2 ;
vector< int > vertIdVec;
// from V0 column
SMESH_Block::GetEdgeVertexIDs( edgeIdVec[ V0_EDGE ], vertIdVec);
GetColumns(0, col1, col2 );
const SMDS_MeshNode* node0 = col1->second.front();
const SMDS_MeshNode* node1 = col1->second.back();
TopoDS_Shape v0 = myHelper->GetSubShapeByNode( node0, myHelper->GetMeshDS());
TopoDS_Shape v1 = myHelper->GetSubShapeByNode( node1, myHelper->GetMeshDS());
if ( v0.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v0, vertIdVec[ 0 ], shapeMap);
}
if ( v1.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v1, vertIdVec[ 1 ], shapeMap);
}
// from V1 column
SMESH_Block::GetEdgeVertexIDs( edgeIdVec[ V1_EDGE ], vertIdVec);
GetColumns(1, col1, col2 );
node0 = col2->second.front();
node1 = col2->second.back();
v0 = myHelper->GetSubShapeByNode( node0, myHelper->GetMeshDS());
v1 = myHelper->GetSubShapeByNode( node1, myHelper->GetMeshDS());
if ( v0.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v0, vertIdVec[ 0 ], shapeMap);
}
if ( v1.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v1, vertIdVec[ 1 ], shapeMap);
}
// TopoDS_Vertex V0, V1, Vcom;
// TopExp::Vertices( myBaseEdge, V0, V1, true );
// if ( !myIsForward ) std::swap( V0, V1 );
// // bottom vertex IDs
// SMESH_Block::GetEdgeVertexIDs( edgeIdVec[ _u0 ], vertIdVec);
// SMESH_Block::Insert( V0, vertIdVec[ 0 ], shapeMap);
// SMESH_Block::Insert( V1, vertIdVec[ 1 ], shapeMap);
// TopoDS_Edge sideEdge = GetEdge( V0_EDGE );
// if ( sideEdge.IsNull() || !TopExp::CommonVertex( botEdge, sideEdge, Vcom ))
// return false;
// // insert one side edge
// int edgeID;
// if ( Vcom.IsSame( V0 )) edgeID = edgeIdVec[ _v0 ];
// else edgeID = edgeIdVec[ _v1 ];
// SMESH_Block::Insert( sideEdge, edgeID, shapeMap);
// // top vertex of the side edge
// SMESH_Block::GetEdgeVertexIDs( edgeID, vertIdVec);
// TopoDS_Vertex Vtop = TopExp::FirstVertex( sideEdge );
// if ( Vcom.IsSame( Vtop ))
// Vtop = TopExp::LastVertex( sideEdge );
// SMESH_Block::Insert( Vtop, vertIdVec[ 1 ], shapeMap);
// // other side edge
// sideEdge = GetEdge( V1_EDGE );
// if ( sideEdge.IsNull() )
// return false;
// if ( edgeID = edgeIdVec[ _v1 ]) edgeID = edgeIdVec[ _v0 ];
// else edgeID = edgeIdVec[ _v1 ];
// SMESH_Block::Insert( sideEdge, edgeID, shapeMap);
// // top edge
// TopoDS_Edge topEdge = GetEdge( TOP_EDGE );
// SMESH_Block::Insert( topEdge, edgeIdVec[ _u1 ], shapeMap);
// // top vertex of the other side edge
// if ( !TopExp::CommonVertex( topEdge, sideEdge, Vcom ))
// return false;
// SMESH_Block::GetEdgeVertexIDs( edgeID, vertIdVec );
// SMESH_Block::Insert( Vcom, vertIdVec[ 1 ], shapeMap);
return nbInserted;
}
//================================================================================
/*!
* \brief Dump ids of nodes of sides
*/
//================================================================================
void StdMeshers_PrismAsBlock::TSideFace::dumpNodes(int nbNodes) const
{
#ifdef _DEBUG_
cout << endl << "NODES OF FACE "; SMESH_Block::DumpShapeID( myID, cout ) << endl;
THorizontalEdgeAdaptor* hSize0 = (THorizontalEdgeAdaptor*) HorizCurve(0);
cout << "Horiz side 0: "; hSize0->dumpNodes(nbNodes); cout << endl;
THorizontalEdgeAdaptor* hSize1 = (THorizontalEdgeAdaptor*) HorizCurve(1);
cout << "Horiz side 1: "; hSize1->dumpNodes(nbNodes); cout << endl;
TVerticalEdgeAdaptor* vSide0 = (TVerticalEdgeAdaptor*) VertiCurve(0);
cout << "Verti side 0: "; vSide0->dumpNodes(nbNodes); cout << endl;
TVerticalEdgeAdaptor* vSide1 = (TVerticalEdgeAdaptor*) VertiCurve(1);
cout << "Verti side 1: "; vSide1->dumpNodes(nbNodes); cout << endl;
delete hSize0; delete hSize1; delete vSide0; delete vSide1;
#endif
}
//================================================================================
/*!
* \brief Creates TVerticalEdgeAdaptor
* \param columnsMap - node column map
* \param parameter - normalized parameter
*/
//================================================================================
StdMeshers_PrismAsBlock::TVerticalEdgeAdaptor::
TVerticalEdgeAdaptor( const TParam2ColumnMap* columnsMap, const double parameter)
{
myNodeColumn = & getColumn( columnsMap, parameter )->second;
}
//================================================================================
/*!
* \brief Return coordinates for the given normalized parameter
* \param U - normalized parameter
* \retval gp_Pnt - coordinates
*/
//================================================================================
gp_Pnt StdMeshers_PrismAsBlock::TVerticalEdgeAdaptor::Value(const Standard_Real U) const
{
const SMDS_MeshNode* n1;
const SMDS_MeshNode* n2;
double r = getRAndNodes( myNodeColumn, U, n1, n2 );
return gpXYZ(n1) * ( 1 - r ) + gpXYZ(n2) * r;
}
//================================================================================
/*!
* \brief Dump ids of nodes
*/
//================================================================================
void StdMeshers_PrismAsBlock::TVerticalEdgeAdaptor::dumpNodes(int nbNodes) const
{
#ifdef _DEBUG_
for ( int i = 0; i < nbNodes && i < myNodeColumn->size(); ++i )
cout << (*myNodeColumn)[i]->GetID() << " ";
if ( nbNodes < myNodeColumn->size() )
cout << myNodeColumn->back()->GetID();
#endif
}
//================================================================================
/*!
* \brief Return coordinates for the given normalized parameter
* \param U - normalized parameter
* \retval gp_Pnt - coordinates
*/
//================================================================================
gp_Pnt StdMeshers_PrismAsBlock::THorizontalEdgeAdaptor::Value(const Standard_Real U) const
{
return mySide->TSideFace::Value( U, myV );
}
//================================================================================
/*!
* \brief Dump ids of <nbNodes> first nodes and the last one
*/
//================================================================================
void StdMeshers_PrismAsBlock::THorizontalEdgeAdaptor::dumpNodes(int nbNodes) const
{
#ifdef _DEBUG_
// Not bedugged code. Last node is sometimes incorrect
const TSideFace* side = mySide;
double u = 0;
if ( mySide->IsComplex() )
side = mySide->GetComponent(0,u);
TParam2ColumnIt col, col2;
TParam2ColumnMap* u2cols = side->GetColumns();
side->GetColumns( u , col, col2 );
int j, i = myV ? mySide->ColumnHeight()-1 : 0;
const SMDS_MeshNode* n = 0;
const SMDS_MeshNode* lastN
= side->IsForward() ? u2cols->rbegin()->second[ i ] : u2cols->begin()->second[ i ];
for ( j = 0; j < nbNodes && n != lastN; ++j )
{
n = col->second[ i ];
cout << n->GetID() << " ";
if ( side->IsForward() )
++col;
else
--col;
}
// last node
u = 1;
if ( mySide->IsComplex() )
side = mySide->GetComponent(1,u);
side->GetColumns( u , col, col2 );
if ( n != col->second[ i ] )
cout << col->second[ i ]->GetID();
#endif
}
//================================================================================
/*!
* \brief Return UV on pcurve for the given normalized parameter
* \param U - normalized parameter
* \retval gp_Pnt - coordinates
*/
//================================================================================
gp_Pnt2d StdMeshers_PrismAsBlock::TPCurveOnHorFaceAdaptor::Value(const Standard_Real U) const
{
TParam2ColumnIt u_col1, u_col2;
double r = mySide->GetColumns( U, u_col1, u_col2 );
gp_XY uv1 = mySide->GetNodeUV( myFace, u_col1->second[ myZ ]);
gp_XY uv2 = mySide->GetNodeUV( myFace, u_col2->second[ myZ ]);
return uv1 * ( 1 - r ) + uv2 * r;
}