mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2024-12-28 18:30:35 +05:00
Add new type of Doxygen comments for generating documentation of Python files.
This commit is contained in:
parent
8f5e8cdfbb
commit
76a6098c04
@ -31,8 +31,6 @@ import geompy
|
||||
import StdMeshers
|
||||
import SMESH
|
||||
|
||||
# Public variables
|
||||
# ----------------
|
||||
|
||||
REGULAR = 1
|
||||
PYTHON = 2
|
||||
@ -43,8 +41,6 @@ GHS3D = 4
|
||||
smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH")
|
||||
smesh.SetCurrentStudy(salome.myStudy)
|
||||
|
||||
# Private functions
|
||||
# -----------------
|
||||
|
||||
NO_NAME = "NoName"
|
||||
|
||||
@ -64,39 +60,31 @@ def SetName(obj, name):
|
||||
attr = sobj.FindAttribute("AttributeName")[1]
|
||||
attr.SetValue(name)
|
||||
|
||||
# Algorithms and hypothesis
|
||||
# =========================
|
||||
|
||||
# Private class: Mesh_Algorithm
|
||||
# -----------------------------
|
||||
|
||||
## Mother class to define algorithm, recommended to don't use directly.
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Algorithm:
|
||||
"""
|
||||
Mother class to define algorithm, recommended to don't use directly
|
||||
"""
|
||||
# @class Mesh_Algorithm
|
||||
# @brief Class Mesh_Algorithm
|
||||
|
||||
mesh = 0
|
||||
geom = 0
|
||||
subm = 0
|
||||
algo = 0
|
||||
|
||||
## If the algorithm is global, return 0
|
||||
# \fn else return the submesh associated to this algorithm.
|
||||
#
|
||||
# More details.
|
||||
def GetSubMesh(self):
|
||||
"""
|
||||
If the algorithm is global, return 0
|
||||
else return the submesh associated to this algorithm
|
||||
"""
|
||||
return self.subm
|
||||
|
||||
## Return the wrapped mesher.
|
||||
def GetAlgorithm(self):
|
||||
"""
|
||||
Return the wrapped mesher
|
||||
"""
|
||||
return self.algo
|
||||
|
||||
## Private method. Print error message if a hypothesis was not assigned.
|
||||
def TreatHypoStatus(self, status, hypName, geomName, isAlgo):
|
||||
"""
|
||||
Private method. Print error message if a hypothesis was not assigned
|
||||
"""
|
||||
if isAlgo:
|
||||
hypType = "algorithm"
|
||||
else:
|
||||
@ -125,10 +113,8 @@ class Mesh_Algorithm:
|
||||
print hypName, "was not assigned to",geomName,":", reason
|
||||
pass
|
||||
|
||||
## Private method.
|
||||
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
|
||||
"""
|
||||
Private method
|
||||
"""
|
||||
if geom is None:
|
||||
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
|
||||
self.mesh = mesh
|
||||
@ -149,10 +135,8 @@ class Mesh_Algorithm:
|
||||
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
|
||||
self.TreatHypoStatus( status, hypo, name, 1 )
|
||||
|
||||
## Private method
|
||||
def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"):
|
||||
"""
|
||||
Private method
|
||||
"""
|
||||
hypo = smesh.CreateHypothesis(hyp, so)
|
||||
a = ""
|
||||
s = "="
|
||||
@ -171,32 +155,26 @@ class Mesh_Algorithm:
|
||||
# Public class: Mesh_Segment
|
||||
# --------------------------
|
||||
|
||||
## Class to define a segment 1D algorithm for discretization
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Segment(Mesh_Algorithm):
|
||||
"""
|
||||
Class to define a segment 1D algorithm for discretization
|
||||
"""
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
"""
|
||||
Private constructor
|
||||
"""
|
||||
self.Create(mesh, geom, "Regular_1D")
|
||||
|
||||
## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
|
||||
# @param l for the length of segments that cut an edge
|
||||
def LocalLength(self, l):
|
||||
"""
|
||||
Define "LocalLength" hypothesis to cut an edge in several segments with the same length
|
||||
\param l for the length of segments that cut an edge
|
||||
"""
|
||||
hyp = self.Hypothesis("LocalLength", [l])
|
||||
hyp.SetLength(l)
|
||||
return hyp
|
||||
|
||||
## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
|
||||
# @param n for the number of segments that cut an edge
|
||||
# @param s for the scale factor (optional)
|
||||
def NumberOfSegments(self, n, s=[]):
|
||||
"""
|
||||
Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
|
||||
\param n for the number of segments that cut an edge
|
||||
\param s for the scale factor (optional)
|
||||
"""
|
||||
if s == []:
|
||||
hyp = self.Hypothesis("NumberOfSegments", [n])
|
||||
else:
|
||||
@ -206,86 +184,70 @@ class Mesh_Segment(Mesh_Algorithm):
|
||||
hyp.SetNumberOfSegments(n)
|
||||
return hyp
|
||||
|
||||
## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
|
||||
# @param start for the length of the first segment
|
||||
# @param end for the length of the last segment
|
||||
def Arithmetic1D(self, start, end):
|
||||
"""
|
||||
Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
|
||||
\param start for the length of the first segment
|
||||
\param end for the length of the last segment
|
||||
"""
|
||||
hyp = self.Hypothesis("Arithmetic1D", [start, end])
|
||||
hyp.SetLength(start, 1)
|
||||
hyp.SetLength(end , 0)
|
||||
return hyp
|
||||
|
||||
## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
|
||||
# @param start for the length of the first segment
|
||||
# @param end for the length of the last segment
|
||||
def StartEndLength(self, start, end):
|
||||
"""
|
||||
Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
|
||||
\param start for the length of the first segment
|
||||
\param end for the length of the last segment
|
||||
"""
|
||||
hyp = self.Hypothesis("StartEndLength", [start, end])
|
||||
hyp.SetLength(start, 1)
|
||||
hyp.SetLength(end , 0)
|
||||
return hyp
|
||||
|
||||
## Define "Deflection1D" hypothesis
|
||||
# @param d for the deflection
|
||||
def Deflection1D(self, d):
|
||||
"""
|
||||
Define "Deflection1D" hypothesis
|
||||
\param d for the deflection
|
||||
"""
|
||||
hyp = self.Hypothesis("Deflection1D", [d])
|
||||
hyp.SetDeflection(d)
|
||||
return hyp
|
||||
|
||||
## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
|
||||
# the opposite side in the case of quadrangular faces
|
||||
def Propagation(self):
|
||||
"""
|
||||
Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
|
||||
the opposite side in the case of quadrangular faces
|
||||
"""
|
||||
return self.Hypothesis("Propagation")
|
||||
|
||||
## Define "AutomaticLength" hypothesis
|
||||
# @param fineness for the fineness [0-1]
|
||||
def AutomaticLength(self, fineness=0):
|
||||
"""
|
||||
Define "AutomaticLength" hypothesis
|
||||
\param fineness for the fineness [0-1]
|
||||
"""
|
||||
hyp = self.Hypothesis("AutomaticLength")
|
||||
hyp.SetFineness( fineness )
|
||||
return hyp
|
||||
|
||||
## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
|
||||
# If the 2D mesher sees that all boundary edges are quadratic ones,
|
||||
# it generates quadratic faces, else it generates linear faces using
|
||||
# medium nodes as if they were vertex ones.
|
||||
# The 3D mesher generates quadratic volumes only if all boundary faces
|
||||
# are quadratic ones, else it fails.
|
||||
def QuadraticMesh(self):
|
||||
"""
|
||||
Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
|
||||
If the 2D mesher sees that all boundary edges are quadratic ones,
|
||||
it generates quadratic faces, else it generates linear faces using
|
||||
medium nodes as if they were vertex ones.
|
||||
The 3D mesher generates quadratic volumes only if all boundary faces
|
||||
are quadratic ones, else it fails.
|
||||
"""
|
||||
hyp = self.Hypothesis("QuadraticMesh")
|
||||
return hyp
|
||||
|
||||
# Public class: Mesh_Segment_Python
|
||||
# ---------------------------------
|
||||
|
||||
## Class to define a segment 1D algorithm for discretization with python function
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Segment_Python(Mesh_Segment):
|
||||
"""
|
||||
Class to define a segment 1D algorithm for discretization with python function
|
||||
"""
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
"""
|
||||
Private constructor
|
||||
"""
|
||||
import Python1dPlugin
|
||||
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
|
||||
|
||||
## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
|
||||
# @param n for the number of segments that cut an edge
|
||||
# @param func for the python function that calculate the length of all segments
|
||||
def PythonSplit1D(self, n, func):
|
||||
"""
|
||||
Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
|
||||
\param n for the number of segments that cut an edge
|
||||
\param func for the python function that calculate the length of all segments
|
||||
"""
|
||||
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so")
|
||||
hyp.SetNumberOfSegments(n)
|
||||
hyp.SetPythonLog10RatioFunction(func)
|
||||
@ -294,78 +256,64 @@ class Mesh_Segment_Python(Mesh_Segment):
|
||||
# Public class: Mesh_Triangle
|
||||
# ---------------------------
|
||||
|
||||
## Class to define a triangle 2D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Triangle(Mesh_Algorithm):
|
||||
"""
|
||||
Class to define a triangle 2D algorithm
|
||||
"""
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
"""
|
||||
Private constructor
|
||||
"""
|
||||
self.Create(mesh, geom, "MEFISTO_2D")
|
||||
|
||||
## Define "MaxElementArea" hypothesis to give the maximun area of each triangles
|
||||
# @param area for the maximum area of each triangles
|
||||
def MaxElementArea(self, area):
|
||||
"""
|
||||
Define "MaxElementArea" hypothesis to give the maximun area of each triangles
|
||||
\param area for the maximum area of each triangles
|
||||
"""
|
||||
hyp = self.Hypothesis("MaxElementArea", [area])
|
||||
hyp.SetMaxElementArea(area)
|
||||
return hyp
|
||||
|
||||
## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
|
||||
def LengthFromEdges(self):
|
||||
"""
|
||||
Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
|
||||
"""
|
||||
return self.Hypothesis("LengthFromEdges")
|
||||
|
||||
# Public class: Mesh_Quadrangle
|
||||
# -----------------------------
|
||||
|
||||
## Class to define a quadrangle 2D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Quadrangle(Mesh_Algorithm):
|
||||
"""
|
||||
Class to define a quadrangle 2D algorithm
|
||||
"""
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
"""
|
||||
Private constructor
|
||||
"""
|
||||
self.Create(mesh, geom, "Quadrangle_2D")
|
||||
|
||||
## Define "QuadranglePreference" hypothesis, forcing construction
|
||||
# of quadrangles if the number of nodes on opposite edges is not the same
|
||||
# in the case where the global number of nodes on edges is even
|
||||
def QuadranglePreference(self):
|
||||
"""
|
||||
Define "QuadranglePreference" hypothesis, forcing construction
|
||||
of quadrangles if the number of nodes on opposite edges is not the same
|
||||
in the case where the global number of nodes on edges is even
|
||||
"""
|
||||
hyp = self.Hypothesis("QuadranglePreference")
|
||||
return hyp
|
||||
|
||||
# Public class: Mesh_Tetrahedron
|
||||
# ------------------------------
|
||||
|
||||
## Class to define a tetrahedron 3D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Tetrahedron(Mesh_Algorithm):
|
||||
"""
|
||||
Class to define a tetrahedron 3D algorithm
|
||||
"""
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, algo, geom=0):
|
||||
"""
|
||||
Private constructor
|
||||
"""
|
||||
if algo == NETGEN:
|
||||
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
|
||||
elif algo == GHS3D:
|
||||
import GHS3DPlugin
|
||||
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
|
||||
|
||||
## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
|
||||
# @param vol for the maximum volume of each tetrahedral
|
||||
def MaxElementVolume(self, vol):
|
||||
"""
|
||||
Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
|
||||
\param vol for the maximum volume of each tetrahedral
|
||||
"""
|
||||
hyp = self.Hypothesis("MaxElementVolume", [vol])
|
||||
hyp.SetMaxElementVolume(vol)
|
||||
return hyp
|
||||
@ -373,42 +321,36 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
|
||||
# Public class: Mesh_Hexahedron
|
||||
# ------------------------------
|
||||
|
||||
## Class to define a hexahedron 3D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Hexahedron(Mesh_Algorithm):
|
||||
"""
|
||||
Class to define a hexahedron 3D algorithm
|
||||
"""
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
"""
|
||||
Private constructor
|
||||
"""
|
||||
self.Create(mesh, geom, "Hexa_3D")
|
||||
|
||||
# Public class: Mesh_Netgen
|
||||
# ------------------------------
|
||||
|
||||
## Class to define a NETGEN-based 2D or 3D algorithm
|
||||
# that need no discrete boundary (i.e. independent)
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Netgen(Mesh_Algorithm):
|
||||
"""
|
||||
Class to define a NETGEN-based 2D or 3D algorithm
|
||||
that need no discrete boundary (i.e. independent)
|
||||
"""
|
||||
|
||||
is3D = 0
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, is3D, geom=0):
|
||||
"""
|
||||
Private constructor
|
||||
"""
|
||||
self.is3D = is3D
|
||||
if is3D:
|
||||
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
|
||||
else:
|
||||
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
|
||||
|
||||
## Define hypothesis containing parameters of the algorithm
|
||||
def Parameters(self):
|
||||
"""
|
||||
Define hypothesis containing parameters of the algorithm
|
||||
"""
|
||||
if self.is3D:
|
||||
hyp = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
|
||||
else:
|
||||
@ -418,23 +360,21 @@ class Mesh_Netgen(Mesh_Algorithm):
|
||||
# Public class: Mesh
|
||||
# ==================
|
||||
|
||||
## Class to define a mesh
|
||||
#
|
||||
# More details.
|
||||
class Mesh:
|
||||
"""
|
||||
Class to define a mesh
|
||||
"""
|
||||
|
||||
geom = 0
|
||||
mesh = 0
|
||||
|
||||
## Constructor
|
||||
#
|
||||
# Creates mesh on the shape \a geom,
|
||||
# sets GUI name of this mesh to \a name.
|
||||
# @param geom Shape to be meshed
|
||||
# @param name Study name of the mesh
|
||||
def __init__(self, geom, name=0):
|
||||
"""
|
||||
Constructor
|
||||
|
||||
Creates mesh on the shape \a geom,
|
||||
sets GUI name of this mesh to \a name.
|
||||
\param geom Shape to be meshed
|
||||
\param name Study name of the mesh
|
||||
"""
|
||||
self.geom = geom
|
||||
self.mesh = smesh.CreateMesh(geom)
|
||||
if name == 0:
|
||||
@ -442,22 +382,16 @@ class Mesh:
|
||||
else:
|
||||
SetName(self.mesh, name)
|
||||
|
||||
## Method that returns the mesh
|
||||
def GetMesh(self):
|
||||
"""
|
||||
Method that returns the mesh
|
||||
"""
|
||||
return self.mesh
|
||||
|
||||
## Method that returns the shape associated to the mesh
|
||||
def GetShape(self):
|
||||
"""
|
||||
Method that returns the shape associated to the mesh
|
||||
"""
|
||||
return self.geom
|
||||
|
||||
## Returns mesh dimension depending on shape one
|
||||
def MeshDimension(self):
|
||||
"""
|
||||
Returns mesh dimension depending on shape one
|
||||
"""
|
||||
shells = geompy.SubShapeAllIDs( self.geom, geompy.ShapeType["SHELL"] )
|
||||
if len( shells ) > 0 :
|
||||
return 3
|
||||
@ -469,15 +403,13 @@ class Mesh:
|
||||
return 0;
|
||||
pass
|
||||
|
||||
## Creates a segment discretization 1D algorithm.
|
||||
# If the optional \a algo parameter is not sets, this algorithm is REGULAR.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Segment(self, algo=REGULAR, geom=0):
|
||||
"""
|
||||
Creates a segment discretization 1D algorithm.
|
||||
If the optional \a algo parameter is not sets, this algorithm is REGULAR.
|
||||
If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
\param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
|
||||
\param geom If defined, subshape to be meshed
|
||||
"""
|
||||
## if Segment(geom) is called by mistake
|
||||
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
|
||||
algo, geom = geom, algo
|
||||
@ -489,63 +421,51 @@ class Mesh:
|
||||
else:
|
||||
return Mesh_Segment(self, geom)
|
||||
|
||||
## Creates a triangle 2D algorithm for faces.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Triangle(self, geom=0):
|
||||
"""
|
||||
Creates a triangle 2D algorithm for faces.
|
||||
If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
\param geom If defined, subshape to be meshed
|
||||
"""
|
||||
return Mesh_Triangle(self, geom)
|
||||
|
||||
## Creates a quadrangle 2D algorithm for faces.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Quadrangle(self, geom=0):
|
||||
"""
|
||||
Creates a quadrangle 2D algorithm for faces.
|
||||
If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
\param geom If defined, subshape to be meshed
|
||||
"""
|
||||
return Mesh_Quadrangle(self, geom)
|
||||
|
||||
## Creates a tetrahedron 3D algorithm for solids.
|
||||
# The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param algo values are: smesh.NETGEN, smesh.GHS3D
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Tetrahedron(self, algo, geom=0):
|
||||
"""
|
||||
Creates a tetrahedron 3D algorithm for solids.
|
||||
The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
|
||||
If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
\param algo values are: smesh.NETGEN, smesh.GHS3D
|
||||
\param geom If defined, subshape to be meshed
|
||||
"""
|
||||
## if Tetrahedron(geom) is called by mistake
|
||||
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
|
||||
algo, geom = geom, algo
|
||||
pass
|
||||
return Mesh_Tetrahedron(self, algo, geom)
|
||||
|
||||
## Creates a hexahedron 3D algorithm for solids.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Hexahedron(self, geom=0):
|
||||
"""
|
||||
Creates a hexahedron 3D algorithm for solids.
|
||||
If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
\param geom If defined, subshape to be meshed
|
||||
"""
|
||||
return Mesh_Hexahedron(self, geom)
|
||||
|
||||
## Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no
|
||||
# discrete boundary).
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
||||
# @param is3D If 0 then algorithm is 2D, otherwise 3D
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Netgen(self, is3D, geom=0):
|
||||
"""
|
||||
Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no
|
||||
discrete boundary).
|
||||
If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
||||
\param is3D If 0 then algorithm is 2D, otherwise 3D
|
||||
\param geom If defined, subshape to be meshed
|
||||
"""
|
||||
return Mesh_Netgen(self, is3D, geom)
|
||||
|
||||
## Compute the mesh and return the status of the computation
|
||||
def Compute(self):
|
||||
"""
|
||||
Compute the mesh and return the status of the computation
|
||||
"""
|
||||
ok = smesh.Compute(self.mesh, self.geom)
|
||||
if not ok:
|
||||
errors = smesh.GetAlgoState( self.mesh, self.geom )
|
||||
@ -583,11 +503,9 @@ class Mesh:
|
||||
pass
|
||||
return ok
|
||||
|
||||
## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
|
||||
# The parameter \a fineness [0.-1.] defines mesh fineness
|
||||
def AutomaticTetrahedralization(self, fineness=0):
|
||||
"""
|
||||
Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
|
||||
The parameter \a fineness [0.-1.] defines mesh fineness
|
||||
"""
|
||||
dim = self.MeshDimension()
|
||||
# assign hypotheses
|
||||
self.RemoveGlobalHypotheses()
|
||||
@ -600,11 +518,9 @@ class Mesh:
|
||||
pass
|
||||
return self.Compute()
|
||||
|
||||
## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
|
||||
# The parameter \a fineness [0.-1.] defines mesh fineness
|
||||
def AutomaticHexahedralization(self, fineness=0):
|
||||
"""
|
||||
Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
|
||||
The parameter \a fineness [0.-1.] defines mesh fineness
|
||||
"""
|
||||
dim = self.MeshDimension()
|
||||
# assign hypotheses
|
||||
self.RemoveGlobalHypotheses()
|
||||
@ -617,24 +533,20 @@ class Mesh:
|
||||
pass
|
||||
return self.Compute()
|
||||
|
||||
## Removes all global hypotheses
|
||||
def RemoveGlobalHypotheses(self):
|
||||
"""
|
||||
Removes all global hypotheses
|
||||
"""
|
||||
current_hyps = self.mesh.GetHypothesisList( self.geom )
|
||||
for hyp in current_hyps:
|
||||
self.mesh.RemoveHypothesis( self.geom, hyp )
|
||||
pass
|
||||
pass
|
||||
|
||||
## Create a mesh group based on geometric object \a grp
|
||||
# and give a \a name, if this parameter is not defined
|
||||
# the name is the same as the geometric group name
|
||||
# @param grp is a geometric group, a vertex, an edge, a face or a solid
|
||||
# @param name is the name of the mesh group
|
||||
def Group(self, grp, name=""):
|
||||
"""
|
||||
Create a mesh group based on geometric object \a grp
|
||||
and give a \a name, if this parameter is not defined
|
||||
the name is the same as the geometric group name
|
||||
\param grp is a geometric group, a vertex, an edge, a face or a solid
|
||||
\param name is the name of the mesh group
|
||||
"""
|
||||
if name == "":
|
||||
name = grp.GetName()
|
||||
|
||||
@ -670,39 +582,29 @@ class Mesh:
|
||||
else:
|
||||
return self.mesh.CreateGroupFromGEOM(type, name, grp)
|
||||
|
||||
## Export the mesh in a file with the MED format and choice the \a version of MED format
|
||||
# @param f is the file name
|
||||
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
|
||||
def ExportToMED(self, f, version, opt=0):
|
||||
"""
|
||||
Export the mesh in a file with the MED format and choice the \a version of MED format
|
||||
\param f is the file name
|
||||
\param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
|
||||
"""
|
||||
self.mesh.ExportToMED(f, opt, version)
|
||||
|
||||
## Export the mesh in a file with the MED format
|
||||
# @param f is the file name
|
||||
def ExportMED(self, f, opt=0):
|
||||
"""
|
||||
Export the mesh in a file with the MED format
|
||||
\param f is the file name
|
||||
"""
|
||||
self.mesh.ExportMED(f, opt)
|
||||
|
||||
## Export the mesh in a file with the DAT format
|
||||
# @param f is the file name
|
||||
def ExportDAT(self, f):
|
||||
"""
|
||||
Export the mesh in a file with the DAT format
|
||||
\param f is the file name
|
||||
"""
|
||||
self.mesh.ExportDAT(f)
|
||||
|
||||
## Export the mesh in a file with the UNV format
|
||||
# @param f is the file name
|
||||
def ExportUNV(self, f):
|
||||
"""
|
||||
Export the mesh in a file with the UNV format
|
||||
\param f is the file name
|
||||
"""
|
||||
self.mesh.ExportUNV(f)
|
||||
|
||||
## Export the mesh in a file with the STL format
|
||||
# @param f is the file name
|
||||
# @param ascii defined the kind of file contents
|
||||
def ExportSTL(self, f, ascii=1):
|
||||
"""
|
||||
Export the mesh in a file with the STL format
|
||||
\param f is the file name
|
||||
\param ascii defined the kind of file contents
|
||||
"""
|
||||
self.mesh.ExportSTL(f, ascii)
|
||||
|
Loading…
Reference in New Issue
Block a user