smesh/src/StdMeshers/StdMeshers_RadialQuadrangle_1D2D.cxx
2011-06-06 08:15:39 +00:00

1290 lines
46 KiB
C++

// Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : StdMeshers_RadialQuadrangle_1D2D.cxx
// Module : SMESH
// Created : Fri Oct 20 11:37:07 2006
// Author : Edward AGAPOV (eap)
//
#include "StdMeshers_RadialQuadrangle_1D2D.hxx"
#include "StdMeshers_NumberOfLayers.hxx"
#include "StdMeshers_LayerDistribution.hxx"
#include "StdMeshers_Regular_1D.hxx"
#include "StdMeshers_NumberOfSegments.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_SubMesh.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "utilities.h"
#include <BRepAdaptor_Curve.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRep_Tool.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Line.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <TColgp_SequenceOfPnt.hxx>
#include <TColgp_SequenceOfPnt2d.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopoDS.hxx>
using namespace std;
#define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; }
#define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z())
//=======================================================================
//function : StdMeshers_RadialQuadrangle_1D2D
//purpose :
//=======================================================================
StdMeshers_RadialQuadrangle_1D2D::StdMeshers_RadialQuadrangle_1D2D(int hypId,
int studyId,
SMESH_Gen* gen)
:SMESH_2D_Algo(hypId, studyId, gen)
{
_name = "RadialQuadrangle_1D2D";
_shapeType = (1 << TopAbs_FACE); // 1 bit per shape type
_compatibleHypothesis.push_back("LayerDistribution2D");
_compatibleHypothesis.push_back("NumberOfLayers2D");
myNbLayerHypo = 0;
myDistributionHypo = 0;
_requireDescretBoundary = false;
_supportSubmeshes = true;
}
//================================================================================
/*!
* \brief Destructor
*/
//================================================================================
StdMeshers_RadialQuadrangle_1D2D::~StdMeshers_RadialQuadrangle_1D2D()
{}
//=======================================================================
//function : CheckHypothesis
//purpose :
//=======================================================================
bool StdMeshers_RadialQuadrangle_1D2D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
// check aShape
myNbLayerHypo = 0;
myDistributionHypo = 0;
list <const SMESHDS_Hypothesis * >::const_iterator itl;
const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape);
if ( hyps.size() == 0 ) {
aStatus = SMESH_Hypothesis::HYP_OK;
return true; // can work with no hypothesis
}
if ( hyps.size() > 1 ) {
aStatus = SMESH_Hypothesis::HYP_ALREADY_EXIST;
return false;
}
const SMESHDS_Hypothesis *theHyp = hyps.front();
string hypName = theHyp->GetName();
if (hypName == "NumberOfLayers2D") {
myNbLayerHypo = static_cast<const StdMeshers_NumberOfLayers *>(theHyp);
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
if (hypName == "LayerDistribution2D") {
myDistributionHypo = static_cast<const StdMeshers_LayerDistribution *>(theHyp);
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
return true;
}
namespace
{
// ------------------------------------------------------------------------------
/*!
* \brief Listener used to mark edges meshed by StdMeshers_RadialQuadrangle_1D2D
*/
class TEdgeMarker : public SMESH_subMeshEventListener
{
TEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false) {}
public:
//!< Return static listener
static SMESH_subMeshEventListener* getListener()
{
static TEdgeMarker theEdgeMarker;
return &theEdgeMarker;
}
//! Clear face sumbesh if something happens on edges
void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* edgeSubMesh,
EventListenerData* data,
const SMESH_Hypothesis* /*hyp*/)
{
if ( data && !data->mySubMeshes.empty() && eventType == SMESH_subMesh::ALGO_EVENT)
{
ASSERT( data->mySubMeshes.front() != edgeSubMesh );
SMESH_subMesh* faceSubMesh = data->mySubMeshes.front();
faceSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN );
}
}
};
// ------------------------------------------------------------------------------
/*!
* \brief Mark an edge as computed by StdMeshers_RadialQuadrangle_1D2D
*/
void markEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
{
if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
{
if ( !edgeSM->GetEventListenerData( TEdgeMarker::getListener() ))
faceSubMesh->SetEventListener( TEdgeMarker::getListener(),
SMESH_subMeshEventListenerData::MakeData(faceSubMesh),
edgeSM);
}
}
// ------------------------------------------------------------------------------
/*!
* \brief Return true if a radial edge was meshed with StdMeshers_RadialQuadrangle_1D2D with
* the same radial distribution
*/
// bool isEdgeCompatiballyMeshed(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
// {
// if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
// {
// if ( SMESH_subMeshEventListenerData* otherFaceData =
// edgeSM->GetEventListenerData( TEdgeMarker::getListener() ))
// {
// // compare hypothesis aplied to two disk faces sharing radial edges
// SMESH_Mesh& mesh = *faceSubMesh->GetFather();
// SMESH_Algo* radialQuadAlgo = mesh.GetGen()->GetAlgo(mesh, faceSubMesh->GetSubShape() );
// SMESH_subMesh* otherFaceSubMesh = otherFaceData->mySubMeshes.front();
// list <const SMESHDS_Hypothesis *> hyps1 =
// radialQuadAlgo->GetUsedHypothesis( mesh, faceSubMesh->GetSubShape());
// list <const SMESHDS_Hypothesis *> hyps2 =
// radialQuadAlgo->GetUsedHypothesis( mesh, otherFaceSubMesh->GetSubShape());
// if( hyps1.empty() && hyps2.empty() )
// return true; // defaul hyps
// if ( hyps1.size() != hyps2.size() )
// return false;
// return *hyps1.front() == *hyps2.front();
// }
// }
// return false;
// }
//================================================================================
/*!
* \brief Return base curve of the edge and extremum parameters
*/
//================================================================================
Handle(Geom_Curve) getCurve(const TopoDS_Edge& edge, double* f=0, double* l=0)
{
Handle(Geom_Curve) C;
if ( !edge.IsNull() )
{
double first = 0., last = 0.;
C = BRep_Tool::Curve(edge, first, last);
if ( !C.IsNull() )
{
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C);
while( !tc.IsNull() ) {
C = tc->BasisCurve();
tc = Handle(Geom_TrimmedCurve)::DownCast(C);
}
if ( f ) *f = first;
if ( l ) *l = last;
}
}
return C;
}
//================================================================================
/*!
* \brief Return edges of the face
* \retval int - nb of edges
*/
//================================================================================
int analyseFace(const TopoDS_Shape& face,
TopoDS_Edge& CircEdge,
TopoDS_Edge& LinEdge1,
TopoDS_Edge& LinEdge2)
{
CircEdge.Nullify(); LinEdge1.Nullify(); LinEdge2.Nullify();
int nbe = 0;
for ( TopExp_Explorer exp( face, TopAbs_EDGE ); exp.More(); exp.Next(), ++nbe )
{
const TopoDS_Edge& E = TopoDS::Edge( exp.Current() );
double f,l;
Handle(Geom_Curve) C = getCurve(E,&f,&l);
if ( !C.IsNull() )
{
if ( C->IsKind( STANDARD_TYPE(Geom_Circle)))
{
if ( CircEdge.IsNull() )
CircEdge = E;
else
return 0;
}
else if ( LinEdge1.IsNull() )
LinEdge1 = E;
else
LinEdge2 = E;
}
}
return nbe;
}
//================================================================================
//================================================================================
/*!
* \brief Class computing layers distribution using data of
* StdMeshers_LayerDistribution hypothesis
*/
//================================================================================
//================================================================================
class TNodeDistributor: public StdMeshers_Regular_1D
{
list <const SMESHDS_Hypothesis *> myUsedHyps;
public:
// -----------------------------------------------------------------------------
static TNodeDistributor* GetDistributor(SMESH_Mesh& aMesh)
{
const int myID = -1000;
map < int, SMESH_1D_Algo * > & algoMap = aMesh.GetGen()->_map1D_Algo;
map < int, SMESH_1D_Algo * >::iterator id_algo = algoMap.find( myID );
if ( id_algo == algoMap.end() )
return new TNodeDistributor( myID, 0, aMesh.GetGen() );
return static_cast< TNodeDistributor* >( id_algo->second );
}
// -----------------------------------------------------------------------------
//! Computes distribution of nodes on a straight line ending at pIn and pOut
bool Compute( vector< double > & positions,
gp_Pnt pIn,
gp_Pnt pOut,
SMESH_Mesh& aMesh,
const SMESH_Hypothesis* hyp1d)
{
if ( !hyp1d ) return error( "Invalid LayerDistribution hypothesis");
double len = pIn.Distance( pOut );
if ( len <= DBL_MIN ) return error("Too close points of inner and outer shells");
myUsedHyps.clear();
myUsedHyps.push_back( hyp1d );
TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pIn, pOut );
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus ))
return error( "StdMeshers_Regular_1D::CheckHypothesis() failed "
"with LayerDistribution hypothesis");
BRepAdaptor_Curve C3D(edge);
double f = C3D.FirstParameter(), l = C3D.LastParameter();
list< double > params;
if ( !StdMeshers_Regular_1D::computeInternalParameters( aMesh, C3D, len, f, l, params, false ))
return error("StdMeshers_Regular_1D failed to compute layers distribution");
positions.clear();
positions.reserve( params.size() );
for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
positions.push_back( *itU / len );
return true;
}
// -----------------------------------------------------------------------------
//! Make mesh on an adge using assigned 1d hyp or defaut nb of segments
bool ComputeCircularEdge(SMESH_Mesh& aMesh,
const TopoDS_Edge& anEdge)
{
_gen->Compute( aMesh, anEdge);
SMESH_subMesh *sm = aMesh.GetSubMesh(anEdge);
if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK)
{
// find any 1d hyp assigned (there can be a hyp w/o algo)
myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true);
Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus ))
{
// no valid 1d hyp assigned, use default nb of segments
_hypType = NB_SEGMENTS;
_ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
_ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
}
return StdMeshers_Regular_1D::Compute( aMesh, anEdge );
}
return true;
}
// -----------------------------------------------------------------------------
//! Make mesh on an adge using assigned 1d hyp or defaut nb of segments
bool EvaluateCircularEdge(SMESH_Mesh& aMesh,
const TopoDS_Edge& anEdge,
MapShapeNbElems& aResMap)
{
_gen->Evaluate( aMesh, anEdge, aResMap );
if ( aResMap.count( aMesh.GetSubMesh( anEdge )))
return true;
// find any 1d hyp assigned
myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true);
Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus ))
{
// no valid 1d hyp assigned, use default nb of segments
_hypType = NB_SEGMENTS;
_ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
_ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
}
return StdMeshers_Regular_1D::Evaluate( aMesh, anEdge, aResMap );
}
protected:
// -----------------------------------------------------------------------------
TNodeDistributor( int hypId, int studyId, SMESH_Gen* gen)
: StdMeshers_Regular_1D( hypId, studyId, gen)
{
}
// -----------------------------------------------------------------------------
virtual const list <const SMESHDS_Hypothesis *> &
GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool)
{
return myUsedHyps;
}
// -----------------------------------------------------------------------------
};
}
//=======================================================================
/*!
* \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh
*
* call markEdgeAsComputedByMe()
*/
//=======================================================================
void StdMeshers_RadialQuadrangle_1D2D::SubmeshRestored(SMESH_subMesh* faceSubMesh)
{
if ( !faceSubMesh->IsEmpty() )
{
TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
analyseFace( faceSubMesh->GetSubShape(), CircEdge, LinEdge1, LinEdge2 );
if ( !CircEdge.IsNull() ) markEdgeAsComputedByMe( CircEdge, faceSubMesh );
if ( !LinEdge1.IsNull() ) markEdgeAsComputedByMe( LinEdge1, faceSubMesh );
if ( !LinEdge2.IsNull() ) markEdgeAsComputedByMe( LinEdge2, faceSubMesh );
}
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)
{
TopExp_Explorer exp;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
myHelper = new SMESH_MesherHelper( aMesh );
myHelper->IsQuadraticSubMesh( aShape );
// to delete helper at exit from Compute()
auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
if( nbe>3 || nbe < 1 || aCirc.IsNull() )
return error("The face must be a full circle or a part of circle (i.e. the number of edges is less or equal to 3 and one of them is a circle curve)");
gp_Pnt P0, P1;
// points for rotation
TColgp_SequenceOfPnt Points;
// angles for rotation
TColStd_SequenceOfReal Angles;
// Nodes1 and Nodes2 - nodes along radiuses
// CNodes - nodes on circle edge
vector< const SMDS_MeshNode* > Nodes1, Nodes2, CNodes;
SMDS_MeshNode * NC;
// parameters edge nodes on face
TColgp_SequenceOfPnt2d Pnts2d1;
gp_Pnt2d PC;
int faceID = meshDS->ShapeToIndex(aShape);
TopoDS_Face F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
if(nbe==1)
{
if (!algo1d->ComputeCircularEdge( aMesh, CircEdge ))
return error( algo1d->GetComputeError() );
map< double, const SMDS_MeshNode* > theNodes;
if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes))
return error("Circular edge is incorrectly meshed");
CNodes.clear();
map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
const SMDS_MeshNode* NF = (*itn).second;
CNodes.push_back( (*itn).second );
double fang = (*itn).first;
if ( itn != theNodes.end() ) {
itn++;
for(; itn != theNodes.end(); itn++ ) {
CNodes.push_back( (*itn).second );
double ang = (*itn).first - fang;
if( ang>PI ) ang = ang - 2*PI;
if( ang<-PI ) ang = ang + 2*PI;
Angles.Append( ang );
}
}
P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
P0 = aCirc->Location();
if ( !computeLayerPositions(P0,P1))
return false;
exp.Init( CircEdge, TopAbs_VERTEX );
TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
gp_Pnt2d p2dV = BRep_Tool::Parameters( V1, TopoDS::Face(aShape) );
NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
GeomAPI_ProjectPointOnSurf PPS(P0,S);
double U0,V0;
PPS.Parameters(1,U0,V0);
meshDS->SetNodeOnFace(NC, faceID, U0, V0);
PC = gp_Pnt2d(U0,V0);
gp_Vec aVec(P0,P1);
gp_Vec2d aVec2d(PC,p2dV);
Nodes1.resize( myLayerPositions.size()+1 );
Nodes2.resize( myLayerPositions.size()+1 );
int i = 0;
for(; i<myLayerPositions.size(); i++) {
gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
P0.Y() + aVec.Y()*myLayerPositions[i],
P0.Z() + aVec.Z()*myLayerPositions[i] );
Points.Append(P);
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
Nodes1[i] = node;
Nodes2[i] = node;
double U = PC.X() + aVec2d.X()*myLayerPositions[i];
double V = PC.Y() + aVec2d.Y()*myLayerPositions[i];
meshDS->SetNodeOnFace( node, faceID, U, V );
Pnts2d1.Append(gp_Pnt2d(U,V));
}
Nodes1[Nodes1.size()-1] = NF;
Nodes2[Nodes1.size()-1] = NF;
}
else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL )
{
// one curve must be a half of circle and other curve must be
// a segment of line
double fp, lp;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp ));
if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) {
// not half of circle
return error(COMPERR_BAD_SHAPE);
}
Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
if( aLine.IsNull() ) {
// other curve not line
return error(COMPERR_BAD_SHAPE);
}
if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge ))
return error( algo1d->GetComputeError() );
map< double, const SMDS_MeshNode* > theNodes;
if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes) )
return error("Circular edge is incorrectly meshed");
map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
CNodes.clear();
CNodes.push_back( itn->second );
double fang = (*itn).first;
itn++;
for(; itn != theNodes.end(); itn++ ) {
CNodes.push_back( (*itn).second );
double ang = (*itn).first - fang;
if( ang>PI ) ang = ang - 2*PI;
if( ang<-PI ) ang = ang + 2*PI;
Angles.Append( ang );
}
const SMDS_MeshNode* NF = theNodes.begin()->second;
const SMDS_MeshNode* NL = theNodes.rbegin()->second;
P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
P0 = aCirc->Location();
bool linEdgeComputed;
if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdgeComputed))
return false;
if ( linEdgeComputed )
{
if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes))
return error("Invalid mesh on a straight edge");
Nodes1.resize( myLayerPositions.size()+1 );
Nodes2.resize( myLayerPositions.size()+1 );
vector< const SMDS_MeshNode* > *pNodes1 = &Nodes1, *pNodes2 = &Nodes2;
bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF );
if ( !nodesFromP0ToP1 ) std::swap( pNodes1, pNodes2 );
map< double, const SMDS_MeshNode* >::reverse_iterator ritn = theNodes.rbegin();
itn = theNodes.begin();
for ( int i = Nodes1.size()-1; i > -1; ++itn, ++ritn, --i )
{
(*pNodes1)[i] = ritn->second;
(*pNodes2)[i] = itn->second;
Points.Prepend( gpXYZ( Nodes1[i]));
Pnts2d1.Prepend( myHelper->GetNodeUV( F, Nodes1[i]));
}
NC = const_cast<SMDS_MeshNode*>( itn->second );
Points.Remove( Nodes1.size() );
}
else
{
gp_Vec aVec(P0,P1);
int edgeID = meshDS->ShapeToIndex(LinEdge1);
// check orientation
Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
gp_Pnt Ptmp;
Crv->D0(fp,Ptmp);
bool ori = true;
if( P1.Distance(Ptmp) > Precision::Confusion() )
ori = false;
// get UV points for edge
gp_Pnt2d PF,PL;
BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
PC = gp_Pnt2d( (PF.X()+PL.X())/2, (PF.Y()+PL.Y())/2 );
gp_Vec2d V2d;
if(ori) V2d = gp_Vec2d(PC,PF);
else V2d = gp_Vec2d(PC,PL);
// add nodes on edge
double cp = (fp+lp)/2;
double dp2 = (lp-fp)/2;
NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
meshDS->SetNodeOnEdge(NC, edgeID, cp);
Nodes1.resize( myLayerPositions.size()+1 );
Nodes2.resize( myLayerPositions.size()+1 );
int i = 0;
for(; i<myLayerPositions.size(); i++) {
gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
P0.Y() + aVec.Y()*myLayerPositions[i],
P0.Z() + aVec.Z()*myLayerPositions[i] );
Points.Append(P);
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
Nodes1[i] = node;
double param;
if(ori)
param = fp + dp2*(1-myLayerPositions[i]);
else
param = cp + dp2*myLayerPositions[i];
meshDS->SetNodeOnEdge(node, edgeID, param);
P = gp_Pnt( P0.X() - aVec.X()*myLayerPositions[i],
P0.Y() - aVec.Y()*myLayerPositions[i],
P0.Z() - aVec.Z()*myLayerPositions[i] );
node = meshDS->AddNode(P.X(), P.Y(), P.Z());
Nodes2[i] = node;
if(!ori)
param = fp + dp2*(1-myLayerPositions[i]);
else
param = cp + dp2*myLayerPositions[i];
meshDS->SetNodeOnEdge(node, edgeID, param);
// parameters on face
gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
PC.Y() + V2d.Y()*myLayerPositions[i] );
Pnts2d1.Append(P2d);
}
Nodes1[ myLayerPositions.size() ] = NF;
Nodes2[ myLayerPositions.size() ] = NL;
// create 1D elements on edge
vector< const SMDS_MeshNode* > tmpNodes;
tmpNodes.resize(2*Nodes1.size()+1);
for(i=0; i<Nodes2.size(); i++)
tmpNodes[Nodes2.size()-i-1] = Nodes2[i];
tmpNodes[Nodes2.size()] = NC;
for(i=0; i<Nodes1.size(); i++)
tmpNodes[Nodes2.size()+1+i] = Nodes1[i];
for(i=1; i<tmpNodes.size(); i++) {
SMDS_MeshEdge* ME = myHelper->AddEdge( tmpNodes[i-1], tmpNodes[i] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
}
markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
}
}
else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
{
if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
LinEdge2 = LinEdge1;
// one curve must be a part of circle and other curves must be
// segments of line
double fp, lp;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
if( aCirc.IsNull() || aLine1.IsNull() || aLine2.IsNull() )
return error(COMPERR_BAD_SHAPE);
if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge ))
return error( algo1d->GetComputeError() );
map< double, const SMDS_MeshNode* > theNodes;
if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes))
return error("Circular edge is incorrectly meshed");
const SMDS_MeshNode* NF = theNodes.begin()->second;
const SMDS_MeshNode* NL = theNodes.rbegin()->second;
CNodes.clear();
CNodes.push_back( NF );
map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
double fang = (*itn).first;
itn++;
for(; itn != theNodes.end(); itn++ ) {
CNodes.push_back( (*itn).second );
double ang = (*itn).first - fang;
if( ang>PI ) ang = ang - 2*PI;
if( ang<-PI ) ang = ang + 2*PI;
Angles.Append( ang );
}
P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
P0 = aCirc->Location();
bool linEdge1Computed, linEdge2Computed;
if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdge1Computed))
return false;
Nodes1.resize( myLayerPositions.size()+1 );
Nodes2.resize( myLayerPositions.size()+1 );
// check that both linear edges have same hypotheses
if ( !computeLayerPositions(P0,P1,LinEdge2, &linEdge2Computed))
return false;
if ( Nodes1.size() != myLayerPositions.size()+1 )
return error("Different hypotheses apply to radial edges");
exp.Init( LinEdge1, TopAbs_VERTEX );
TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
exp.Next();
TopoDS_Vertex V2 = TopoDS::Vertex( exp.Current() );
gp_Pnt PE1 = BRep_Tool::Pnt(V1);
gp_Pnt PE2 = BRep_Tool::Pnt(V2);
if( ( P1.Distance(PE1) > Precision::Confusion() ) &&
( P1.Distance(PE2) > Precision::Confusion() ) )
{
std::swap( LinEdge1, LinEdge2 );
std::swap( linEdge1Computed, linEdge2Computed );
}
TopoDS_Vertex VC = V2;
if( ( P1.Distance(PE1) > Precision::Confusion() ) &&
( P2.Distance(PE1) > Precision::Confusion() ) )
VC = V1;
int vertID = meshDS->ShapeToIndex(VC);
// LinEdge1
if ( linEdge1Computed )
{
if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes))
return error("Invalid mesh on a straight edge");
bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF );
NC = const_cast<SMDS_MeshNode*>
( nodesFromP0ToP1 ? theNodes.begin()->second : theNodes.rbegin()->second );
int i = 0, ir = Nodes1.size()-1;
int * pi = nodesFromP0ToP1 ? &i : &ir;
itn = theNodes.begin();
if ( nodesFromP0ToP1 ) ++itn;
for ( ; i < Nodes1.size(); ++i, --ir, ++itn )
{
Nodes1[*pi] = itn->second;
}
for ( i = 0; i < Nodes1.size()-1; ++i )
{
Points.Append( gpXYZ( Nodes1[i]));
Pnts2d1.Append( myHelper->GetNodeUV( F, Nodes1[i]));
}
}
else
{
int edgeID = meshDS->ShapeToIndex(LinEdge1);
gp_Vec aVec(P0,P1);
// check orientation
Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
gp_Pnt Ptmp = Crv->Value(fp);
bool ori = false;
if( P1.Distance(Ptmp) > Precision::Confusion() )
ori = true;
// get UV points for edge
gp_Pnt2d PF,PL;
BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
gp_Vec2d V2d;
if(ori) {
V2d = gp_Vec2d(PF,PL);
PC = PF;
}
else {
V2d = gp_Vec2d(PL,PF);
PC = PL;
}
NC = const_cast<SMDS_MeshNode*>( VertexNode( VC, meshDS ));
if ( !NC )
{
NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
meshDS->SetNodeOnVertex(NC, vertID);
}
double dp = lp-fp;
int i = 0;
for(; i<myLayerPositions.size(); i++) {
gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
P0.Y() + aVec.Y()*myLayerPositions[i],
P0.Z() + aVec.Z()*myLayerPositions[i] );
Points.Append(P);
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
Nodes1[i] = node;
double param;
if(!ori)
param = fp + dp*(1-myLayerPositions[i]);
else
param = fp + dp*myLayerPositions[i];
meshDS->SetNodeOnEdge(node, edgeID, param);
// parameters on face
gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
PC.Y() + V2d.Y()*myLayerPositions[i] );
Pnts2d1.Append(P2d);
}
Nodes1[ myLayerPositions.size() ] = NF;
// create 1D elements on edge
SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes1[0] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
for(i=1; i<Nodes1.size(); i++) {
ME = myHelper->AddEdge( Nodes1[i-1], Nodes1[i] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
}
if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
Nodes2 = Nodes1;
}
markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
// LinEdge2
if ( linEdge2Computed )
{
if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge2,true,theNodes))
return error("Invalid mesh on a straight edge");
bool nodesFromP0ToP2 = ( theNodes.rbegin()->second == NL );
int i = 0, ir = Nodes1.size()-1;
int * pi = nodesFromP0ToP2 ? &i : &ir;
itn = theNodes.begin();
if ( nodesFromP0ToP2 ) ++itn;
for ( ; i < Nodes2.size(); ++i, --ir, ++itn )
Nodes2[*pi] = itn->second;
}
else
{
int edgeID = meshDS->ShapeToIndex(LinEdge2);
gp_Vec aVec = gp_Vec(P0,P2);
// check orientation
Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge2,fp,lp);
gp_Pnt Ptmp = Crv->Value(fp);
bool ori = false;
if( P2.Distance(Ptmp) > Precision::Confusion() )
ori = true;
// get UV points for edge
gp_Pnt2d PF,PL;
BRep_Tool::UVPoints( LinEdge2, TopoDS::Face(aShape), PF, PL );
gp_Vec2d V2d;
if(ori) {
V2d = gp_Vec2d(PF,PL);
PC = PF;
}
else {
V2d = gp_Vec2d(PL,PF);
PC = PL;
}
double dp = lp-fp;
for(int i=0; i<myLayerPositions.size(); i++) {
gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
P0.Y() + aVec.Y()*myLayerPositions[i],
P0.Z() + aVec.Z()*myLayerPositions[i] );
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
Nodes2[i] = node;
double param;
if(!ori)
param = fp + dp*(1-myLayerPositions[i]);
else
param = fp + dp*myLayerPositions[i];
meshDS->SetNodeOnEdge(node, edgeID, param);
// parameters on face
gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
PC.Y() + V2d.Y()*myLayerPositions[i] );
}
Nodes2[ myLayerPositions.size() ] = NL;
// create 1D elements on edge
SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes2[0] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
for(int i=1; i<Nodes2.size(); i++) {
ME = myHelper->AddEdge( Nodes2[i-1], Nodes2[i] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
}
}
markEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F ));
}
markEdgeAsComputedByMe( CircEdge, aMesh.GetSubMesh( F ));
// orientation
bool IsForward = ( CircEdge.Orientation()==TopAbs_FORWARD );
// create nodes and mesh elements on face
// find axis of rotation
gp_Pnt P2 = gp_Pnt( CNodes[1]->X(), CNodes[1]->Y(), CNodes[1]->Z() );
gp_Vec Vec1(P0,P1);
gp_Vec Vec2(P0,P2);
gp_Vec Axis = Vec1.Crossed(Vec2);
// create elements
int i = 1;
//cout<<"Angles.Length() = "<<Angles.Length()<<" Points.Length() = "<<Points.Length()<<endl;
//cout<<"Nodes1.size() = "<<Nodes1.size()<<" Pnts2d1.Length() = "<<Pnts2d1.Length()<<endl;
for(; i<Angles.Length(); i++) {
vector< const SMDS_MeshNode* > tmpNodes;
tmpNodes.reserve(Nodes1.size());
gp_Trsf aTrsf;
gp_Ax1 theAxis(P0,gp_Dir(Axis));
aTrsf.SetRotation( theAxis, Angles.Value(i) );
gp_Trsf2d aTrsf2d;
aTrsf2d.SetRotation( PC, Angles.Value(i) );
// create nodes
int j = 1;
for(; j<=Points.Length(); j++) {
double cx,cy,cz;
Points.Value(j).Coord( cx, cy, cz );
aTrsf.Transforms( cx, cy, cz );
SMDS_MeshNode* node = myHelper->AddNode( cx, cy, cz );
// find parameters on face
Pnts2d1.Value(j).Coord( cx, cy );
aTrsf2d.Transforms( cx, cy );
// set node on face
meshDS->SetNodeOnFace( node, faceID, cx, cy );
tmpNodes[j-1] = node;
}
// create faces
tmpNodes[Points.Length()] = CNodes[i];
// quad
for(j=0; j<Nodes1.size()-1; j++) {
SMDS_MeshFace* MF;
if(IsForward)
MF = myHelper->AddFace( tmpNodes[j], Nodes1[j],
Nodes1[j+1], tmpNodes[j+1] );
else
MF = myHelper->AddFace( tmpNodes[j], tmpNodes[j+1],
Nodes1[j+1], Nodes1[j] );
if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
}
// tria
SMDS_MeshFace* MF;
if(IsForward)
MF = myHelper->AddFace( NC, Nodes1[0], tmpNodes[0] );
else
MF = myHelper->AddFace( NC, tmpNodes[0], Nodes1[0] );
if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
for(j=0; j<Nodes1.size(); j++) {
Nodes1[j] = tmpNodes[j];
}
}
// create last faces
// quad
for(i=0; i<Nodes1.size()-1; i++) {
SMDS_MeshFace* MF;
if(IsForward)
MF = myHelper->AddFace( Nodes2[i], Nodes1[i],
Nodes1[i+1], Nodes2[i+1] );
else
MF = myHelper->AddFace( Nodes2[i], Nodes2[i+1],
Nodes1[i+1], Nodes1[i] );
if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
}
// tria
SMDS_MeshFace* MF;
if(IsForward)
MF = myHelper->AddFace( NC, Nodes1[0], Nodes2[0] );
else
MF = myHelper->AddFace( NC, Nodes2[0], Nodes1[0] );
if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
return true;
}
//================================================================================
/*!
* \brief Compute positions of nodes on the radial edge
* \retval bool - is a success
*/
//================================================================================
bool StdMeshers_RadialQuadrangle_1D2D::computeLayerPositions(const gp_Pnt& p1,
const gp_Pnt& p2,
const TopoDS_Edge& linEdge,
bool* linEdgeComputed)
{
// First, try to compute positions of layers
myLayerPositions.clear();
SMESH_Mesh * mesh = myHelper->GetMesh();
const SMESH_Hypothesis* hyp1D = myDistributionHypo ? myDistributionHypo->GetLayerDistribution() : 0;
int nbLayers = myNbLayerHypo ? myNbLayerHypo->GetNumberOfLayers() : 0;
if ( !hyp1D && !nbLayers )
{
// No own algo hypotheses assigned, so first try to find any 1D hypothesis.
// We need some edge
TopoDS_Shape edge = linEdge;
if ( edge.IsNull() && !myHelper->GetSubShape().IsNull())
for ( TopExp_Explorer e(myHelper->GetSubShape(), TopAbs_EDGE); e.More(); e.Next())
edge = e.Current();
if ( !edge.IsNull() )
{
// find a hyp usable by TNodeDistributor
SMESH_HypoFilter hypKind;
TNodeDistributor::GetDistributor(*mesh)->InitCompatibleHypoFilter(hypKind,/*ignoreAux=*/1);
hyp1D = mesh->GetHypothesis( edge, hypKind, /*fromAncestors=*/true);
}
}
if ( hyp1D ) // try to compute with hyp1D
{
if ( !TNodeDistributor::GetDistributor(*mesh)->Compute( myLayerPositions,p1,p2,*mesh,hyp1D )) {
if ( myDistributionHypo ) { // bad hyp assigned
return error( TNodeDistributor::GetDistributor(*mesh)->GetComputeError() );
}
else {
// bad hyp found, its Ok, lets try with default nb of segnents
}
}
}
if ( myLayerPositions.empty() ) // try to use nb of layers
{
if ( !nbLayers )
nbLayers = _gen->GetDefaultNbSegments();
if ( nbLayers )
{
myLayerPositions.resize( nbLayers - 1 );
for ( int z = 1; z < nbLayers; ++z )
myLayerPositions[ z - 1 ] = double( z )/ double( nbLayers );
}
}
// Second, check presence of a mesh built by other algo on linEdge
// and mesh conformity to my hypothesis
bool meshComputed = (!linEdge.IsNull() && !mesh->GetSubMesh(linEdge)->IsEmpty() );
if ( linEdgeComputed ) *linEdgeComputed = meshComputed;
if ( meshComputed )
{
vector< double > nodeParams;
GetNodeParamOnEdge( mesh->GetMeshDS(), linEdge, nodeParams );
// nb of present nodes must be different in cases of 1 and 2 straight edges
TopoDS_Vertex VV[2];
TopExp::Vertices( linEdge, VV[0], VV[1]);
const gp_Pnt* points[] = { &p1, &p2 };
gp_Pnt vPoints[] = { BRep_Tool::Pnt(VV[0]), BRep_Tool::Pnt(VV[1]) };
const double tol[] = { BRep_Tool::Tolerance(VV[0]), BRep_Tool::Tolerance(VV[1]) };
bool pointsAreOnVertices = true;
for ( int iP = 0; iP < 2 && pointsAreOnVertices; ++iP )
pointsAreOnVertices = ( points[iP]->Distance( vPoints[0] ) < tol[0] ||
points[iP]->Distance( vPoints[1] ) < tol[1] );
int nbNodes = nodeParams.size() - 2; // 2 straight edges
if ( !pointsAreOnVertices )
nbNodes = ( nodeParams.size() - 3 ) / 2; // 1 straight edge
if ( myLayerPositions.empty() )
{
myLayerPositions.resize( nbNodes );
}
else if ( myDistributionHypo || myNbLayerHypo )
{
// linEdge is computed by other algo. Check if there is a meshed face
// using nodes on linEdge
bool nodesAreUsed = false;
TopTools_ListIteratorOfListOfShape ancestIt = mesh->GetAncestors( linEdge );
for ( ; ancestIt.More() && !nodesAreUsed; ancestIt.Next() )
if ( ancestIt.Value().ShapeType() == TopAbs_FACE )
nodesAreUsed = (!mesh->GetSubMesh( ancestIt.Value() )->IsEmpty());
if ( !nodesAreUsed ) {
// rebuild them
mesh->GetSubMesh( linEdge )->ComputeStateEngine( SMESH_subMesh::CLEAN );
if ( linEdgeComputed ) *linEdgeComputed = false;
}
else {
if ( myLayerPositions.size() != nbNodes )
return error("Radial edge is meshed by other algorithm");
}
}
}
return !myLayerPositions.empty();
}
//=======================================================================
//function : Evaluate
//purpose :
//=======================================================================
bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
MapShapeNbElems& aResMap)
{
if( aShape.ShapeType() != TopAbs_FACE ) {
return false;
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
if( aResMap.count(sm) )
return false;
vector<int>& aResVec =
aResMap.insert( make_pair(sm, vector<int>(SMDSEntity_Last,0))).first->second;
myHelper = new SMESH_MesherHelper( aMesh );
myHelper->SetSubShape( aShape );
auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
if( nbe>3 || nbe < 1 || CircEdge.IsNull() )
return false;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
if( aCirc.IsNull() )
return error(COMPERR_BAD_SHAPE);
gp_Pnt P0 = aCirc->Location();
gp_Pnt P1 = aCirc->Value(0.);
computeLayerPositions( P0, P1, LinEdge1 );
int nb0d=0, nb2d_tria=0, nb2d_quad=0;
bool isQuadratic = false, ok = true;
if(nbe==1)
{
// C1 must be a circle
ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
if(ok) {
const vector<int>& aVec = aResMap[aMesh.GetSubMesh(CircEdge)];
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
// radial medium nodes
nb0d += (aVec[SMDSEntity_Node]+1) * (myLayerPositions.size()+1);
// other medium nodes
nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
else {
nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb0d;
}
}
else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL)
{
// one curve must be a half of circle and other curve must be
// a segment of line
double fp, lp;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp ));
if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) {
// not half of circle
return error(COMPERR_BAD_SHAPE);
}
Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
if( aLine.IsNull() ) {
// other curve not line
return error(COMPERR_BAD_SHAPE);
}
ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1) );
if ( !ok ) {
const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ];
ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
}
if(ok) {
ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
}
if(ok) {
const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ];
isQuadratic = aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size();
// radial medium nodes
nb0d += aVec[SMDSEntity_Node] * (myLayerPositions.size()+1);
// other medium nodes
nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
else {
nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size();
}
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges
vector<int> aResVec(SMDSEntity_Last,0);
if(isQuadratic) {
aResVec[SMDSEntity_Node] = 4*myLayerPositions.size() + 3;
aResVec[SMDSEntity_Quad_Edge] = 2*myLayerPositions.size() + 2;
}
else {
aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1;
aResVec[SMDSEntity_Edge] = 2*myLayerPositions.size() + 2;
}
aResMap[ aMesh.GetSubMesh(LinEdge1) ] = aResVec;
}
}
else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
{
if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
LinEdge2 = LinEdge1;
// one curve must be a part of circle and other curves must be
// segments of line
Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
if( aLine1.IsNull() || aLine2.IsNull() ) {
// other curve not line
return error(COMPERR_BAD_SHAPE);
}
int nbLayers = myLayerPositions.size();
computeLayerPositions( P0, P1, LinEdge2 );
if ( nbLayers != myLayerPositions.size() )
return error("Different hypotheses apply to radial edges");
bool ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1));
if ( !ok ) {
if ( myDistributionHypo || myNbLayerHypo )
ok = true; // override other 1d hyps
else {
const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ];
ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
}
}
if( ok && aResMap.count( aMesh.GetSubMesh(LinEdge2) )) {
if ( myDistributionHypo || myNbLayerHypo )
ok = true; // override other 1d hyps
else {
const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge2) ];
ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
}
}
if(ok) {
ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
}
if(ok) {
const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ];
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size();
// radial medium nodes
nb0d += aVec[SMDSEntity_Node] * (myLayerPositions.size()+1);
// other medium nodes
nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
else {
nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size();
}
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges
vector<int> aResVec(SMDSEntity_Last, 0);
if(isQuadratic) {
aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1;
aResVec[SMDSEntity_Quad_Edge] = myLayerPositions.size() + 1;
}
else {
aResVec[SMDSEntity_Node] = myLayerPositions.size();
aResVec[SMDSEntity_Edge] = myLayerPositions.size() + 1;
}
sm = aMesh.GetSubMesh(LinEdge1);
aResMap[sm] = aResVec;
sm = aMesh.GetSubMesh(LinEdge2);
aResMap[sm] = aResVec;
}
}
if(nb0d>0) {
aResVec[0] = nb0d;
if(isQuadratic) {
aResVec[SMDSEntity_Quad_Triangle] = nb2d_tria;
aResVec[SMDSEntity_Quad_Quadrangle] = nb2d_quad;
}
else {
aResVec[SMDSEntity_Triangle] = nb2d_tria;
aResVec[SMDSEntity_Quadrangle] = nb2d_quad;
}
return true;
}
// invalid case
sm = aMesh.GetSubMesh(aShape);
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,
"Submesh can not be evaluated",this));
return false;
}