mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-13 10:10:33 +05:00
12456 lines
436 KiB
C++
12456 lines
436 KiB
C++
// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
//
|
|
|
|
// File : StdMeshers_ViscousLayers.cxx
|
|
// Created : Wed Dec 1 15:15:34 2010
|
|
// Author : Edward AGAPOV (eap)
|
|
|
|
#include "StdMeshers_ViscousLayers.hxx"
|
|
|
|
#include "ObjectPool.hxx"
|
|
#include "SMDS_EdgePosition.hxx"
|
|
#include "SMDS_FaceOfNodes.hxx"
|
|
#include "SMDS_FacePosition.hxx"
|
|
#include "SMDS_MeshNode.hxx"
|
|
#include "SMDS_PolygonalFaceOfNodes.hxx"
|
|
#include "SMDS_SetIterator.hxx"
|
|
#include "SMESHDS_Group.hxx"
|
|
#include "SMESHDS_Hypothesis.hxx"
|
|
#include "SMESHDS_Mesh.hxx"
|
|
#include "SMESH_Algo.hxx"
|
|
#include "SMESH_Block.hxx"
|
|
#include "SMESH_ComputeError.hxx"
|
|
#include "SMESH_ControlsDef.hxx"
|
|
#include "SMESH_Gen.hxx"
|
|
#include "SMESH_Group.hxx"
|
|
#include "SMESH_HypoFilter.hxx"
|
|
#include "SMESH_Mesh.hxx"
|
|
#include "SMESH_MeshAlgos.hxx"
|
|
#include "SMESH_MeshEditor.hxx"
|
|
#include "SMESH_MesherHelper.hxx"
|
|
#include "SMESH_ProxyMesh.hxx"
|
|
#include "SMESH_subMesh.hxx"
|
|
#include "SMESH_subMeshEventListener.hxx"
|
|
#include "StdMeshers_FaceSide.hxx"
|
|
#include "StdMeshers_ProjectionUtils.hxx"
|
|
#include "StdMeshers_ViscousLayers2D.hxx"
|
|
|
|
#include <Adaptor3d_HSurface.hxx>
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <BRepAdaptor_Curve2d.hxx>
|
|
#include <BRepAdaptor_Surface.hxx>
|
|
//#include <BRepLProp_CLProps.hxx>
|
|
#include <BRepLProp_SLProps.hxx>
|
|
#include <BRepOffsetAPI_MakeOffsetShape.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <Bnd_B2d.hxx>
|
|
#include <Bnd_B3d.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <GCPnts_AbscissaPoint.hxx>
|
|
#include <GCPnts_TangentialDeflection.hxx>
|
|
#include <Geom2d_Circle.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <GeomLib.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_ErrorHandler.hxx>
|
|
#include <Standard_Failure.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TopExp.hxx>
|
|
#include <TopExp_Explorer.hxx>
|
|
#include <TopTools_IndexedMapOfShape.hxx>
|
|
#include <TopTools_ListOfShape.hxx>
|
|
#include <TopTools_MapIteratorOfMapOfShape.hxx>
|
|
#include <TopTools_MapOfShape.hxx>
|
|
#include <TopoDS.hxx>
|
|
#include <TopoDS_Edge.hxx>
|
|
#include <TopoDS_Face.hxx>
|
|
#include <TopoDS_Vertex.hxx>
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Cone.hxx>
|
|
#include <gp_Sphere.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_XY.hxx>
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <list>
|
|
#include <queue>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
#ifdef _DEBUG_
|
|
//#define __myDEBUG
|
|
//#define __NOT_INVALIDATE_BAD_SMOOTH
|
|
//#define __NODES_AT_POS
|
|
#endif
|
|
|
|
#define INCREMENTAL_SMOOTH // smooth only if min angle is too small
|
|
#define BLOCK_INFLATION // of individual _LayerEdge's
|
|
#define OLD_NEF_POLYGON
|
|
|
|
using namespace std;
|
|
|
|
//================================================================================
|
|
namespace VISCOUS_3D
|
|
{
|
|
typedef int TGeomID;
|
|
|
|
enum UIndex { U_TGT = 1, U_SRC, LEN_TGT };
|
|
|
|
const double theMinSmoothCosin = 0.1;
|
|
const double theSmoothThickToElemSizeRatio = 0.6;
|
|
const double theMinSmoothTriaAngle = 30;
|
|
const double theMinSmoothQuadAngle = 45;
|
|
|
|
// what part of thickness is allowed till intersection
|
|
// (defined by SALOME_TESTS/Grids/smesh/viscous_layers_00/A5)
|
|
const double theThickToIntersection = 1.5;
|
|
|
|
bool needSmoothing( double cosin, double tgtThick, double elemSize )
|
|
{
|
|
return cosin * tgtThick > theSmoothThickToElemSizeRatio * elemSize;
|
|
}
|
|
double getSmoothingThickness( double cosin, double elemSize )
|
|
{
|
|
return theSmoothThickToElemSizeRatio * elemSize / cosin;
|
|
}
|
|
|
|
/*!
|
|
* \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID.
|
|
* It is stored in a SMESH_subMesh of the SOLID as SMESH_subMeshEventListenerData
|
|
*/
|
|
struct _MeshOfSolid : public SMESH_ProxyMesh,
|
|
public SMESH_subMeshEventListenerData
|
|
{
|
|
bool _n2nMapComputed;
|
|
SMESH_ComputeErrorPtr _warning;
|
|
|
|
_MeshOfSolid( SMESH_Mesh* mesh)
|
|
:SMESH_subMeshEventListenerData( /*isDeletable=*/true),_n2nMapComputed(false)
|
|
{
|
|
SMESH_ProxyMesh::setMesh( *mesh );
|
|
}
|
|
|
|
// returns submesh for a geom face
|
|
SMESH_ProxyMesh::SubMesh* getFaceSubM(const TopoDS_Face& F, bool create=false)
|
|
{
|
|
TGeomID i = SMESH_ProxyMesh::shapeIndex(F);
|
|
return create ? SMESH_ProxyMesh::getProxySubMesh(i) : findProxySubMesh(i);
|
|
}
|
|
void setNode2Node(const SMDS_MeshNode* srcNode,
|
|
const SMDS_MeshNode* proxyNode,
|
|
const SMESH_ProxyMesh::SubMesh* subMesh)
|
|
{
|
|
SMESH_ProxyMesh::setNode2Node( srcNode,proxyNode,subMesh);
|
|
}
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Listener of events of 3D sub-meshes computed with viscous layers.
|
|
* It is used to clear an inferior dim sub-meshes modified by viscous layers
|
|
*/
|
|
class _ShrinkShapeListener : SMESH_subMeshEventListener
|
|
{
|
|
_ShrinkShapeListener()
|
|
: SMESH_subMeshEventListener(/*isDeletable=*/false,
|
|
"StdMeshers_ViscousLayers::_ShrinkShapeListener") {}
|
|
public:
|
|
static SMESH_subMeshEventListener* Get() { static _ShrinkShapeListener l; return &l; }
|
|
virtual void ProcessEvent(const int event,
|
|
const int eventType,
|
|
SMESH_subMesh* solidSM,
|
|
SMESH_subMeshEventListenerData* data,
|
|
const SMESH_Hypothesis* hyp)
|
|
{
|
|
if ( SMESH_subMesh::COMPUTE_EVENT == eventType && solidSM->IsEmpty() && data )
|
|
{
|
|
SMESH_subMeshEventListener::ProcessEvent(event,eventType,solidSM,data,hyp);
|
|
}
|
|
}
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Listener of events of 3D sub-meshes computed with viscous layers.
|
|
* It is used to store data computed by _ViscousBuilder for a sub-mesh and to
|
|
* delete the data as soon as it has been used
|
|
*/
|
|
class _ViscousListener : SMESH_subMeshEventListener
|
|
{
|
|
_ViscousListener():
|
|
SMESH_subMeshEventListener(/*isDeletable=*/false,
|
|
"StdMeshers_ViscousLayers::_ViscousListener") {}
|
|
static SMESH_subMeshEventListener* Get() { static _ViscousListener l; return &l; }
|
|
public:
|
|
virtual void ProcessEvent(const int event,
|
|
const int eventType,
|
|
SMESH_subMesh* subMesh,
|
|
SMESH_subMeshEventListenerData* data,
|
|
const SMESH_Hypothesis* hyp)
|
|
{
|
|
if (( SMESH_subMesh::COMPUTE_EVENT == eventType ) &&
|
|
( SMESH_subMesh::CHECK_COMPUTE_STATE != event &&
|
|
SMESH_subMesh::SUBMESH_COMPUTED != event ))
|
|
{
|
|
// delete SMESH_ProxyMesh containing temporary faces
|
|
subMesh->DeleteEventListener( this );
|
|
}
|
|
}
|
|
// Finds or creates proxy mesh of the solid
|
|
static _MeshOfSolid* GetSolidMesh(SMESH_Mesh* mesh,
|
|
const TopoDS_Shape& solid,
|
|
bool toCreate=false)
|
|
{
|
|
if ( !mesh ) return 0;
|
|
SMESH_subMesh* sm = mesh->GetSubMesh(solid);
|
|
_MeshOfSolid* data = (_MeshOfSolid*) sm->GetEventListenerData( Get() );
|
|
if ( !data && toCreate )
|
|
{
|
|
data = new _MeshOfSolid(mesh);
|
|
data->mySubMeshes.push_back( sm ); // to find SOLID by _MeshOfSolid
|
|
sm->SetEventListener( Get(), data, sm );
|
|
}
|
|
return data;
|
|
}
|
|
// Removes proxy mesh of the solid
|
|
static void RemoveSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid)
|
|
{
|
|
mesh->GetSubMesh(solid)->DeleteEventListener( _ViscousListener::Get() );
|
|
}
|
|
};
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief sets a sub-mesh event listener to clear sub-meshes of sub-shapes of
|
|
* the main shape when sub-mesh of the main shape is cleared,
|
|
* for example to clear sub-meshes of FACEs when sub-mesh of a SOLID
|
|
* is cleared
|
|
*/
|
|
//================================================================================
|
|
|
|
void ToClearSubWithMain( SMESH_subMesh* sub, const TopoDS_Shape& main)
|
|
{
|
|
SMESH_subMesh* mainSM = sub->GetFather()->GetSubMesh( main );
|
|
SMESH_subMeshEventListenerData* data =
|
|
mainSM->GetEventListenerData( _ShrinkShapeListener::Get());
|
|
if ( data )
|
|
{
|
|
if ( find( data->mySubMeshes.begin(), data->mySubMeshes.end(), sub ) ==
|
|
data->mySubMeshes.end())
|
|
data->mySubMeshes.push_back( sub );
|
|
}
|
|
else
|
|
{
|
|
data = SMESH_subMeshEventListenerData::MakeData( /*dependent=*/sub );
|
|
sub->SetEventListener( _ShrinkShapeListener::Get(), data, /*whereToListenTo=*/mainSM );
|
|
}
|
|
}
|
|
struct _SolidData;
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Simplex (triangle or tetrahedron) based on 1 (tria) or 2 (tet) nodes of
|
|
* _LayerEdge and 2 nodes of the mesh surface beening smoothed.
|
|
* The class is used to check validity of face or volumes around a smoothed node;
|
|
* it stores only 2 nodes as the other nodes are stored by _LayerEdge.
|
|
*/
|
|
struct _Simplex
|
|
{
|
|
const SMDS_MeshNode *_nPrev, *_nNext; // nodes on a smoothed mesh surface
|
|
const SMDS_MeshNode *_nOpp; // in 2D case, a node opposite to a smoothed node in QUAD
|
|
_Simplex(const SMDS_MeshNode* nPrev=0,
|
|
const SMDS_MeshNode* nNext=0,
|
|
const SMDS_MeshNode* nOpp=0)
|
|
: _nPrev(nPrev), _nNext(nNext), _nOpp(nOpp) {}
|
|
bool IsForward(const gp_XYZ* pntSrc, const gp_XYZ* pntTgt, double& vol) const
|
|
{
|
|
const double M[3][3] =
|
|
{{ _nNext->X() - pntSrc->X(), _nNext->Y() - pntSrc->Y(), _nNext->Z() - pntSrc->Z() },
|
|
{ pntTgt->X() - pntSrc->X(), pntTgt->Y() - pntSrc->Y(), pntTgt->Z() - pntSrc->Z() },
|
|
{ _nPrev->X() - pntSrc->X(), _nPrev->Y() - pntSrc->Y(), _nPrev->Z() - pntSrc->Z() }};
|
|
vol = ( + M[0][0] * M[1][1] * M[2][2]
|
|
+ M[0][1] * M[1][2] * M[2][0]
|
|
+ M[0][2] * M[1][0] * M[2][1]
|
|
- M[0][0] * M[1][2] * M[2][1]
|
|
- M[0][1] * M[1][0] * M[2][2]
|
|
- M[0][2] * M[1][1] * M[2][0]);
|
|
return vol > 1e-100;
|
|
}
|
|
bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ& pTgt, double& vol) const
|
|
{
|
|
SMESH_TNodeXYZ pSrc( nSrc );
|
|
return IsForward( &pSrc, &pTgt, vol );
|
|
}
|
|
bool IsForward(const gp_XY& tgtUV,
|
|
const SMDS_MeshNode* smoothedNode,
|
|
const TopoDS_Face& face,
|
|
SMESH_MesherHelper& helper,
|
|
const double refSign) const
|
|
{
|
|
gp_XY prevUV = helper.GetNodeUV( face, _nPrev, smoothedNode );
|
|
gp_XY nextUV = helper.GetNodeUV( face, _nNext, smoothedNode );
|
|
gp_Vec2d v1( tgtUV, prevUV ), v2( tgtUV, nextUV );
|
|
double d = v1 ^ v2;
|
|
return d*refSign > 1e-100;
|
|
}
|
|
bool IsMinAngleOK( const gp_XYZ& pTgt, double& minAngle ) const
|
|
{
|
|
SMESH_TNodeXYZ pPrev( _nPrev ), pNext( _nNext );
|
|
if ( !_nOpp ) // triangle
|
|
{
|
|
gp_Vec tp( pPrev - pTgt ), pn( pNext - pPrev ), nt( pTgt - pNext );
|
|
double tp2 = tp.SquareMagnitude();
|
|
double pn2 = pn.SquareMagnitude();
|
|
double nt2 = nt.SquareMagnitude();
|
|
|
|
if ( tp2 < pn2 && tp2 < nt2 )
|
|
minAngle = ( nt * -pn ) * ( nt * -pn ) / nt2 / pn2;
|
|
else if ( pn2 < nt2 )
|
|
minAngle = ( tp * -nt ) * ( tp * -nt ) / tp2 / nt2;
|
|
else
|
|
minAngle = ( pn * -tp ) * ( pn * -tp ) / pn2 / tp2;
|
|
|
|
static double theMaxCos2 = ( Cos( theMinSmoothTriaAngle * M_PI / 180. ) *
|
|
Cos( theMinSmoothTriaAngle * M_PI / 180. ));
|
|
return minAngle < theMaxCos2;
|
|
}
|
|
else // quadrangle
|
|
{
|
|
SMESH_TNodeXYZ pOpp( _nOpp );
|
|
gp_Vec tp( pPrev - pTgt ), po( pOpp - pPrev ), on( pNext - pOpp), nt( pTgt - pNext );
|
|
double tp2 = tp.SquareMagnitude();
|
|
double po2 = po.SquareMagnitude();
|
|
double on2 = on.SquareMagnitude();
|
|
double nt2 = nt.SquareMagnitude();
|
|
minAngle = Max( Max((( tp * -nt ) * ( tp * -nt ) / tp2 / nt2 ),
|
|
(( po * -tp ) * ( po * -tp ) / po2 / tp2 )),
|
|
Max((( on * -po ) * ( on * -po ) / on2 / po2 ),
|
|
(( nt * -on ) * ( nt * -on ) / nt2 / on2 )));
|
|
|
|
static double theMaxCos2 = ( Cos( theMinSmoothQuadAngle * M_PI / 180. ) *
|
|
Cos( theMinSmoothQuadAngle * M_PI / 180. ));
|
|
return minAngle < theMaxCos2;
|
|
}
|
|
}
|
|
bool IsNeighbour(const _Simplex& other) const
|
|
{
|
|
return _nPrev == other._nNext || _nNext == other._nPrev;
|
|
}
|
|
bool Includes( const SMDS_MeshNode* node ) const { return _nPrev == node || _nNext == node; }
|
|
static void GetSimplices( const SMDS_MeshNode* node,
|
|
vector<_Simplex>& simplices,
|
|
const set<TGeomID>& ingnoreShapes,
|
|
const _SolidData* dataToCheckOri = 0,
|
|
const bool toSort = false);
|
|
static void SortSimplices(vector<_Simplex>& simplices);
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* Structure used to take into account surface curvature while smoothing
|
|
*/
|
|
struct _Curvature
|
|
{
|
|
double _r; // radius
|
|
double _k; // factor to correct node smoothed position
|
|
double _h2lenRatio; // avgNormProj / (2*avgDist)
|
|
gp_Pnt2d _uv; // UV used in putOnOffsetSurface()
|
|
public:
|
|
static _Curvature* New( double avgNormProj, double avgDist );
|
|
double lenDelta(double len) const { return _k * ( _r + len ); }
|
|
double lenDeltaByDist(double dist) const { return dist * _h2lenRatio; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
|
|
struct _2NearEdges;
|
|
struct _LayerEdge;
|
|
struct _EdgesOnShape;
|
|
struct _Smoother1D;
|
|
typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Edge normal to surface, connecting a node on solid surface (_nodes[0])
|
|
* and a node of the most internal layer (_nodes.back())
|
|
*/
|
|
struct _LayerEdge
|
|
{
|
|
typedef gp_XYZ (_LayerEdge::*PSmooFun)();
|
|
|
|
vector< const SMDS_MeshNode*> _nodes;
|
|
|
|
gp_XYZ _normal; // to boundary of solid
|
|
vector<gp_XYZ> _pos; // points computed during inflation
|
|
double _len; // length achieved with the last inflation step
|
|
double _maxLen; // maximal possible length
|
|
double _cosin; // of angle (_normal ^ surface)
|
|
double _minAngle; // of _simplices
|
|
double _lenFactor; // to compute _len taking _cosin into account
|
|
int _flags;
|
|
|
|
// simplices connected to the source node (_nodes[0]);
|
|
// used for smoothing and quality check of _LayerEdge's based on the FACE
|
|
vector<_Simplex> _simplices;
|
|
vector<_LayerEdge*> _neibors; // all surrounding _LayerEdge's
|
|
PSmooFun _smooFunction; // smoothing function
|
|
_Curvature* _curvature;
|
|
// data for smoothing of _LayerEdge's based on the EDGE
|
|
_2NearEdges* _2neibors;
|
|
|
|
enum EFlags { TO_SMOOTH = 0x0000001,
|
|
MOVED = 0x0000002, // set by _neibors[i]->SetNewLength()
|
|
SMOOTHED = 0x0000004, // set by _LayerEdge::Smooth()
|
|
DIFFICULT = 0x0000008, // near concave VERTEX
|
|
ON_CONCAVE_FACE = 0x0000010,
|
|
BLOCKED = 0x0000020, // not to inflate any more
|
|
INTERSECTED = 0x0000040, // close intersection with a face found
|
|
NORMAL_UPDATED = 0x0000080,
|
|
UPD_NORMAL_CONV = 0x0000100, // to update normal on boundary of concave FACE
|
|
MARKED = 0x0000200, // local usage
|
|
MULTI_NORMAL = 0x0000400, // a normal is invisible by some of surrounding faces
|
|
NEAR_BOUNDARY = 0x0000800, // is near FACE boundary forcing smooth
|
|
SMOOTHED_C1 = 0x0001000, // is on _eosC1
|
|
DISTORTED = 0x0002000, // was bad before smoothing
|
|
RISKY_SWOL = 0x0004000, // SWOL is parallel to a source FACE
|
|
SHRUNK = 0x0008000, // target node reached a tgt position while shrink()
|
|
UNUSED_FLAG = 0x0100000 // to add user flags after
|
|
};
|
|
bool Is ( int flag ) const { return _flags & flag; }
|
|
void Set ( int flag ) { _flags |= flag; }
|
|
void Unset( int flag ) { _flags &= ~flag; }
|
|
std::string DumpFlags() const; // debug
|
|
|
|
void SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
|
|
bool SetNewLength2d( Handle(Geom_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper );
|
|
void SetDataByNeighbors( const SMDS_MeshNode* n1,
|
|
const SMDS_MeshNode* n2,
|
|
const _EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper);
|
|
void Block( _SolidData& data );
|
|
void InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength=false );
|
|
void ChooseSmooFunction(const set< TGeomID >& concaveVertices,
|
|
const TNode2Edge& n2eMap);
|
|
void SmoothPos( const vector< double >& segLen, const double tol );
|
|
int GetSmoothedPos( const double tol );
|
|
int Smooth(const int step, const bool isConcaveFace, bool findBest);
|
|
int Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth );
|
|
int CheckNeiborsOnBoundary(vector< _LayerEdge* >* badNeibors = 0, bool * needSmooth = 0 );
|
|
void SmoothWoCheck();
|
|
bool SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper);
|
|
void MoveNearConcaVer( const _EdgesOnShape* eov,
|
|
const _EdgesOnShape* eos,
|
|
const int step,
|
|
vector< _LayerEdge* > & badSmooEdges);
|
|
bool FindIntersection( SMESH_ElementSearcher& searcher,
|
|
double & distance,
|
|
const double& epsilon,
|
|
_EdgesOnShape& eos,
|
|
const SMDS_MeshElement** face = 0);
|
|
bool SegTriaInter( const gp_Ax1& lastSegment,
|
|
const gp_XYZ& p0,
|
|
const gp_XYZ& p1,
|
|
const gp_XYZ& p2,
|
|
double& dist,
|
|
const double& epsilon) const;
|
|
bool SegTriaInter( const gp_Ax1& lastSegment,
|
|
const SMDS_MeshNode* n0,
|
|
const SMDS_MeshNode* n1,
|
|
const SMDS_MeshNode* n2,
|
|
double& dist,
|
|
const double& epsilon) const
|
|
{ return SegTriaInter( lastSegment,
|
|
SMESH_TNodeXYZ( n0 ), SMESH_TNodeXYZ( n1 ), SMESH_TNodeXYZ( n2 ),
|
|
dist, epsilon );
|
|
}
|
|
const gp_XYZ& PrevPos() const { return _pos[ _pos.size() - 2 ]; }
|
|
gp_XYZ PrevCheckPos( _EdgesOnShape* eos=0 ) const;
|
|
gp_Ax1 LastSegment(double& segLen, _EdgesOnShape& eos) const;
|
|
gp_XY LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which=-1 ) const;
|
|
bool IsOnEdge() const { return _2neibors; }
|
|
bool IsOnFace() const { return ( _nodes[0]->GetPosition()->GetDim() == 2 ); }
|
|
int BaseShapeDim() const { return _nodes[0]->GetPosition()->GetDim(); }
|
|
gp_XYZ Copy( _LayerEdge& other, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
|
|
void SetCosin( double cosin );
|
|
void SetNormal( const gp_XYZ& n ) { _normal = n; }
|
|
void SetMaxLen( double l ) { _maxLen = l; }
|
|
int NbSteps() const { return _pos.size() - 1; } // nb inlation steps
|
|
bool IsNeiborOnEdge( const _LayerEdge* edge ) const;
|
|
void SetSmooLen( double len ) { // set _len at which smoothing is needed
|
|
_cosin = len; // as for _LayerEdge's on FACE _cosin is not used
|
|
}
|
|
double GetSmooLen() { return _cosin; } // for _LayerEdge's on FACE _cosin is not used
|
|
|
|
gp_XYZ smoothLaplacian();
|
|
gp_XYZ smoothAngular();
|
|
gp_XYZ smoothLengthWeighted();
|
|
gp_XYZ smoothCentroidal();
|
|
gp_XYZ smoothNefPolygon();
|
|
|
|
enum { FUN_LAPLACIAN, FUN_LENWEIGHTED, FUN_CENTROIDAL, FUN_NEFPOLY, FUN_ANGULAR, FUN_NB };
|
|
static const int theNbSmooFuns = FUN_NB;
|
|
static PSmooFun _funs[theNbSmooFuns];
|
|
static const char* _funNames[theNbSmooFuns+1];
|
|
int smooFunID( PSmooFun fun=0) const;
|
|
};
|
|
_LayerEdge::PSmooFun _LayerEdge::_funs[theNbSmooFuns] = { &_LayerEdge::smoothLaplacian,
|
|
&_LayerEdge::smoothLengthWeighted,
|
|
&_LayerEdge::smoothCentroidal,
|
|
&_LayerEdge::smoothNefPolygon,
|
|
&_LayerEdge::smoothAngular };
|
|
const char* _LayerEdge::_funNames[theNbSmooFuns+1] = { "Laplacian",
|
|
"LengthWeighted",
|
|
"Centroidal",
|
|
"NefPolygon",
|
|
"Angular",
|
|
"None"};
|
|
struct _LayerEdgeCmp
|
|
{
|
|
bool operator () (const _LayerEdge* e1, const _LayerEdge* e2) const
|
|
{
|
|
const bool cmpNodes = ( e1 && e2 && e1->_nodes.size() && e2->_nodes.size() );
|
|
return cmpNodes ? ( e1->_nodes[0]->GetID() < e2->_nodes[0]->GetID()) : ( e1 < e2 );
|
|
}
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* A 2D half plane used by _LayerEdge::smoothNefPolygon()
|
|
*/
|
|
struct _halfPlane
|
|
{
|
|
gp_XY _pos, _dir, _inNorm;
|
|
bool IsOut( const gp_XY p, const double tol ) const
|
|
{
|
|
return _inNorm * ( p - _pos ) < -tol;
|
|
}
|
|
bool FindIntersection( const _halfPlane& hp, gp_XY & intPnt )
|
|
{
|
|
//const double eps = 1e-10;
|
|
double D = _dir.Crossed( hp._dir );
|
|
if ( fabs(D) < std::numeric_limits<double>::min())
|
|
return false;
|
|
gp_XY vec21 = _pos - hp._pos;
|
|
double u = hp._dir.Crossed( vec21 ) / D;
|
|
intPnt = _pos + _dir * u;
|
|
return true;
|
|
}
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* Structure used to smooth a _LayerEdge based on an EDGE.
|
|
*/
|
|
struct _2NearEdges
|
|
{
|
|
double _wgt [2]; // weights of _nodes
|
|
_LayerEdge* _edges[2];
|
|
|
|
// normal to plane passing through _LayerEdge._normal and tangent of EDGE
|
|
gp_XYZ* _plnNorm;
|
|
|
|
_2NearEdges() { _edges[0]=_edges[1]=0; _plnNorm = 0; }
|
|
~_2NearEdges(){ delete _plnNorm; }
|
|
const SMDS_MeshNode* tgtNode(bool is2nd) {
|
|
return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0;
|
|
}
|
|
const SMDS_MeshNode* srcNode(bool is2nd) {
|
|
return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0;
|
|
}
|
|
void reverse() {
|
|
std::swap( _wgt [0], _wgt [1] );
|
|
std::swap( _edges[0], _edges[1] );
|
|
}
|
|
void set( _LayerEdge* e1, _LayerEdge* e2, double w1, double w2 ) {
|
|
_edges[0] = e1; _edges[1] = e2; _wgt[0] = w1; _wgt[1] = w2;
|
|
}
|
|
bool include( const _LayerEdge* e ) {
|
|
return ( _edges[0] == e || _edges[1] == e );
|
|
}
|
|
};
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Layers parameters got by averaging several hypotheses
|
|
*/
|
|
struct AverageHyp
|
|
{
|
|
AverageHyp( const StdMeshers_ViscousLayers* hyp = 0 )
|
|
:_nbLayers(0), _nbHyps(0), _method(0), _thickness(0), _stretchFactor(0)
|
|
{
|
|
Add( hyp );
|
|
}
|
|
void Add( const StdMeshers_ViscousLayers* hyp )
|
|
{
|
|
if ( hyp )
|
|
{
|
|
_nbHyps++;
|
|
_nbLayers = hyp->GetNumberLayers();
|
|
//_thickness += hyp->GetTotalThickness();
|
|
_thickness = Max( _thickness, hyp->GetTotalThickness() );
|
|
_stretchFactor += hyp->GetStretchFactor();
|
|
_method = hyp->GetMethod();
|
|
if ( _groupName.empty() )
|
|
_groupName = hyp->GetGroupName();
|
|
}
|
|
}
|
|
double GetTotalThickness() const { return _thickness; /*_nbHyps ? _thickness / _nbHyps : 0;*/ }
|
|
double GetStretchFactor() const { return _nbHyps ? _stretchFactor / _nbHyps : 0; }
|
|
int GetNumberLayers() const { return _nbLayers; }
|
|
int GetMethod() const { return _method; }
|
|
bool ToCreateGroup() const { return !_groupName.empty(); }
|
|
const std::string& GetGroupName() const { return _groupName; }
|
|
|
|
bool UseSurfaceNormal() const
|
|
{ return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; }
|
|
bool ToSmooth() const
|
|
{ return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; }
|
|
bool IsOffsetMethod() const
|
|
{ return _method == StdMeshers_ViscousLayers::FACE_OFFSET; }
|
|
|
|
bool operator==( const AverageHyp& other ) const
|
|
{
|
|
return ( _nbLayers == other._nbLayers &&
|
|
_method == other._method &&
|
|
Equals( GetTotalThickness(), other.GetTotalThickness() ) &&
|
|
Equals( GetStretchFactor(), other.GetStretchFactor() ));
|
|
}
|
|
static bool Equals( double v1, double v2 ) { return Abs( v1 - v2 ) < 0.01 * ( v1 + v2 ); }
|
|
|
|
private:
|
|
int _nbLayers, _nbHyps, _method;
|
|
double _thickness, _stretchFactor;
|
|
std::string _groupName;
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief _LayerEdge's on a shape and other shape data
|
|
*/
|
|
struct _EdgesOnShape
|
|
{
|
|
vector< _LayerEdge* > _edges;
|
|
|
|
TopoDS_Shape _shape;
|
|
TGeomID _shapeID;
|
|
SMESH_subMesh * _subMesh;
|
|
// face or edge w/o layer along or near which _edges are inflated
|
|
TopoDS_Shape _sWOL;
|
|
bool _isRegularSWOL; // w/o singularities
|
|
// averaged StdMeshers_ViscousLayers parameters
|
|
AverageHyp _hyp;
|
|
bool _toSmooth;
|
|
_Smoother1D* _edgeSmoother;
|
|
vector< _EdgesOnShape* > _eosConcaVer; // edges at concave VERTEXes of a FACE
|
|
vector< _EdgesOnShape* > _eosC1; // to smooth together several C1 continues shapes
|
|
|
|
typedef std::unordered_map< const SMDS_MeshElement*, gp_XYZ > TFace2NormMap;
|
|
TFace2NormMap _faceNormals; // if _shape is FACE
|
|
vector< _EdgesOnShape* > _faceEOS; // to get _faceNormals of adjacent FACEs
|
|
|
|
Handle(ShapeAnalysis_Surface) _offsetSurf;
|
|
_LayerEdge* _edgeForOffset;
|
|
|
|
_SolidData* _data; // parent SOLID
|
|
|
|
_LayerEdge* operator[](size_t i) const { return (_LayerEdge*) _edges[i]; }
|
|
size_t size() const { return _edges.size(); }
|
|
TopAbs_ShapeEnum ShapeType() const
|
|
{ return _shape.IsNull() ? TopAbs_SHAPE : _shape.ShapeType(); }
|
|
TopAbs_ShapeEnum SWOLType() const
|
|
{ return _sWOL.IsNull() ? TopAbs_SHAPE : _sWOL.ShapeType(); }
|
|
bool HasC1( const _EdgesOnShape* other ) const
|
|
{ return std::find( _eosC1.begin(), _eosC1.end(), other ) != _eosC1.end(); }
|
|
bool GetNormal( const SMDS_MeshElement* face, gp_Vec& norm );
|
|
_SolidData& GetData() const { return *_data; }
|
|
|
|
_EdgesOnShape(): _shapeID(-1), _subMesh(0), _toSmooth(false), _edgeSmoother(0) {}
|
|
~_EdgesOnShape();
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Convex FACE whose radius of curvature is less than the thickness of
|
|
* layers. It is used to detect distortion of prisms based on a convex
|
|
* FACE and to update normals to enable further increasing the thickness
|
|
*/
|
|
struct _ConvexFace
|
|
{
|
|
TopoDS_Face _face;
|
|
|
|
// edges whose _simplices are used to detect prism distortion
|
|
vector< _LayerEdge* > _simplexTestEdges;
|
|
|
|
// map a sub-shape to _SolidData::_edgesOnShape
|
|
map< TGeomID, _EdgesOnShape* > _subIdToEOS;
|
|
|
|
bool _isTooCurved;
|
|
bool _normalsFixed;
|
|
bool _normalsFixedOnBorders; // used in putOnOffsetSurface()
|
|
|
|
double GetMaxCurvature( _SolidData& data,
|
|
_EdgesOnShape& eof,
|
|
BRepLProp_SLProps& surfProp,
|
|
SMESH_MesherHelper& helper);
|
|
|
|
bool GetCenterOfCurvature( _LayerEdge* ledge,
|
|
BRepLProp_SLProps& surfProp,
|
|
SMESH_MesherHelper& helper,
|
|
gp_Pnt & center ) const;
|
|
bool CheckPrisms() const;
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Structure holding _LayerEdge's based on EDGEs that will collide
|
|
* at inflation up to the full thickness. A detected collision
|
|
* is fixed in updateNormals()
|
|
*/
|
|
struct _CollisionEdges
|
|
{
|
|
_LayerEdge* _edge;
|
|
vector< _LayerEdge* > _intEdges; // each pair forms an intersected quadrangle
|
|
const SMDS_MeshNode* nSrc(int i) const { return _intEdges[i]->_nodes[0]; }
|
|
const SMDS_MeshNode* nTgt(int i) const { return _intEdges[i]->_nodes.back(); }
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Data of a SOLID
|
|
*/
|
|
struct _SolidData
|
|
{
|
|
typedef const StdMeshers_ViscousLayers* THyp;
|
|
TopoDS_Shape _solid;
|
|
TopTools_MapOfShape _before; // SOLIDs to be computed before _solid
|
|
TGeomID _index; // SOLID id
|
|
_MeshOfSolid* _proxyMesh;
|
|
bool _done;
|
|
list< THyp > _hyps;
|
|
list< TopoDS_Shape > _hypShapes;
|
|
map< TGeomID, THyp > _face2hyp; // filled if _hyps.size() > 1
|
|
set< TGeomID > _reversedFaceIds;
|
|
set< TGeomID > _ignoreFaceIds; // WOL FACEs and FACEs of other SOLIDs
|
|
|
|
double _stepSize, _stepSizeCoeff, _geomSize;
|
|
const SMDS_MeshNode* _stepSizeNodes[2];
|
|
|
|
TNode2Edge _n2eMap; // nodes and _LayerEdge's based on them
|
|
|
|
// map to find _n2eMap of another _SolidData by a shrink shape shared by two _SolidData's
|
|
map< TGeomID, TNode2Edge* > _s2neMap;
|
|
// _LayerEdge's with underlying shapes
|
|
vector< _EdgesOnShape > _edgesOnShape;
|
|
|
|
// key: an ID of shape (EDGE or VERTEX) shared by a FACE with
|
|
// layers and a FACE w/o layers
|
|
// value: the shape (FACE or EDGE) to shrink mesh on.
|
|
// _LayerEdge's basing on nodes on key shape are inflated along the value shape
|
|
map< TGeomID, TopoDS_Shape > _shrinkShape2Shape;
|
|
|
|
// Convex FACEs whose radius of curvature is less than the thickness of layers
|
|
map< TGeomID, _ConvexFace > _convexFaces;
|
|
|
|
// shapes (EDGEs and VERTEXes) shrink from which is forbidden due to collisions with
|
|
// the adjacent SOLID
|
|
set< TGeomID > _noShrinkShapes;
|
|
|
|
int _nbShapesToSmooth;
|
|
|
|
vector< _CollisionEdges > _collisionEdges;
|
|
set< TGeomID > _concaveFaces;
|
|
|
|
double _maxThickness; // of all _hyps
|
|
double _minThickness; // of all _hyps
|
|
|
|
double _epsilon; // precision for SegTriaInter()
|
|
|
|
SMESH_MesherHelper* _helper;
|
|
|
|
_SolidData(const TopoDS_Shape& s=TopoDS_Shape(),
|
|
_MeshOfSolid* m=0)
|
|
:_solid(s), _proxyMesh(m), _done(false),_helper(0) {}
|
|
~_SolidData() { delete _helper; _helper = 0; }
|
|
|
|
void SortOnEdge( const TopoDS_Edge& E, vector< _LayerEdge* >& edges);
|
|
void Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges );
|
|
|
|
_ConvexFace* GetConvexFace( const TGeomID faceID ) {
|
|
map< TGeomID, _ConvexFace >::iterator id2face = _convexFaces.find( faceID );
|
|
return id2face == _convexFaces.end() ? 0 : & id2face->second;
|
|
}
|
|
_EdgesOnShape* GetShapeEdges(const TGeomID shapeID );
|
|
_EdgesOnShape* GetShapeEdges(const TopoDS_Shape& shape );
|
|
_EdgesOnShape* GetShapeEdges(const _LayerEdge* edge )
|
|
{ return GetShapeEdges( edge->_nodes[0]->getshapeId() ); }
|
|
|
|
SMESH_MesherHelper& GetHelper() const { return *_helper; }
|
|
|
|
void UnmarkEdges( int flag = _LayerEdge::MARKED ) {
|
|
for ( size_t i = 0; i < _edgesOnShape.size(); ++i )
|
|
for ( size_t j = 0; j < _edgesOnShape[i]._edges.size(); ++j )
|
|
_edgesOnShape[i]._edges[j]->Unset( flag );
|
|
}
|
|
void AddShapesToSmooth( const set< _EdgesOnShape* >& shape,
|
|
const set< _EdgesOnShape* >* edgesNoAnaSmooth=0 );
|
|
|
|
void PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes );
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Offset plane used in getNormalByOffset()
|
|
*/
|
|
struct _OffsetPlane
|
|
{
|
|
gp_Pln _plane;
|
|
int _faceIndex;
|
|
int _faceIndexNext[2];
|
|
gp_Lin _lines[2]; // line of intersection with neighbor _OffsetPlane's
|
|
bool _isLineOK[2];
|
|
_OffsetPlane() {
|
|
_isLineOK[0] = _isLineOK[1] = false; _faceIndexNext[0] = _faceIndexNext[1] = -1;
|
|
}
|
|
void ComputeIntersectionLine( _OffsetPlane& pln,
|
|
const TopoDS_Edge& E,
|
|
const TopoDS_Vertex& V );
|
|
gp_XYZ GetCommonPoint(bool& isFound, const TopoDS_Vertex& V) const;
|
|
int NbLines() const { return _isLineOK[0] + _isLineOK[1]; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Container of centers of curvature at nodes on an EDGE bounding _ConvexFace
|
|
*/
|
|
struct _CentralCurveOnEdge
|
|
{
|
|
bool _isDegenerated;
|
|
vector< gp_Pnt > _curvaCenters;
|
|
vector< _LayerEdge* > _ledges;
|
|
vector< gp_XYZ > _normals; // new normal for each of _ledges
|
|
vector< double > _segLength2;
|
|
|
|
TopoDS_Edge _edge;
|
|
TopoDS_Face _adjFace;
|
|
bool _adjFaceToSmooth;
|
|
|
|
void Append( const gp_Pnt& center, _LayerEdge* ledge )
|
|
{
|
|
if ( ledge->Is( _LayerEdge::MULTI_NORMAL ))
|
|
return;
|
|
if ( _curvaCenters.size() > 0 )
|
|
_segLength2.push_back( center.SquareDistance( _curvaCenters.back() ));
|
|
_curvaCenters.push_back( center );
|
|
_ledges.push_back( ledge );
|
|
_normals.push_back( ledge->_normal );
|
|
}
|
|
bool FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal );
|
|
void SetShapes( const TopoDS_Edge& edge,
|
|
const _ConvexFace& convFace,
|
|
_SolidData& data,
|
|
SMESH_MesherHelper& helper);
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Data of node on a shrinked FACE
|
|
*/
|
|
struct _SmoothNode
|
|
{
|
|
const SMDS_MeshNode* _node;
|
|
vector<_Simplex> _simplices; // for quality check
|
|
|
|
enum SmoothType { LAPLACIAN, CENTROIDAL, ANGULAR, TFI };
|
|
|
|
bool Smooth(int& badNb,
|
|
Handle(Geom_Surface)& surface,
|
|
SMESH_MesherHelper& helper,
|
|
const double refSign,
|
|
SmoothType how,
|
|
bool set3D);
|
|
|
|
gp_XY computeAngularPos(vector<gp_XY>& uv,
|
|
const gp_XY& uvToFix,
|
|
const double refSign );
|
|
};
|
|
struct PyDump;
|
|
struct Periodicity;
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Builder of viscous layers
|
|
*/
|
|
class _ViscousBuilder
|
|
{
|
|
public:
|
|
_ViscousBuilder();
|
|
// does it's job
|
|
SMESH_ComputeErrorPtr Compute(SMESH_Mesh& mesh,
|
|
const TopoDS_Shape& shape);
|
|
// check validity of hypotheses
|
|
SMESH_ComputeErrorPtr CheckHypotheses( SMESH_Mesh& mesh,
|
|
const TopoDS_Shape& shape );
|
|
|
|
// restore event listeners used to clear an inferior dim sub-mesh modified by viscous layers
|
|
void RestoreListeners();
|
|
|
|
// computes SMESH_ProxyMesh::SubMesh::_n2n;
|
|
bool MakeN2NMap( _MeshOfSolid* pm );
|
|
|
|
private:
|
|
|
|
bool findSolidsWithLayers(const bool checkFaceMesh=true);
|
|
bool setBefore( _SolidData& solidBefore, _SolidData& solidAfter );
|
|
bool findFacesWithLayers(const bool onlyWith=false);
|
|
void findPeriodicFaces();
|
|
void getIgnoreFaces(const TopoDS_Shape& solid,
|
|
const StdMeshers_ViscousLayers* hyp,
|
|
const TopoDS_Shape& hypShape,
|
|
set<TGeomID>& ignoreFaces);
|
|
void makeEdgesOnShape();
|
|
bool makeLayer(_SolidData& data);
|
|
void setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data );
|
|
bool setEdgeData( _LayerEdge& edge, _EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper, _SolidData& data);
|
|
gp_XYZ getFaceNormal(const SMDS_MeshNode* n,
|
|
const TopoDS_Face& face,
|
|
SMESH_MesherHelper& helper,
|
|
bool& isOK,
|
|
bool shiftInside=false);
|
|
bool getFaceNormalAtSingularity(const gp_XY& uv,
|
|
const TopoDS_Face& face,
|
|
SMESH_MesherHelper& helper,
|
|
gp_Dir& normal );
|
|
gp_XYZ getWeigthedNormal( const _LayerEdge* edge );
|
|
gp_XYZ getNormalByOffset( _LayerEdge* edge,
|
|
std::pair< TopoDS_Face, gp_XYZ > fId2Normal[],
|
|
int nbFaces,
|
|
bool lastNoOffset = false);
|
|
bool findNeiborsOnEdge(const _LayerEdge* edge,
|
|
const SMDS_MeshNode*& n1,
|
|
const SMDS_MeshNode*& n2,
|
|
_EdgesOnShape& eos,
|
|
_SolidData& data);
|
|
void findSimplexTestEdges( _SolidData& data,
|
|
vector< vector<_LayerEdge*> >& edgesByGeom);
|
|
void computeGeomSize( _SolidData& data );
|
|
bool findShapesToSmooth( _SolidData& data);
|
|
void limitStepSizeByCurvature( _SolidData& data );
|
|
void limitStepSize( _SolidData& data,
|
|
const SMDS_MeshElement* face,
|
|
const _LayerEdge* maxCosinEdge );
|
|
void limitStepSize( _SolidData& data, const double minSize);
|
|
bool inflate(_SolidData& data);
|
|
bool smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection);
|
|
int invalidateBadSmooth( _SolidData& data,
|
|
SMESH_MesherHelper& helper,
|
|
vector< _LayerEdge* >& badSmooEdges,
|
|
vector< _EdgesOnShape* >& eosC1,
|
|
const int infStep );
|
|
void makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& );
|
|
void putOnOffsetSurface( _EdgesOnShape& eos, int infStep,
|
|
vector< _EdgesOnShape* >& eosC1,
|
|
int smooStep=0, int moveAll=false );
|
|
void findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper );
|
|
void findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace,
|
|
_SolidData& data,
|
|
SMESH_MesherHelper& helper );
|
|
void limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper );
|
|
void limitMaxLenByCurvature( _LayerEdge* e1, _LayerEdge* e2,
|
|
_EdgesOnShape& eos1, _EdgesOnShape& eos2,
|
|
const bool isSmoothable );
|
|
bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb, double stepSize );
|
|
bool updateNormalsOfConvexFaces( _SolidData& data,
|
|
SMESH_MesherHelper& helper,
|
|
int stepNb );
|
|
void updateNormalsOfC1Vertices( _SolidData& data );
|
|
bool updateNormalsOfSmoothed( _SolidData& data,
|
|
SMESH_MesherHelper& helper,
|
|
const int nbSteps,
|
|
const double stepSize );
|
|
bool isNewNormalOk( _SolidData& data,
|
|
_LayerEdge& edge,
|
|
const gp_XYZ& newNormal);
|
|
bool refine(_SolidData& data);
|
|
bool shrink(_SolidData& data);
|
|
bool prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper,
|
|
const SMESHDS_SubMesh* faceSubMesh );
|
|
void restoreNoShrink( _LayerEdge& edge ) const;
|
|
void fixBadFaces(const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper,
|
|
const bool is2D,
|
|
const int step,
|
|
set<const SMDS_MeshNode*> * involvedNodes=NULL);
|
|
bool addBoundaryElements(_SolidData& data);
|
|
|
|
bool error( const string& text, int solidID=-1 );
|
|
SMESHDS_Mesh* getMeshDS() const { return _mesh->GetMeshDS(); }
|
|
|
|
// debug
|
|
void makeGroupOfLE();
|
|
|
|
SMESH_Mesh* _mesh;
|
|
SMESH_ComputeErrorPtr _error;
|
|
|
|
vector< _SolidData > _sdVec;
|
|
TopTools_IndexedMapOfShape _solids; // to find _SolidData by a solid
|
|
TopTools_MapOfShape _shrunkFaces;
|
|
std::unique_ptr<Periodicity> _periodicity;
|
|
|
|
int _tmpFaceID;
|
|
PyDump* _pyDump;
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Shrinker of nodes on the EDGE
|
|
*/
|
|
class _Shrinker1D
|
|
{
|
|
TopoDS_Edge _geomEdge;
|
|
vector<double> _initU;
|
|
vector<double> _normPar;
|
|
vector<const SMDS_MeshNode*> _nodes;
|
|
const _LayerEdge* _edges[2];
|
|
bool _done;
|
|
public:
|
|
void AddEdge( const _LayerEdge* e, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
|
|
void Compute(bool set3D, SMESH_MesherHelper& helper);
|
|
void RestoreParams();
|
|
void SwapSrcTgtNodes(SMESHDS_Mesh* mesh);
|
|
const TopoDS_Edge& GeomEdge() const { return _geomEdge; }
|
|
const SMDS_MeshNode* TgtNode( bool is2nd ) const
|
|
{ return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; }
|
|
const SMDS_MeshNode* SrcNode( bool is2nd ) const
|
|
{ return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Smoother of _LayerEdge's on EDGE.
|
|
*/
|
|
struct _Smoother1D
|
|
{
|
|
struct OffPnt // point of the offsetted EDGE
|
|
{
|
|
gp_XYZ _xyz; // coord of a point inflated from EDGE w/o smooth
|
|
double _len; // length reached at previous inflation step
|
|
double _param; // on EDGE
|
|
_2NearEdges _2edges; // 2 neighbor _LayerEdge's
|
|
gp_XYZ _edgeDir;// EDGE tangent at _param
|
|
double Distance( const OffPnt& p ) const { return ( _xyz - p._xyz ).Modulus(); }
|
|
};
|
|
vector< OffPnt > _offPoints;
|
|
vector< double > _leParams; // normalized param of _eos._edges on EDGE
|
|
Handle(Geom_Curve) _anaCurve; // for analytic smooth
|
|
_LayerEdge _leOnV[2]; // _LayerEdge's holding normal to the EDGE at VERTEXes
|
|
gp_XYZ _edgeDir[2]; // tangent at VERTEXes
|
|
size_t _iSeg[2]; // index of segment where extreme tgt node is projected
|
|
_EdgesOnShape& _eos;
|
|
double _curveLen; // length of the EDGE
|
|
std::pair<int,int> _eToSmooth[2]; // <from,to> indices of _LayerEdge's in _eos
|
|
|
|
static Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper);
|
|
|
|
_Smoother1D( Handle(Geom_Curve) curveForSmooth,
|
|
_EdgesOnShape& eos )
|
|
: _anaCurve( curveForSmooth ), _eos( eos )
|
|
{
|
|
}
|
|
bool Perform(_SolidData& data,
|
|
Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper );
|
|
|
|
void prepare(_SolidData& data );
|
|
|
|
void findEdgesToSmooth();
|
|
|
|
bool isToSmooth( int iE );
|
|
|
|
bool smoothAnalyticEdge( _SolidData& data,
|
|
Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper);
|
|
bool smoothComplexEdge( _SolidData& data,
|
|
Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper);
|
|
gp_XYZ getNormalNormal( const gp_XYZ & normal,
|
|
const gp_XYZ& edgeDir);
|
|
_LayerEdge* getLEdgeOnV( bool is2nd )
|
|
{
|
|
return _eos._edges[ is2nd ? _eos._edges.size()-1 : 0 ]->_2neibors->_edges[ is2nd ];
|
|
}
|
|
bool isAnalytic() const { return !_anaCurve.IsNull(); }
|
|
|
|
void offPointsToPython() const; // debug
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Class of temporary mesh face.
|
|
* We can't use SMDS_FaceOfNodes since it's impossible to set it's ID which is
|
|
* needed because SMESH_ElementSearcher internally uses set of elements sorted by ID
|
|
*/
|
|
struct _TmpMeshFace : public SMDS_PolygonalFaceOfNodes
|
|
{
|
|
const SMDS_MeshElement* _srcFace;
|
|
|
|
_TmpMeshFace( const vector<const SMDS_MeshNode*>& nodes,
|
|
int ID,
|
|
int faceID=-1,
|
|
const SMDS_MeshElement* srcFace=0 ):
|
|
SMDS_PolygonalFaceOfNodes(nodes), _srcFace( srcFace ) { setID( ID ); setShapeID( faceID ); }
|
|
virtual SMDSAbs_EntityType GetEntityType() const
|
|
{ return _srcFace ? _srcFace->GetEntityType() : SMDSEntity_Quadrangle; }
|
|
virtual SMDSAbs_GeometryType GetGeomType() const
|
|
{ return _srcFace ? _srcFace->GetGeomType() : SMDSGeom_QUADRANGLE; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Class of temporary mesh quadrangle face storing _LayerEdge it's based on
|
|
*/
|
|
struct _TmpMeshFaceOnEdge : public _TmpMeshFace
|
|
{
|
|
_LayerEdge *_le1, *_le2;
|
|
_TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ):
|
|
_TmpMeshFace( vector<const SMDS_MeshNode*>(4), ID ), _le1(le1), _le2(le2)
|
|
{
|
|
myNodes[0]=_le1->_nodes[0];
|
|
myNodes[1]=_le1->_nodes.back();
|
|
myNodes[2]=_le2->_nodes.back();
|
|
myNodes[3]=_le2->_nodes[0];
|
|
}
|
|
const SMDS_MeshNode* n( size_t i ) const
|
|
{
|
|
return myNodes[ i ];
|
|
}
|
|
gp_XYZ GetDir() const // return average direction of _LayerEdge's, normal to EDGE
|
|
{
|
|
SMESH_TNodeXYZ p0s( myNodes[0] );
|
|
SMESH_TNodeXYZ p0t( myNodes[1] );
|
|
SMESH_TNodeXYZ p1t( myNodes[2] );
|
|
SMESH_TNodeXYZ p1s( myNodes[3] );
|
|
gp_XYZ v0 = p0t - p0s;
|
|
gp_XYZ v1 = p1t - p1s;
|
|
gp_XYZ v01 = p1s - p0s;
|
|
gp_XYZ n = ( v0 ^ v01 ) + ( v1 ^ v01 );
|
|
gp_XYZ d = v01 ^ n;
|
|
d.Normalize();
|
|
return d;
|
|
}
|
|
gp_XYZ GetDir(_LayerEdge* le1, _LayerEdge* le2) // return average direction of _LayerEdge's
|
|
{
|
|
myNodes[0]=le1->_nodes[0];
|
|
myNodes[1]=le1->_nodes.back();
|
|
myNodes[2]=le2->_nodes.back();
|
|
myNodes[3]=le2->_nodes[0];
|
|
return GetDir();
|
|
}
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Retriever of node coordinates either directly or from a surface by node UV.
|
|
* \warning Location of a surface is ignored
|
|
*/
|
|
struct _NodeCoordHelper
|
|
{
|
|
SMESH_MesherHelper& _helper;
|
|
const TopoDS_Face& _face;
|
|
Handle(Geom_Surface) _surface;
|
|
gp_XYZ (_NodeCoordHelper::* _fun)(const SMDS_MeshNode* n) const;
|
|
|
|
_NodeCoordHelper(const TopoDS_Face& F, SMESH_MesherHelper& helper, bool is2D)
|
|
: _helper( helper ), _face( F )
|
|
{
|
|
if ( is2D )
|
|
{
|
|
TopLoc_Location loc;
|
|
_surface = BRep_Tool::Surface( _face, loc );
|
|
}
|
|
if ( _surface.IsNull() )
|
|
_fun = & _NodeCoordHelper::direct;
|
|
else
|
|
_fun = & _NodeCoordHelper::byUV;
|
|
}
|
|
gp_XYZ operator()(const SMDS_MeshNode* n) const { return (this->*_fun)( n ); }
|
|
|
|
private:
|
|
gp_XYZ direct(const SMDS_MeshNode* n) const
|
|
{
|
|
return SMESH_TNodeXYZ( n );
|
|
}
|
|
gp_XYZ byUV (const SMDS_MeshNode* n) const
|
|
{
|
|
gp_XY uv = _helper.GetNodeUV( _face, n );
|
|
return _surface->Value( uv.X(), uv.Y() ).XYZ();
|
|
}
|
|
};
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Check angle between vectors
|
|
*/
|
|
//================================================================================
|
|
|
|
inline bool isLessAngle( const gp_Vec& v1, const gp_Vec& v2, const double cos )
|
|
{
|
|
double dot = v1 * v2; // cos * |v1| * |v2|
|
|
double l1 = v1.SquareMagnitude();
|
|
double l2 = v2.SquareMagnitude();
|
|
return (( dot * cos >= 0 ) &&
|
|
( dot * dot ) / l1 / l2 >= ( cos * cos ));
|
|
}
|
|
|
|
class _Factory
|
|
{
|
|
ObjectPool< _LayerEdge > _edgePool;
|
|
ObjectPool< _Curvature > _curvaturePool;
|
|
ObjectPool< _2NearEdges > _nearEdgesPool;
|
|
|
|
static _Factory* & me()
|
|
{
|
|
static _Factory* theFactory = 0;
|
|
return theFactory;
|
|
}
|
|
public:
|
|
|
|
_Factory() { me() = this; }
|
|
~_Factory() { me() = 0; }
|
|
|
|
static _LayerEdge* NewLayerEdge() { return me()->_edgePool.getNew(); }
|
|
static _Curvature * NewCurvature() { return me()->_curvaturePool.getNew(); }
|
|
static _2NearEdges* NewNearEdges() { return me()->_nearEdgesPool.getNew(); }
|
|
};
|
|
|
|
} // namespace VISCOUS_3D
|
|
|
|
|
|
|
|
//================================================================================
|
|
// StdMeshers_ViscousLayers hypothesis
|
|
//
|
|
StdMeshers_ViscousLayers::StdMeshers_ViscousLayers(int hypId, SMESH_Gen* gen)
|
|
:SMESH_Hypothesis(hypId, gen),
|
|
_isToIgnoreShapes(1), _nbLayers(1), _thickness(1), _stretchFactor(1),
|
|
_method( SURF_OFFSET_SMOOTH ),
|
|
_groupName("")
|
|
{
|
|
_name = StdMeshers_ViscousLayers::GetHypType();
|
|
_param_algo_dim = -3; // auxiliary hyp used by 3D algos
|
|
} // --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers::SetBndShapes(const std::vector<int>& faceIds, bool toIgnore)
|
|
{
|
|
if ( faceIds != _shapeIds )
|
|
_shapeIds = faceIds, NotifySubMeshesHypothesisModification();
|
|
if ( _isToIgnoreShapes != toIgnore )
|
|
_isToIgnoreShapes = toIgnore, NotifySubMeshesHypothesisModification();
|
|
} // --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers::SetTotalThickness(double thickness)
|
|
{
|
|
if ( thickness != _thickness )
|
|
_thickness = thickness, NotifySubMeshesHypothesisModification();
|
|
} // --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers::SetNumberLayers(int nb)
|
|
{
|
|
if ( _nbLayers != nb )
|
|
_nbLayers = nb, NotifySubMeshesHypothesisModification();
|
|
} // --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers::SetStretchFactor(double factor)
|
|
{
|
|
if ( _stretchFactor != factor )
|
|
_stretchFactor = factor, NotifySubMeshesHypothesisModification();
|
|
} // --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers::SetMethod( ExtrusionMethod method )
|
|
{
|
|
if ( _method != method )
|
|
_method = method, NotifySubMeshesHypothesisModification();
|
|
} // --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers::SetGroupName(const std::string& name)
|
|
{
|
|
if ( _groupName != name )
|
|
{
|
|
_groupName = name;
|
|
if ( !_groupName.empty() )
|
|
NotifySubMeshesHypothesisModification();
|
|
}
|
|
} // --------------------------------------------------------------------------------
|
|
SMESH_ProxyMesh::Ptr
|
|
StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh,
|
|
const TopoDS_Shape& theShape,
|
|
const bool toMakeN2NMap) const
|
|
{
|
|
using namespace VISCOUS_3D;
|
|
_ViscousBuilder builder;
|
|
SMESH_ComputeErrorPtr err = builder.Compute( theMesh, theShape );
|
|
if ( err && !err->IsOK() )
|
|
return SMESH_ProxyMesh::Ptr();
|
|
|
|
vector<SMESH_ProxyMesh::Ptr> components;
|
|
TopExp_Explorer exp( theShape, TopAbs_SOLID );
|
|
for ( ; exp.More(); exp.Next() )
|
|
{
|
|
if ( _MeshOfSolid* pm =
|
|
_ViscousListener::GetSolidMesh( &theMesh, exp.Current(), /*toCreate=*/false))
|
|
{
|
|
if ( toMakeN2NMap && !pm->_n2nMapComputed )
|
|
if ( !builder.MakeN2NMap( pm ))
|
|
return SMESH_ProxyMesh::Ptr();
|
|
components.push_back( SMESH_ProxyMesh::Ptr( pm ));
|
|
pm->myIsDeletable = false; // it will de deleted by boost::shared_ptr
|
|
|
|
if ( pm->_warning && !pm->_warning->IsOK() )
|
|
{
|
|
SMESH_subMesh* sm = theMesh.GetSubMesh( exp.Current() );
|
|
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
|
|
if ( !smError || smError->IsOK() )
|
|
smError = pm->_warning;
|
|
}
|
|
}
|
|
_ViscousListener::RemoveSolidMesh ( &theMesh, exp.Current() );
|
|
}
|
|
switch ( components.size() )
|
|
{
|
|
case 0: break;
|
|
|
|
case 1: return components[0];
|
|
|
|
default: return SMESH_ProxyMesh::Ptr( new SMESH_ProxyMesh( components ));
|
|
}
|
|
return SMESH_ProxyMesh::Ptr();
|
|
} // --------------------------------------------------------------------------------
|
|
std::ostream & StdMeshers_ViscousLayers::SaveTo(std::ostream & save)
|
|
{
|
|
save << " " << _nbLayers
|
|
<< " " << _thickness
|
|
<< " " << _stretchFactor
|
|
<< " " << _shapeIds.size();
|
|
for ( size_t i = 0; i < _shapeIds.size(); ++i )
|
|
save << " " << _shapeIds[i];
|
|
save << " " << !_isToIgnoreShapes; // negate to keep the behavior in old studies.
|
|
save << " " << _method;
|
|
save << " " << _groupName.size();
|
|
if ( !_groupName.empty() )
|
|
save << " " << _groupName;
|
|
return save;
|
|
} // --------------------------------------------------------------------------------
|
|
std::istream & StdMeshers_ViscousLayers::LoadFrom(std::istream & load)
|
|
{
|
|
int nbFaces, faceID, shapeToTreat, method;
|
|
load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces;
|
|
while ( (int) _shapeIds.size() < nbFaces && load >> faceID )
|
|
_shapeIds.push_back( faceID );
|
|
if ( load >> shapeToTreat ) {
|
|
_isToIgnoreShapes = !shapeToTreat;
|
|
if ( load >> method )
|
|
_method = (ExtrusionMethod) method;
|
|
int nameSize = 0;
|
|
if ( load >> nameSize && nameSize > 0 )
|
|
{
|
|
_groupName.resize( nameSize );
|
|
load.get( _groupName[0] ); // remove a white-space
|
|
load.getline( &_groupName[0], nameSize + 1 );
|
|
}
|
|
}
|
|
else {
|
|
_isToIgnoreShapes = true; // old behavior
|
|
}
|
|
return load;
|
|
} // --------------------------------------------------------------------------------
|
|
bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* theMesh,
|
|
const TopoDS_Shape& theShape)
|
|
{
|
|
// TODO
|
|
return false;
|
|
} // --------------------------------------------------------------------------------
|
|
SMESH_ComputeErrorPtr
|
|
StdMeshers_ViscousLayers::CheckHypothesis(SMESH_Mesh& theMesh,
|
|
const TopoDS_Shape& theShape,
|
|
SMESH_Hypothesis::Hypothesis_Status& theStatus)
|
|
{
|
|
VISCOUS_3D::_ViscousBuilder builder;
|
|
SMESH_ComputeErrorPtr err = builder.CheckHypotheses( theMesh, theShape );
|
|
if ( err && !err->IsOK() )
|
|
theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS;
|
|
else
|
|
theStatus = SMESH_Hypothesis::HYP_OK;
|
|
|
|
return err;
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
bool StdMeshers_ViscousLayers::IsShapeWithLayers(int shapeIndex) const
|
|
{
|
|
bool isIn =
|
|
( std::find( _shapeIds.begin(), _shapeIds.end(), shapeIndex ) != _shapeIds.end() );
|
|
return IsToIgnoreShapes() ? !isIn : isIn;
|
|
}
|
|
|
|
// --------------------------------------------------------------------------------
|
|
SMDS_MeshGroup* StdMeshers_ViscousLayers::CreateGroup( const std::string& theName,
|
|
SMESH_Mesh& theMesh,
|
|
SMDSAbs_ElementType theType)
|
|
{
|
|
SMESH_Group* group = 0;
|
|
SMDS_MeshGroup* groupDS = 0;
|
|
|
|
if ( theName.empty() )
|
|
return groupDS;
|
|
|
|
if ( SMESH_Mesh::GroupIteratorPtr grIt = theMesh.GetGroups() )
|
|
while( grIt->more() && !group )
|
|
{
|
|
group = grIt->next();
|
|
if ( !group ||
|
|
group->GetGroupDS()->GetType() != theType ||
|
|
group->GetName() != theName ||
|
|
!dynamic_cast< SMESHDS_Group* >( group->GetGroupDS() ))
|
|
group = 0;
|
|
}
|
|
if ( !group )
|
|
group = theMesh.AddGroup( theType, theName.c_str() );
|
|
|
|
groupDS = & dynamic_cast< SMESHDS_Group* >( group->GetGroupDS() )->SMDSGroup();
|
|
|
|
return groupDS;
|
|
}
|
|
|
|
// END StdMeshers_ViscousLayers hypothesis
|
|
//================================================================================
|
|
|
|
namespace VISCOUS_3D
|
|
{
|
|
gp_XYZ getEdgeDir( const TopoDS_Edge& E, const TopoDS_Vertex& fromV )
|
|
{
|
|
gp_Vec dir;
|
|
double f,l;
|
|
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
|
|
if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 );
|
|
gp_Pnt p = BRep_Tool::Pnt( fromV );
|
|
double distF = p.SquareDistance( c->Value( f ));
|
|
double distL = p.SquareDistance( c->Value( l ));
|
|
c->D1(( distF < distL ? f : l), p, dir );
|
|
if ( distL < distF ) dir.Reverse();
|
|
return dir.XYZ();
|
|
}
|
|
//--------------------------------------------------------------------------------
|
|
gp_XYZ getEdgeDir( const TopoDS_Edge& E, const SMDS_MeshNode* atNode,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
gp_Vec dir;
|
|
double f,l; gp_Pnt p;
|
|
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
|
|
if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 );
|
|
double u = helper.GetNodeU( E, atNode );
|
|
c->D1( u, p, dir );
|
|
return dir.XYZ();
|
|
}
|
|
//--------------------------------------------------------------------------------
|
|
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV,
|
|
const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok,
|
|
double* cosin=0);
|
|
//--------------------------------------------------------------------------------
|
|
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Edge& fromE,
|
|
const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok)
|
|
{
|
|
double f,l;
|
|
Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l );
|
|
if ( c.IsNull() )
|
|
{
|
|
TopoDS_Vertex v = helper.IthVertex( 0, fromE );
|
|
return getFaceDir( F, v, node, helper, ok );
|
|
}
|
|
gp_XY uv = helper.GetNodeUV( F, node, 0, &ok );
|
|
Handle(Geom_Surface) surface = BRep_Tool::Surface( F );
|
|
gp_Pnt p; gp_Vec du, dv, norm;
|
|
surface->D1( uv.X(),uv.Y(), p, du,dv );
|
|
norm = du ^ dv;
|
|
|
|
double u = helper.GetNodeU( fromE, node, 0, &ok );
|
|
c->D1( u, p, du );
|
|
TopAbs_Orientation o = helper.GetSubShapeOri( F.Oriented(TopAbs_FORWARD), fromE);
|
|
if ( o == TopAbs_REVERSED )
|
|
du.Reverse();
|
|
|
|
gp_Vec dir = norm ^ du;
|
|
|
|
if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX &&
|
|
helper.IsClosedEdge( fromE ))
|
|
{
|
|
if ( fabs(u-f) < fabs(u-l)) c->D1( l, p, dv );
|
|
else c->D1( f, p, dv );
|
|
if ( o == TopAbs_REVERSED )
|
|
dv.Reverse();
|
|
gp_Vec dir2 = norm ^ dv;
|
|
dir = dir.Normalized() + dir2.Normalized();
|
|
}
|
|
return dir.XYZ();
|
|
}
|
|
//--------------------------------------------------------------------------------
|
|
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV,
|
|
const SMDS_MeshNode* node, SMESH_MesherHelper& helper,
|
|
bool& ok, double* cosin)
|
|
{
|
|
TopoDS_Face faceFrw = F;
|
|
faceFrw.Orientation( TopAbs_FORWARD );
|
|
//double f,l; TopLoc_Location loc;
|
|
TopoDS_Edge edges[2]; // sharing a vertex
|
|
size_t nbEdges = 0;
|
|
{
|
|
TopoDS_Vertex VV[2];
|
|
TopExp_Explorer exp( faceFrw, TopAbs_EDGE );
|
|
for ( ; exp.More() && nbEdges < 2; exp.Next() )
|
|
{
|
|
const TopoDS_Edge& e = TopoDS::Edge( exp.Current() );
|
|
if ( SMESH_Algo::isDegenerated( e )) continue;
|
|
TopExp::Vertices( e, VV[0], VV[1], /*CumOri=*/true );
|
|
if ( VV[1].IsSame( fromV )) {
|
|
nbEdges += edges[ 0 ].IsNull();
|
|
edges[ 0 ] = e;
|
|
}
|
|
else if ( VV[0].IsSame( fromV )) {
|
|
nbEdges += edges[ 1 ].IsNull();
|
|
edges[ 1 ] = e;
|
|
}
|
|
}
|
|
}
|
|
gp_XYZ dir(0,0,0), edgeDir[2];
|
|
if ( nbEdges == 2 )
|
|
{
|
|
// get dirs of edges going fromV
|
|
ok = true;
|
|
for ( size_t i = 0; i < nbEdges && ok; ++i )
|
|
{
|
|
edgeDir[i] = getEdgeDir( edges[i], fromV );
|
|
double size2 = edgeDir[i].SquareModulus();
|
|
if (( ok = size2 > numeric_limits<double>::min() ))
|
|
edgeDir[i] /= sqrt( size2 );
|
|
}
|
|
if ( !ok ) return dir;
|
|
|
|
// get angle between the 2 edges
|
|
gp_Vec faceNormal;
|
|
double angle = helper.GetAngle( edges[0], edges[1], faceFrw, fromV, &faceNormal );
|
|
if ( Abs( angle ) < 5 * M_PI/180 )
|
|
{
|
|
dir = ( faceNormal.XYZ() ^ edgeDir[0].Reversed()) + ( faceNormal.XYZ() ^ edgeDir[1] );
|
|
}
|
|
else
|
|
{
|
|
dir = edgeDir[0] + edgeDir[1];
|
|
if ( angle < 0 )
|
|
dir.Reverse();
|
|
}
|
|
if ( cosin ) {
|
|
double angle = gp_Vec( edgeDir[0] ).Angle( dir );
|
|
*cosin = Cos( angle );
|
|
}
|
|
}
|
|
else if ( nbEdges == 1 )
|
|
{
|
|
dir = getFaceDir( faceFrw, edges[ edges[0].IsNull() ], node, helper, ok );
|
|
if ( cosin ) *cosin = 1.;
|
|
}
|
|
else
|
|
{
|
|
ok = false;
|
|
}
|
|
|
|
return dir;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Finds concave VERTEXes of a FACE
|
|
*/
|
|
//================================================================================
|
|
|
|
bool getConcaveVertices( const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper,
|
|
set< TGeomID >* vertices = 0)
|
|
{
|
|
// check angles at VERTEXes
|
|
TError error;
|
|
TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, *helper.GetMesh(), 0, error );
|
|
for ( size_t iW = 0; iW < wires.size(); ++iW )
|
|
{
|
|
const int nbEdges = wires[iW]->NbEdges();
|
|
if ( nbEdges < 2 && SMESH_Algo::isDegenerated( wires[iW]->Edge(0)))
|
|
continue;
|
|
for ( int iE1 = 0; iE1 < nbEdges; ++iE1 )
|
|
{
|
|
if ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE1 ))) continue;
|
|
int iE2 = ( iE1 + 1 ) % nbEdges;
|
|
while ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE2 )))
|
|
iE2 = ( iE2 + 1 ) % nbEdges;
|
|
TopoDS_Vertex V = wires[iW]->FirstVertex( iE2 );
|
|
double angle = helper.GetAngle( wires[iW]->Edge( iE1 ),
|
|
wires[iW]->Edge( iE2 ), F, V );
|
|
if ( angle < -5. * M_PI / 180. )
|
|
{
|
|
if ( !vertices )
|
|
return true;
|
|
vertices->insert( helper.GetMeshDS()->ShapeToIndex( V ));
|
|
}
|
|
}
|
|
}
|
|
return vertices ? !vertices->empty() : false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns true if a FACE is bound by a concave EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
bool isConcave( const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper,
|
|
set< TGeomID >* vertices = 0 )
|
|
{
|
|
bool isConcv = false;
|
|
// if ( helper.Count( F, TopAbs_WIRE, /*useMap=*/false) > 1 )
|
|
// return true;
|
|
gp_Vec2d drv1, drv2;
|
|
gp_Pnt2d p;
|
|
TopExp_Explorer eExp( F.Oriented( TopAbs_FORWARD ), TopAbs_EDGE );
|
|
for ( ; eExp.More(); eExp.Next() )
|
|
{
|
|
const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() );
|
|
if ( SMESH_Algo::isDegenerated( E )) continue;
|
|
// check if 2D curve is concave
|
|
BRepAdaptor_Curve2d curve( E, F );
|
|
const int nbIntervals = curve.NbIntervals( GeomAbs_C2 );
|
|
TColStd_Array1OfReal intervals(1, nbIntervals + 1 );
|
|
curve.Intervals( intervals, GeomAbs_C2 );
|
|
bool isConvex = true;
|
|
for ( int i = 1; i <= nbIntervals && isConvex; ++i )
|
|
{
|
|
double u1 = intervals( i );
|
|
double u2 = intervals( i+1 );
|
|
curve.D2( 0.5*( u1+u2 ), p, drv1, drv2 );
|
|
double cross = drv1 ^ drv2;
|
|
if ( E.Orientation() == TopAbs_REVERSED )
|
|
cross = -cross;
|
|
isConvex = ( cross > -1e-9 ); // 0.1 );
|
|
}
|
|
if ( !isConvex )
|
|
{
|
|
//cout << "Concave FACE " << helper.GetMeshDS()->ShapeToIndex( F ) << endl;
|
|
isConcv = true;
|
|
if ( vertices )
|
|
break;
|
|
else
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// check angles at VERTEXes
|
|
if ( getConcaveVertices( F, helper, vertices ))
|
|
isConcv = true;
|
|
|
|
return isConcv;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes minimal distance of face in-FACE nodes from an EDGE
|
|
* \param [in] face - the mesh face to treat
|
|
* \param [in] nodeOnEdge - a node on the EDGE
|
|
* \param [out] faceSize - the computed distance
|
|
* \return bool - true if faceSize computed
|
|
*/
|
|
//================================================================================
|
|
|
|
bool getDistFromEdge( const SMDS_MeshElement* face,
|
|
const SMDS_MeshNode* nodeOnEdge,
|
|
double & faceSize )
|
|
{
|
|
faceSize = Precision::Infinite();
|
|
bool done = false;
|
|
|
|
int nbN = face->NbCornerNodes();
|
|
int iOnE = face->GetNodeIndex( nodeOnEdge );
|
|
int iNext[2] = { SMESH_MesherHelper::WrapIndex( iOnE+1, nbN ),
|
|
SMESH_MesherHelper::WrapIndex( iOnE-1, nbN ) };
|
|
const SMDS_MeshNode* nNext[2] = { face->GetNode( iNext[0] ),
|
|
face->GetNode( iNext[1] ) };
|
|
gp_XYZ segVec, segEnd = SMESH_TNodeXYZ( nodeOnEdge ); // segment on EDGE
|
|
double segLen = -1.;
|
|
// look for two neighbor not in-FACE nodes of face
|
|
for ( int i = 0; i < 2; ++i )
|
|
{
|
|
if (( nNext[i]->GetPosition()->GetDim() != 2 ) &&
|
|
( nodeOnEdge->GetPosition()->GetDim() == 0 || nNext[i]->GetID() < nodeOnEdge->GetID() ))
|
|
{
|
|
// look for an in-FACE node
|
|
for ( int iN = 0; iN < nbN; ++iN )
|
|
{
|
|
if ( iN == iOnE || iN == iNext[i] )
|
|
continue;
|
|
SMESH_TNodeXYZ pInFace = face->GetNode( iN );
|
|
gp_XYZ v = pInFace - segEnd;
|
|
if ( segLen < 0 )
|
|
{
|
|
segVec = SMESH_TNodeXYZ( nNext[i] ) - segEnd;
|
|
segLen = segVec.Modulus();
|
|
}
|
|
double distToSeg = v.Crossed( segVec ).Modulus() / segLen;
|
|
faceSize = Min( faceSize, distToSeg );
|
|
done = true;
|
|
}
|
|
segLen = -1;
|
|
}
|
|
}
|
|
return done;
|
|
}
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return direction of axis or revolution of a surface
|
|
*/
|
|
//================================================================================
|
|
|
|
bool getRovolutionAxis( const Adaptor3d_Surface& surface,
|
|
gp_Dir & axis )
|
|
{
|
|
switch ( surface.GetType() ) {
|
|
case GeomAbs_Cone:
|
|
{
|
|
gp_Cone cone = surface.Cone();
|
|
axis = cone.Axis().Direction();
|
|
break;
|
|
}
|
|
case GeomAbs_Sphere:
|
|
{
|
|
gp_Sphere sphere = surface.Sphere();
|
|
axis = sphere.Position().Direction();
|
|
break;
|
|
}
|
|
case GeomAbs_SurfaceOfRevolution:
|
|
{
|
|
axis = surface.AxeOfRevolution().Direction();
|
|
break;
|
|
}
|
|
//case GeomAbs_SurfaceOfExtrusion:
|
|
case GeomAbs_OffsetSurface:
|
|
{
|
|
Handle(Adaptor3d_HSurface) base = surface.BasisSurface();
|
|
return getRovolutionAxis( base->Surface(), axis );
|
|
}
|
|
default: return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
// DEBUG. Dump intermediate node positions into a python script
|
|
// HOWTO use: run python commands written in a console to see
|
|
// construction steps of viscous layers
|
|
#ifdef __myDEBUG
|
|
ostream* py;
|
|
int theNbPyFunc;
|
|
struct PyDump
|
|
{
|
|
PyDump(SMESH_Mesh& m) {
|
|
int tag = 3 + m.GetId();
|
|
const char* fname = "/tmp/viscous.py";
|
|
cout << "exec(open('"<<fname<<"','rb').read() )"<<endl;
|
|
py = _pyStream = new ofstream(fname);
|
|
*py << "import SMESH" << endl
|
|
<< "from salome.smesh import smeshBuilder" << endl
|
|
<< "smesh = smeshBuilder.New()" << endl
|
|
<< "meshSO = salome.myStudy.FindObjectID('0:1:2:" << tag <<"')" << endl
|
|
<< "mesh = smesh.Mesh( meshSO.GetObject() )"<<endl;
|
|
theNbPyFunc = 0;
|
|
}
|
|
void Finish() {
|
|
if (py) {
|
|
*py << "mesh.GroupOnFilter(SMESH.VOLUME,'Viscous Prisms',"
|
|
"smesh.GetFilter(SMESH.VOLUME,SMESH.FT_ElemGeomType,'=',SMESH.Geom_PENTA))"<<endl;
|
|
*py << "mesh.GroupOnFilter(SMESH.VOLUME,'Neg Volumes',"
|
|
"smesh.GetFilter(SMESH.VOLUME,SMESH.FT_Volume3D,'<',0))"<<endl;
|
|
}
|
|
delete py; py=0;
|
|
}
|
|
~PyDump() { Finish(); cout << "NB FUNCTIONS: " << theNbPyFunc << endl; }
|
|
struct MyStream : public ostream
|
|
{
|
|
template <class T> ostream & operator<<( const T &anything ) { return *this ; }
|
|
};
|
|
void Pause() { py = &_mystream; }
|
|
void Resume() { py = _pyStream; }
|
|
MyStream _mystream;
|
|
ostream* _pyStream;
|
|
};
|
|
#define dumpFunction(f) { _dumpFunction(f, __LINE__);}
|
|
#define dumpMove(n) { _dumpMove(n, __LINE__);}
|
|
#define dumpMoveComm(n,txt) { _dumpMove(n, __LINE__, txt);}
|
|
#define dumpCmd(txt) { _dumpCmd(txt, __LINE__);}
|
|
void _dumpFunction(const string& fun, int ln)
|
|
{ if (py) *py<< "def "<<fun<<"(): # "<< ln <<endl; cout<<fun<<"()"<<endl; ++theNbPyFunc; }
|
|
void _dumpMove(const SMDS_MeshNode* n, int ln, const char* txt="")
|
|
{ if (py) *py<< " mesh.MoveNode( "<<n->GetID()<< ", "<< n->X()
|
|
<< ", "<<n->Y()<<", "<< n->Z()<< ")\t\t # "<< ln <<" "<< txt << endl; }
|
|
void _dumpCmd(const string& txt, int ln)
|
|
{ if (py) *py<< " "<<txt<<" # "<< ln <<endl; }
|
|
void dumpFunctionEnd()
|
|
{ if (py) *py<< " return"<< endl; }
|
|
void dumpChangeNodes( const SMDS_MeshElement* f )
|
|
{ if (py) { *py<< " mesh.ChangeElemNodes( " << f->GetID()<<", [";
|
|
for ( int i=1; i < f->NbNodes(); ++i ) *py << f->GetNode(i-1)->GetID()<<", ";
|
|
*py << f->GetNode( f->NbNodes()-1 )->GetID() << " ])"<< endl; }}
|
|
#define debugMsg( txt ) { cout << "# "<< txt << " (line: " << __LINE__ << ")" << endl; }
|
|
|
|
#else
|
|
|
|
struct PyDump { PyDump(SMESH_Mesh&) {} void Finish() {} void Pause() {} void Resume() {} };
|
|
#define dumpFunction(f) f
|
|
#define dumpMove(n)
|
|
#define dumpMoveComm(n,txt)
|
|
#define dumpCmd(txt)
|
|
#define dumpFunctionEnd()
|
|
#define dumpChangeNodes(f) { if(f) {} } // prevent "unused variable 'f'" warning
|
|
#define debugMsg( txt ) {}
|
|
|
|
#endif
|
|
}
|
|
|
|
using namespace VISCOUS_3D;
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Constructor of _ViscousBuilder
|
|
*/
|
|
//================================================================================
|
|
|
|
_ViscousBuilder::_ViscousBuilder()
|
|
{
|
|
_error = SMESH_ComputeError::New(COMPERR_OK);
|
|
_tmpFaceID = 0;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Stores error description and returns false
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::error(const string& text, int solidId )
|
|
{
|
|
const string prefix = string("Viscous layers builder: ");
|
|
_error->myName = COMPERR_ALGO_FAILED;
|
|
_error->myComment = prefix + text;
|
|
if ( _mesh )
|
|
{
|
|
SMESH_subMesh* sm = _mesh->GetSubMeshContaining( solidId );
|
|
if ( !sm && !_sdVec.empty() )
|
|
sm = _mesh->GetSubMeshContaining( solidId = _sdVec[0]._index );
|
|
if ( sm && sm->GetSubShape().ShapeType() == TopAbs_SOLID )
|
|
{
|
|
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
|
|
if ( smError && smError->myAlgo )
|
|
_error->myAlgo = smError->myAlgo;
|
|
smError = _error;
|
|
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
|
|
}
|
|
// set KO to all solids
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
if ( _sdVec[i]._index == solidId )
|
|
continue;
|
|
sm = _mesh->GetSubMesh( _sdVec[i]._solid );
|
|
if ( !sm->IsEmpty() )
|
|
continue;
|
|
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
|
|
if ( !smError || smError->IsOK() )
|
|
{
|
|
smError = SMESH_ComputeError::New( COMPERR_ALGO_FAILED, prefix + "failed");
|
|
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
|
|
}
|
|
}
|
|
}
|
|
makeGroupOfLE(); // debug
|
|
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief At study restoration, restore event listeners used to clear an inferior
|
|
* dim sub-mesh modified by viscous layers
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::RestoreListeners()
|
|
{
|
|
// TODO
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief computes SMESH_ProxyMesh::SubMesh::_n2n
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::MakeN2NMap( _MeshOfSolid* pm )
|
|
{
|
|
SMESH_subMesh* solidSM = pm->mySubMeshes.front();
|
|
TopExp_Explorer fExp( solidSM->GetSubShape(), TopAbs_FACE );
|
|
for ( ; fExp.More(); fExp.Next() )
|
|
{
|
|
SMESHDS_SubMesh* srcSmDS = pm->GetMeshDS()->MeshElements( fExp.Current() );
|
|
const SMESH_ProxyMesh::SubMesh* prxSmDS = pm->GetProxySubMesh( fExp.Current() );
|
|
|
|
if ( !srcSmDS || !prxSmDS || !srcSmDS->NbElements() || !prxSmDS->NbElements() )
|
|
continue;
|
|
if ( srcSmDS->GetElements()->next() == prxSmDS->GetElements()->next())
|
|
continue;
|
|
|
|
if ( srcSmDS->NbElements() != prxSmDS->NbElements() )
|
|
return error( "Different nb elements in a source and a proxy sub-mesh", solidSM->GetId());
|
|
|
|
SMDS_ElemIteratorPtr srcIt = srcSmDS->GetElements();
|
|
SMDS_ElemIteratorPtr prxIt = prxSmDS->GetElements();
|
|
while( prxIt->more() )
|
|
{
|
|
const SMDS_MeshElement* fSrc = srcIt->next();
|
|
const SMDS_MeshElement* fPrx = prxIt->next();
|
|
if ( fSrc->NbNodes() != fPrx->NbNodes())
|
|
return error( "Different elements in a source and a proxy sub-mesh", solidSM->GetId());
|
|
for ( int i = 0 ; i < fPrx->NbNodes(); ++i )
|
|
pm->setNode2Node( fSrc->GetNode(i), fPrx->GetNode(i), prxSmDS );
|
|
}
|
|
}
|
|
pm->_n2nMapComputed = true;
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Does its job
|
|
*/
|
|
//================================================================================
|
|
|
|
SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh,
|
|
const TopoDS_Shape& theShape)
|
|
{
|
|
_mesh = & theMesh;
|
|
|
|
_Factory factory;
|
|
|
|
// check if proxy mesh already computed
|
|
TopExp_Explorer exp( theShape, TopAbs_SOLID );
|
|
if ( !exp.More() )
|
|
return error("No SOLID's in theShape"), _error;
|
|
|
|
if ( _ViscousListener::GetSolidMesh( _mesh, exp.Current(), /*toCreate=*/false))
|
|
return SMESH_ComputeErrorPtr(); // everything already computed
|
|
|
|
PyDump debugDump( theMesh );
|
|
_pyDump = &debugDump;
|
|
|
|
// TODO: ignore already computed SOLIDs
|
|
if ( !findSolidsWithLayers())
|
|
return _error;
|
|
|
|
if ( !findFacesWithLayers() )
|
|
return _error;
|
|
|
|
// for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
// {
|
|
// if ( ! makeLayer( _sdVec[ i ])) // create _LayerEdge's
|
|
// return _error;
|
|
// }
|
|
|
|
makeEdgesOnShape();
|
|
|
|
findPeriodicFaces();
|
|
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
size_t iSD = 0;
|
|
for ( iSD = 0; iSD < _sdVec.size(); ++iSD ) // find next SOLID to compute
|
|
if ( _sdVec[iSD]._before.IsEmpty() &&
|
|
!_sdVec[iSD]._solid.IsNull() &&
|
|
!_sdVec[iSD]._done )
|
|
break;
|
|
|
|
if ( ! makeLayer(_sdVec[iSD]) ) // create _LayerEdge's
|
|
return _error;
|
|
|
|
if ( _sdVec[iSD]._n2eMap.size() == 0 ) // no layers in a SOLID
|
|
{
|
|
_sdVec[iSD]._solid.Nullify();
|
|
continue;
|
|
}
|
|
|
|
if ( ! inflate(_sdVec[iSD]) ) // increase length of _LayerEdge's
|
|
return _error;
|
|
|
|
if ( ! refine(_sdVec[iSD]) ) // create nodes and prisms
|
|
return _error;
|
|
|
|
if ( ! shrink(_sdVec[iSD]) ) // shrink 2D mesh on FACEs w/o layer
|
|
return _error;
|
|
|
|
addBoundaryElements(_sdVec[iSD]); // create quadrangles on prism bare sides
|
|
|
|
_sdVec[iSD]._done = true;
|
|
|
|
const TopoDS_Shape& solid = _sdVec[iSD]._solid;
|
|
for ( iSD = 0; iSD < _sdVec.size(); ++iSD )
|
|
_sdVec[iSD]._before.Remove( solid );
|
|
}
|
|
|
|
makeGroupOfLE(); // debug
|
|
debugDump.Finish();
|
|
|
|
return _error;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Check validity of hypotheses
|
|
*/
|
|
//================================================================================
|
|
|
|
SMESH_ComputeErrorPtr _ViscousBuilder::CheckHypotheses( SMESH_Mesh& mesh,
|
|
const TopoDS_Shape& shape )
|
|
{
|
|
_mesh = & mesh;
|
|
|
|
if ( _ViscousListener::GetSolidMesh( _mesh, shape, /*toCreate=*/false))
|
|
return SMESH_ComputeErrorPtr(); // everything already computed
|
|
|
|
|
|
findSolidsWithLayers( /*checkFaceMesh=*/false );
|
|
bool ok = findFacesWithLayers( true );
|
|
|
|
// remove _MeshOfSolid's of _SolidData's
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
_ViscousListener::RemoveSolidMesh( _mesh, _sdVec[i]._solid );
|
|
|
|
if ( !ok )
|
|
return _error;
|
|
|
|
return SMESH_ComputeErrorPtr();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Finds SOLIDs to compute using viscous layers. Fills _sdVec
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::findSolidsWithLayers(const bool checkFaceMesh)
|
|
{
|
|
// get all solids
|
|
TopTools_IndexedMapOfShape allSolids;
|
|
TopExp::MapShapes( _mesh->GetShapeToMesh(), TopAbs_SOLID, allSolids );
|
|
_sdVec.reserve( allSolids.Extent());
|
|
|
|
SMESH_HypoFilter filter;
|
|
for ( int i = 1; i <= allSolids.Extent(); ++i )
|
|
{
|
|
SMESH_subMesh* sm = _mesh->GetSubMesh( allSolids(i) );
|
|
if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->NbElements() > 0 )
|
|
continue; // solid is already meshed
|
|
// TODO: check if algo is hidden
|
|
SMESH_Algo* algo = sm->GetAlgo();
|
|
if ( !algo ) continue;
|
|
// check if all FACEs are meshed, which can be false if Compute() a sub-shape
|
|
if ( checkFaceMesh )
|
|
{
|
|
bool facesMeshed = true;
|
|
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(false,true);
|
|
while ( smIt->more() && facesMeshed )
|
|
{
|
|
SMESH_subMesh * faceSM = smIt->next();
|
|
if ( faceSM->GetSubShape().ShapeType() != TopAbs_FACE )
|
|
break;
|
|
facesMeshed = faceSM->IsMeshComputed();
|
|
}
|
|
if ( !facesMeshed )
|
|
continue;
|
|
}
|
|
// find StdMeshers_ViscousLayers hyp assigned to the i-th solid
|
|
const list <const SMESHDS_Hypothesis *> & allHyps =
|
|
algo->GetUsedHypothesis(*_mesh, allSolids(i), /*ignoreAuxiliary=*/false);
|
|
_SolidData* soData = 0;
|
|
list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
|
|
const StdMeshers_ViscousLayers* viscHyp = 0;
|
|
for ( ; hyp != allHyps.end(); ++hyp )
|
|
if (( viscHyp = dynamic_cast<const StdMeshers_ViscousLayers*>( *hyp )))
|
|
{
|
|
TopoDS_Shape hypShape;
|
|
filter.Init( filter.Is( viscHyp ));
|
|
_mesh->GetHypothesis( allSolids(i), filter, true, &hypShape );
|
|
|
|
if ( !soData )
|
|
{
|
|
_MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh,
|
|
allSolids(i),
|
|
/*toCreate=*/true);
|
|
_sdVec.push_back( _SolidData( allSolids(i), proxyMesh ));
|
|
soData = & _sdVec.back();
|
|
soData->_index = getMeshDS()->ShapeToIndex( allSolids(i));
|
|
soData->_helper = new SMESH_MesherHelper( *_mesh );
|
|
soData->_helper->SetSubShape( allSolids(i) );
|
|
_solids.Add( allSolids(i) );
|
|
}
|
|
soData->_hyps.push_back( viscHyp );
|
|
soData->_hypShapes.push_back( hypShape );
|
|
}
|
|
}
|
|
if ( _sdVec.empty() )
|
|
return error
|
|
( SMESH_Comment(StdMeshers_ViscousLayers::GetHypType()) << " hypothesis not found",0);
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set a _SolidData to be computed before another
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::setBefore( _SolidData& solidBefore, _SolidData& solidAfter )
|
|
{
|
|
// check possibility to set this order; get all solids before solidBefore
|
|
TopTools_IndexedMapOfShape allSolidsBefore;
|
|
allSolidsBefore.Add( solidBefore._solid );
|
|
for ( int i = 1; i <= allSolidsBefore.Extent(); ++i )
|
|
{
|
|
int iSD = _solids.FindIndex( allSolidsBefore(i) );
|
|
if ( iSD )
|
|
{
|
|
TopTools_MapIteratorOfMapOfShape soIt( _sdVec[ iSD-1 ]._before );
|
|
for ( ; soIt.More(); soIt.Next() )
|
|
allSolidsBefore.Add( soIt.Value() );
|
|
}
|
|
}
|
|
if ( allSolidsBefore.Contains( solidAfter._solid ))
|
|
return false;
|
|
|
|
for ( int i = 1; i <= allSolidsBefore.Extent(); ++i )
|
|
solidAfter._before.Add( allSolidsBefore(i) );
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::findFacesWithLayers(const bool onlyWith)
|
|
{
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
TopExp_Explorer exp;
|
|
|
|
// collect all faces-to-ignore defined by hyp
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
// get faces-to-ignore defined by each hyp
|
|
typedef const StdMeshers_ViscousLayers* THyp;
|
|
typedef std::pair< set<TGeomID>, THyp > TFacesOfHyp;
|
|
list< TFacesOfHyp > ignoreFacesOfHyps;
|
|
list< THyp >::iterator hyp = _sdVec[i]._hyps.begin();
|
|
list< TopoDS_Shape >::iterator hypShape = _sdVec[i]._hypShapes.begin();
|
|
for ( ; hyp != _sdVec[i]._hyps.end(); ++hyp, ++hypShape )
|
|
{
|
|
ignoreFacesOfHyps.push_back( TFacesOfHyp( set<TGeomID>(), *hyp ));
|
|
getIgnoreFaces( _sdVec[i]._solid, *hyp, *hypShape, ignoreFacesOfHyps.back().first );
|
|
}
|
|
|
|
// fill _SolidData::_face2hyp and check compatibility of hypotheses
|
|
const int nbHyps = _sdVec[i]._hyps.size();
|
|
if ( nbHyps > 1 )
|
|
{
|
|
// check if two hypotheses define different parameters for the same FACE
|
|
list< TFacesOfHyp >::iterator igFacesOfHyp;
|
|
for ( exp.Init( _sdVec[i]._solid, TopAbs_FACE ); exp.More(); exp.Next() )
|
|
{
|
|
const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() );
|
|
THyp hyp = 0;
|
|
igFacesOfHyp = ignoreFacesOfHyps.begin();
|
|
for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp )
|
|
if ( ! igFacesOfHyp->first.count( faceID ))
|
|
{
|
|
if ( hyp )
|
|
return error(SMESH_Comment("Several hypotheses define "
|
|
"Viscous Layers on the face #") << faceID );
|
|
hyp = igFacesOfHyp->second;
|
|
}
|
|
if ( hyp )
|
|
_sdVec[i]._face2hyp.insert( make_pair( faceID, hyp ));
|
|
else
|
|
_sdVec[i]._ignoreFaceIds.insert( faceID );
|
|
}
|
|
|
|
// check if two hypotheses define different number of viscous layers for
|
|
// adjacent faces of a solid
|
|
set< int > nbLayersSet;
|
|
igFacesOfHyp = ignoreFacesOfHyps.begin();
|
|
for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp )
|
|
{
|
|
nbLayersSet.insert( igFacesOfHyp->second->GetNumberLayers() );
|
|
}
|
|
if ( nbLayersSet.size() > 1 )
|
|
{
|
|
for ( exp.Init( _sdVec[i]._solid, TopAbs_EDGE ); exp.More(); exp.Next() )
|
|
{
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( exp.Current(), *_mesh, TopAbs_FACE );
|
|
THyp hyp1 = 0, hyp2 = 0;
|
|
while( const TopoDS_Shape* face = fIt->next() )
|
|
{
|
|
const TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
|
|
map< TGeomID, THyp >::iterator f2h = _sdVec[i]._face2hyp.find( faceID );
|
|
if ( f2h != _sdVec[i]._face2hyp.end() )
|
|
{
|
|
( hyp1 ? hyp2 : hyp1 ) = f2h->second;
|
|
}
|
|
}
|
|
if ( hyp1 && hyp2 &&
|
|
hyp1->GetNumberLayers() != hyp2->GetNumberLayers() )
|
|
{
|
|
return error("Two hypotheses define different number of "
|
|
"viscous layers on adjacent faces");
|
|
}
|
|
}
|
|
}
|
|
} // if ( nbHyps > 1 )
|
|
else
|
|
{
|
|
_sdVec[i]._ignoreFaceIds.swap( ignoreFacesOfHyps.back().first );
|
|
}
|
|
} // loop on _sdVec
|
|
|
|
if ( onlyWith ) // is called to check hypotheses compatibility only
|
|
return true;
|
|
|
|
// fill _SolidData::_reversedFaceIds
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
exp.Init( _sdVec[i]._solid.Oriented( TopAbs_FORWARD ), TopAbs_FACE );
|
|
for ( ; exp.More(); exp.Next() )
|
|
{
|
|
const TopoDS_Face& face = TopoDS::Face( exp.Current() );
|
|
const TGeomID faceID = getMeshDS()->ShapeToIndex( face );
|
|
if ( //!sdVec[i]._ignoreFaceIds.count( faceID ) &&
|
|
helper.NbAncestors( face, *_mesh, TopAbs_SOLID ) > 1 &&
|
|
helper.IsReversedSubMesh( face ))
|
|
{
|
|
_sdVec[i]._reversedFaceIds.insert( faceID );
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find FACEs to shrink mesh on (solution 2 in issue 0020832): fill in _shrinkShape2Shape
|
|
TopTools_IndexedMapOfShape shapes;
|
|
std::string structAlgoName = "Hexa_3D";
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
shapes.Clear();
|
|
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_EDGE, shapes);
|
|
for ( int iE = 1; iE <= shapes.Extent(); ++iE )
|
|
{
|
|
const TopoDS_Shape& edge = shapes(iE);
|
|
// find 2 FACEs sharing an EDGE
|
|
TopoDS_Shape FF[2];
|
|
PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE, &_sdVec[i]._solid);
|
|
while ( fIt->more())
|
|
{
|
|
const TopoDS_Shape* f = fIt->next();
|
|
FF[ int( !FF[0].IsNull()) ] = *f;
|
|
}
|
|
if( FF[1].IsNull() ) continue; // seam edge can be shared by 1 FACE only
|
|
|
|
// check presence of layers on them
|
|
int ignore[2];
|
|
for ( int j = 0; j < 2; ++j )
|
|
ignore[j] = _sdVec[i]._ignoreFaceIds.count( getMeshDS()->ShapeToIndex( FF[j] ));
|
|
if ( ignore[0] == ignore[1] )
|
|
continue; // nothing interesting
|
|
TopoDS_Shape fWOL = FF[ ignore[0] ? 0 : 1 ]; // FACE w/o layers
|
|
|
|
// add EDGE to maps
|
|
if ( !fWOL.IsNull())
|
|
{
|
|
TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge );
|
|
_sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL ));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the SHAPE along which to inflate _LayerEdge based on VERTEX
|
|
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
shapes.Clear();
|
|
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_VERTEX, shapes);
|
|
for ( int iV = 1; iV <= shapes.Extent(); ++iV )
|
|
{
|
|
const TopoDS_Shape& vertex = shapes(iV);
|
|
// find faces WOL sharing the vertex
|
|
vector< TopoDS_Shape > facesWOL;
|
|
size_t totalNbFaces = 0;
|
|
PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE, &_sdVec[i]._solid );
|
|
while ( fIt->more())
|
|
{
|
|
const TopoDS_Shape* f = fIt->next();
|
|
totalNbFaces++;
|
|
const int fID = getMeshDS()->ShapeToIndex( *f );
|
|
if ( _sdVec[i]._ignoreFaceIds.count ( fID ) /*&& !_sdVec[i]._noShrinkShapes.count( fID )*/)
|
|
facesWOL.push_back( *f );
|
|
}
|
|
if ( facesWOL.size() == totalNbFaces || facesWOL.empty() )
|
|
continue; // no layers at this vertex or no WOL
|
|
TGeomID vInd = getMeshDS()->ShapeToIndex( vertex );
|
|
switch ( facesWOL.size() )
|
|
{
|
|
case 1:
|
|
{
|
|
helper.SetSubShape( facesWOL[0] );
|
|
if ( helper.IsRealSeam( vInd )) // inflate along a seam edge?
|
|
{
|
|
TopoDS_Shape seamEdge;
|
|
PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE);
|
|
while ( eIt->more() && seamEdge.IsNull() )
|
|
{
|
|
const TopoDS_Shape* e = eIt->next();
|
|
if ( helper.IsRealSeam( *e ) )
|
|
seamEdge = *e;
|
|
}
|
|
if ( !seamEdge.IsNull() )
|
|
{
|
|
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, seamEdge ));
|
|
break;
|
|
}
|
|
}
|
|
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] ));
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
// find an edge shared by 2 faces
|
|
PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE);
|
|
while ( eIt->more())
|
|
{
|
|
const TopoDS_Shape* e = eIt->next();
|
|
if ( helper.IsSubShape( *e, facesWOL[0]) &&
|
|
helper.IsSubShape( *e, facesWOL[1]))
|
|
{
|
|
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
return error("Not yet supported case", _sdVec[i]._index);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add to _noShrinkShapes sub-shapes of FACE's that can't be shrunk since
|
|
// the algo of the SOLID sharing the FACE does not support it or for other reasons
|
|
set< string > notSupportAlgos; notSupportAlgos.insert( structAlgoName );
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin();
|
|
for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f )
|
|
{
|
|
const TopoDS_Shape& fWOL = e2f->second;
|
|
const TGeomID edgeID = e2f->first;
|
|
TGeomID faceID = getMeshDS()->ShapeToIndex( fWOL );
|
|
TopoDS_Shape edge = getMeshDS()->IndexToShape( edgeID );
|
|
if ( edge.ShapeType() != TopAbs_EDGE )
|
|
continue; // shrink shape is VERTEX
|
|
|
|
TopoDS_Shape solid;
|
|
PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID);
|
|
while ( soIt->more() && solid.IsNull() )
|
|
{
|
|
const TopoDS_Shape* so = soIt->next();
|
|
if ( !so->IsSame( _sdVec[i]._solid ))
|
|
solid = *so;
|
|
}
|
|
if ( solid.IsNull() )
|
|
continue;
|
|
|
|
bool noShrinkE = false;
|
|
SMESH_Algo* algo = _mesh->GetSubMesh( solid )->GetAlgo();
|
|
bool isStructured = ( algo && algo->GetName() == structAlgoName );
|
|
size_t iSolid = _solids.FindIndex( solid ) - 1;
|
|
if ( iSolid < _sdVec.size() && _sdVec[ iSolid ]._ignoreFaceIds.count( faceID ))
|
|
{
|
|
// the adjacent SOLID has NO layers on fWOL;
|
|
// shrink allowed if
|
|
// - there are layers on the EDGE in the adjacent SOLID
|
|
// - there are NO layers in the adjacent SOLID && algo is unstructured and computed later
|
|
bool hasWLAdj = (_sdVec[iSolid]._shrinkShape2Shape.count( edgeID ));
|
|
bool shrinkAllowed = (( hasWLAdj ) ||
|
|
( !isStructured && setBefore( _sdVec[ i ], _sdVec[ iSolid ] )));
|
|
noShrinkE = !shrinkAllowed;
|
|
}
|
|
else if ( iSolid < _sdVec.size() )
|
|
{
|
|
// the adjacent SOLID has layers on fWOL;
|
|
// check if SOLID's mesh is unstructured and then try to set it
|
|
// to be computed after the i-th solid
|
|
if ( isStructured || !setBefore( _sdVec[ i ], _sdVec[ iSolid ] ))
|
|
noShrinkE = true; // don't shrink fWOL
|
|
}
|
|
else
|
|
{
|
|
// the adjacent SOLID has NO layers at all
|
|
noShrinkE = isStructured;
|
|
}
|
|
|
|
if ( noShrinkE )
|
|
{
|
|
_sdVec[i]._noShrinkShapes.insert( edgeID );
|
|
|
|
// check if there is a collision with to-shrink-from EDGEs in iSolid
|
|
// if ( iSolid < _sdVec.size() )
|
|
// {
|
|
// shapes.Clear();
|
|
// TopExp::MapShapes( fWOL, TopAbs_EDGE, shapes);
|
|
// for ( int iE = 1; iE <= shapes.Extent(); ++iE )
|
|
// {
|
|
// const TopoDS_Edge& E = TopoDS::Edge( shapes( iE ));
|
|
// const TGeomID eID = getMeshDS()->ShapeToIndex( E );
|
|
// if ( eID == edgeID ||
|
|
// !_sdVec[iSolid]._shrinkShape2Shape.count( eID ) ||
|
|
// _sdVec[i]._noShrinkShapes.count( eID ))
|
|
// continue;
|
|
// for ( int is1st = 0; is1st < 2; ++is1st )
|
|
// {
|
|
// TopoDS_Vertex V = helper.IthVertex( is1st, E );
|
|
// if ( _sdVec[i]._noShrinkShapes.count( getMeshDS()->ShapeToIndex( V ) ))
|
|
// {
|
|
// return error("No way to make a conformal mesh with "
|
|
// "the given set of faces with layers", _sdVec[i]._index);
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
}
|
|
|
|
// add VERTEXes of the edge in _noShrinkShapes, which is necessary if
|
|
// _shrinkShape2Shape is different in the adjacent SOLID
|
|
for ( TopoDS_Iterator vIt( edge ); vIt.More(); vIt.Next() )
|
|
{
|
|
TGeomID vID = getMeshDS()->ShapeToIndex( vIt.Value() );
|
|
bool noShrinkV = false, noShrinkIfAdjMeshed = false;
|
|
|
|
if ( iSolid < _sdVec.size() )
|
|
{
|
|
if ( _sdVec[ iSolid ]._ignoreFaceIds.count( faceID ))
|
|
{
|
|
map< TGeomID, TopoDS_Shape >::iterator i2S, i2SAdj;
|
|
i2S = _sdVec[i ]._shrinkShape2Shape.find( vID );
|
|
i2SAdj = _sdVec[iSolid]._shrinkShape2Shape.find( vID );
|
|
if ( i2SAdj == _sdVec[iSolid]._shrinkShape2Shape.end() )
|
|
noShrinkV = (( isStructured ) ||
|
|
( noShrinkIfAdjMeshed = i2S->second.ShapeType() == TopAbs_EDGE ));
|
|
else
|
|
noShrinkV = ( ! i2S->second.IsSame( i2SAdj->second ));
|
|
}
|
|
else
|
|
{
|
|
noShrinkV = noShrinkE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// the adjacent SOLID has NO layers at all
|
|
if ( isStructured )
|
|
{
|
|
noShrinkV = true;
|
|
}
|
|
else
|
|
{
|
|
noShrinkV = noShrinkIfAdjMeshed =
|
|
( _sdVec[i]._shrinkShape2Shape[ vID ].ShapeType() == TopAbs_EDGE );
|
|
}
|
|
}
|
|
|
|
if ( noShrinkV && noShrinkIfAdjMeshed )
|
|
{
|
|
// noShrinkV if FACEs in the adjacent SOLID are meshed
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( _sdVec[i]._shrinkShape2Shape[ vID ],
|
|
*_mesh, TopAbs_FACE, &solid );
|
|
while ( fIt->more() )
|
|
{
|
|
const TopoDS_Shape* f = fIt->next();
|
|
if ( !f->IsSame( fWOL ))
|
|
{
|
|
noShrinkV = ! _mesh->GetSubMesh( *f )->IsEmpty();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if ( noShrinkV )
|
|
_sdVec[i]._noShrinkShapes.insert( vID );
|
|
}
|
|
|
|
} // loop on _sdVec[i]._shrinkShape2Shape
|
|
} // loop on _sdVec to fill in _SolidData::_noShrinkShapes
|
|
|
|
|
|
// add FACEs of other SOLIDs to _ignoreFaceIds
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
shapes.Clear();
|
|
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_FACE, shapes);
|
|
|
|
for ( exp.Init( _mesh->GetShapeToMesh(), TopAbs_FACE ); exp.More(); exp.Next() )
|
|
{
|
|
if ( !shapes.Contains( exp.Current() ))
|
|
_sdVec[i]._ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( exp.Current() ));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Finds FACEs w/o layers for a given SOLID by an hypothesis
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::getIgnoreFaces(const TopoDS_Shape& solid,
|
|
const StdMeshers_ViscousLayers* hyp,
|
|
const TopoDS_Shape& hypShape,
|
|
set<TGeomID>& ignoreFaceIds)
|
|
{
|
|
TopExp_Explorer exp;
|
|
|
|
vector<TGeomID> ids = hyp->GetBndShapes();
|
|
if ( hyp->IsToIgnoreShapes() ) // FACEs to ignore are given
|
|
{
|
|
for ( size_t ii = 0; ii < ids.size(); ++ii )
|
|
{
|
|
const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[ii] );
|
|
if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE )
|
|
ignoreFaceIds.insert( ids[ii] );
|
|
}
|
|
}
|
|
else // FACEs with layers are given
|
|
{
|
|
exp.Init( solid, TopAbs_FACE );
|
|
for ( ; exp.More(); exp.Next() )
|
|
{
|
|
TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() );
|
|
if ( find( ids.begin(), ids.end(), faceInd ) == ids.end() )
|
|
ignoreFaceIds.insert( faceInd );
|
|
}
|
|
}
|
|
|
|
// ignore internal FACEs if inlets and outlets are specified
|
|
if ( hyp->IsToIgnoreShapes() )
|
|
{
|
|
TopTools_IndexedDataMapOfShapeListOfShape solidsOfFace;
|
|
TopExp::MapShapesAndAncestors( hypShape,
|
|
TopAbs_FACE, TopAbs_SOLID, solidsOfFace);
|
|
|
|
for ( exp.Init( solid, TopAbs_FACE ); exp.More(); exp.Next() )
|
|
{
|
|
const TopoDS_Face& face = TopoDS::Face( exp.Current() );
|
|
if ( SMESH_MesherHelper::NbAncestors( face, *_mesh, TopAbs_SOLID ) < 2 )
|
|
continue;
|
|
|
|
int nbSolids = solidsOfFace.FindFromKey( face ).Extent();
|
|
if ( nbSolids > 1 )
|
|
ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( face ));
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create the inner surface of the viscous layer and prepare data for infation
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::makeLayer(_SolidData& data)
|
|
{
|
|
// make a map to find new nodes on sub-shapes shared with other SOLID
|
|
map< TGeomID, TNode2Edge* >::iterator s2ne;
|
|
map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
|
|
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
|
|
{
|
|
TGeomID shapeInd = s2s->first;
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
if ( _sdVec[i]._index == data._index ) continue;
|
|
map< TGeomID, TopoDS_Shape >::iterator s2s2 = _sdVec[i]._shrinkShape2Shape.find( shapeInd );
|
|
if ( s2s2 != _sdVec[i]._shrinkShape2Shape.end() &&
|
|
*s2s == *s2s2 && !_sdVec[i]._n2eMap.empty() )
|
|
{
|
|
data._s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap ));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create temporary faces and _LayerEdge's
|
|
|
|
dumpFunction(SMESH_Comment("makeLayers_")<<data._index);
|
|
|
|
vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape;
|
|
|
|
data._stepSize = Precision::Infinite();
|
|
data._stepSizeNodes[0] = 0;
|
|
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
helper.SetSubShape( data._solid );
|
|
helper.SetElementsOnShape( true );
|
|
|
|
vector< const SMDS_MeshNode*> newNodes; // of a mesh face
|
|
TNode2Edge::iterator n2e2;
|
|
|
|
// make _LayerEdge's
|
|
for ( TopExp_Explorer exp( data._solid, TopAbs_FACE ); exp.More(); exp.Next() )
|
|
{
|
|
const TopoDS_Face& F = TopoDS::Face( exp.Current() );
|
|
SMESH_subMesh* sm = _mesh->GetSubMesh( F );
|
|
const TGeomID id = sm->GetId();
|
|
if ( edgesByGeom[ id ]._shape.IsNull() )
|
|
continue; // no layers
|
|
SMESH_ProxyMesh::SubMesh* proxySub =
|
|
data._proxyMesh->getFaceSubM( F, /*create=*/true);
|
|
|
|
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
|
|
if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << id, data._index );
|
|
|
|
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
|
|
while ( eIt->more() )
|
|
{
|
|
const SMDS_MeshElement* face = eIt->next();
|
|
double faceMaxCosin = -1;
|
|
_LayerEdge* maxCosinEdge = 0;
|
|
int nbDegenNodes = 0;
|
|
|
|
newNodes.resize( face->NbCornerNodes() );
|
|
for ( size_t i = 0 ; i < newNodes.size(); ++i )
|
|
{
|
|
const SMDS_MeshNode* n = face->GetNode( i );
|
|
const int shapeID = n->getshapeId();
|
|
const bool onDegenShap = helper.IsDegenShape( shapeID );
|
|
const bool onDegenEdge = ( onDegenShap && n->GetPosition()->GetDim() == 1 );
|
|
if ( onDegenShap )
|
|
{
|
|
if ( onDegenEdge )
|
|
{
|
|
// substitute n on a degenerated EDGE with a node on a corresponding VERTEX
|
|
const TopoDS_Shape& E = getMeshDS()->IndexToShape( shapeID );
|
|
TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( E ));
|
|
if ( const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() )) {
|
|
n = vN;
|
|
nbDegenNodes++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
nbDegenNodes++;
|
|
}
|
|
}
|
|
TNode2Edge::iterator n2e = data._n2eMap.insert( make_pair( n, (_LayerEdge*)0 )).first;
|
|
if ( !(*n2e).second )
|
|
{
|
|
// add a _LayerEdge
|
|
_LayerEdge* edge = _Factory::NewLayerEdge();
|
|
edge->_nodes.push_back( n );
|
|
n2e->second = edge;
|
|
edgesByGeom[ shapeID ]._edges.push_back( edge );
|
|
const bool noShrink = data._noShrinkShapes.count( shapeID );
|
|
|
|
SMESH_TNodeXYZ xyz( n );
|
|
|
|
// set edge data or find already refined _LayerEdge and get data from it
|
|
if (( !noShrink ) &&
|
|
( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE ) &&
|
|
(( s2ne = data._s2neMap.find( shapeID )) != data._s2neMap.end() ) &&
|
|
(( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end() ))
|
|
{
|
|
_LayerEdge* foundEdge = (*n2e2).second;
|
|
gp_XYZ lastPos = edge->Copy( *foundEdge, edgesByGeom[ shapeID ], helper );
|
|
foundEdge->_pos.push_back( lastPos );
|
|
// location of the last node is modified and we restore it by foundEdge->_pos.back()
|
|
const_cast< SMDS_MeshNode* >
|
|
( edge->_nodes.back() )->setXYZ( xyz.X(), xyz.Y(), xyz.Z() );
|
|
}
|
|
else
|
|
{
|
|
if ( !noShrink )
|
|
{
|
|
edge->_nodes.push_back( helper.AddNode( xyz.X(), xyz.Y(), xyz.Z() ));
|
|
}
|
|
if ( !setEdgeData( *edge, edgesByGeom[ shapeID ], helper, data ))
|
|
return false;
|
|
|
|
if ( edge->_nodes.size() < 2 )
|
|
edge->Block( data );
|
|
//data._noShrinkShapes.insert( shapeID );
|
|
}
|
|
dumpMove(edge->_nodes.back());
|
|
|
|
if ( edge->_cosin > faceMaxCosin )
|
|
{
|
|
faceMaxCosin = edge->_cosin;
|
|
maxCosinEdge = edge;
|
|
}
|
|
}
|
|
newNodes[ i ] = n2e->second->_nodes.back();
|
|
|
|
if ( onDegenEdge )
|
|
data._n2eMap.insert( make_pair( face->GetNode( i ), n2e->second ));
|
|
}
|
|
if ( newNodes.size() - nbDegenNodes < 2 )
|
|
continue;
|
|
|
|
// create a temporary face
|
|
const SMDS_MeshElement* newFace =
|
|
new _TmpMeshFace( newNodes, --_tmpFaceID, face->GetShapeID(), face );
|
|
proxySub->AddElement( newFace );
|
|
|
|
// compute inflation step size by min size of element on a convex surface
|
|
if ( faceMaxCosin > theMinSmoothCosin )
|
|
limitStepSize( data, face, maxCosinEdge );
|
|
|
|
} // loop on 2D elements on a FACE
|
|
} // loop on FACEs of a SOLID to create _LayerEdge's
|
|
|
|
|
|
// Set _LayerEdge::_neibors
|
|
TNode2Edge::iterator n2e;
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos._edges[i];
|
|
TIDSortedNodeSet nearNodes;
|
|
SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement* f = fIt->next();
|
|
if ( !data._ignoreFaceIds.count( f->getshapeId() ))
|
|
nearNodes.insert( f->begin_nodes(), f->end_nodes() );
|
|
}
|
|
nearNodes.erase( edge->_nodes[0] );
|
|
edge->_neibors.reserve( nearNodes.size() );
|
|
TIDSortedNodeSet::iterator node = nearNodes.begin();
|
|
for ( ; node != nearNodes.end(); ++node )
|
|
if (( n2e = data._n2eMap.find( *node )) != data._n2eMap.end() )
|
|
edge->_neibors.push_back( n2e->second );
|
|
}
|
|
}
|
|
|
|
data._epsilon = 1e-7;
|
|
if ( data._stepSize < 1. )
|
|
data._epsilon *= data._stepSize;
|
|
|
|
if ( !findShapesToSmooth( data )) // _LayerEdge::_maxLen is computed here
|
|
return false;
|
|
|
|
// limit data._stepSize depending on surface curvature and fill data._convexFaces
|
|
limitStepSizeByCurvature( data ); // !!! it must be before node substitution in _Simplex
|
|
|
|
// Set target nodes into _Simplex and _LayerEdge's to _2NearEdges
|
|
const SMDS_MeshNode* nn[2];
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos._edges[i];
|
|
if ( edge->IsOnEdge() )
|
|
{
|
|
// get neighbor nodes
|
|
bool hasData = ( edge->_2neibors->_edges[0] );
|
|
if ( hasData ) // _LayerEdge is a copy of another one
|
|
{
|
|
nn[0] = edge->_2neibors->srcNode(0);
|
|
nn[1] = edge->_2neibors->srcNode(1);
|
|
}
|
|
else if ( !findNeiborsOnEdge( edge, nn[0],nn[1], eos, data ))
|
|
{
|
|
return false;
|
|
}
|
|
// set neighbor _LayerEdge's
|
|
for ( int j = 0; j < 2; ++j )
|
|
{
|
|
if (( n2e = data._n2eMap.find( nn[j] )) == data._n2eMap.end() )
|
|
return error("_LayerEdge not found by src node", data._index);
|
|
edge->_2neibors->_edges[j] = n2e->second;
|
|
}
|
|
if ( !hasData )
|
|
edge->SetDataByNeighbors( nn[0], nn[1], eos, helper );
|
|
}
|
|
|
|
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
|
|
{
|
|
_Simplex& s = edge->_simplices[j];
|
|
s._nNext = data._n2eMap[ s._nNext ]->_nodes.back();
|
|
s._nPrev = data._n2eMap[ s._nPrev ]->_nodes.back();
|
|
}
|
|
|
|
// For an _LayerEdge on a degenerated EDGE, copy some data from
|
|
// a corresponding _LayerEdge on a VERTEX
|
|
// (issue 52453, pb on a downloaded SampleCase2-Tet-netgen-mephisto.hdf)
|
|
if ( helper.IsDegenShape( edge->_nodes[0]->getshapeId() ))
|
|
{
|
|
// Generally we should not get here
|
|
if ( eos.ShapeType() != TopAbs_EDGE )
|
|
continue;
|
|
TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( eos._shape ));
|
|
const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() );
|
|
if (( n2e = data._n2eMap.find( vN )) == data._n2eMap.end() )
|
|
continue;
|
|
const _LayerEdge* vEdge = n2e->second;
|
|
edge->_normal = vEdge->_normal;
|
|
edge->_lenFactor = vEdge->_lenFactor;
|
|
edge->_cosin = vEdge->_cosin;
|
|
}
|
|
|
|
} // loop on data._edgesOnShape._edges
|
|
} // loop on data._edgesOnShape
|
|
|
|
// fix _LayerEdge::_2neibors on EDGEs to smooth
|
|
// map< TGeomID,Handle(Geom_Curve)>::iterator e2c = data._edge2curve.begin();
|
|
// for ( ; e2c != data._edge2curve.end(); ++e2c )
|
|
// if ( !e2c->second.IsNull() )
|
|
// {
|
|
// if ( _EdgesOnShape* eos = data.GetShapeEdges( e2c->first ))
|
|
// data.Sort2NeiborsOnEdge( eos->_edges );
|
|
// }
|
|
|
|
dumpFunctionEnd();
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Compute inflation step size by min size of element on a convex surface
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::limitStepSize( _SolidData& data,
|
|
const SMDS_MeshElement* face,
|
|
const _LayerEdge* maxCosinEdge )
|
|
{
|
|
int iN = 0;
|
|
double minSize = 10 * data._stepSize;
|
|
const int nbNodes = face->NbCornerNodes();
|
|
for ( int i = 0; i < nbNodes; ++i )
|
|
{
|
|
const SMDS_MeshNode* nextN = face->GetNode( SMESH_MesherHelper::WrapIndex( i+1, nbNodes ));
|
|
const SMDS_MeshNode* curN = face->GetNode( i );
|
|
if ( nextN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ||
|
|
curN-> GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE )
|
|
{
|
|
double dist = SMESH_TNodeXYZ( curN ).Distance( nextN );
|
|
if ( dist < minSize )
|
|
minSize = dist, iN = i;
|
|
}
|
|
}
|
|
double newStep = 0.8 * minSize / maxCosinEdge->_lenFactor;
|
|
if ( newStep < data._stepSize )
|
|
{
|
|
data._stepSize = newStep;
|
|
data._stepSizeCoeff = 0.8 / maxCosinEdge->_lenFactor;
|
|
data._stepSizeNodes[0] = face->GetNode( iN );
|
|
data._stepSizeNodes[1] = face->GetNode( SMESH_MesherHelper::WrapIndex( iN+1, nbNodes ));
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Compute inflation step size by min size of element on a convex surface
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize )
|
|
{
|
|
if ( minSize < data._stepSize )
|
|
{
|
|
data._stepSize = minSize;
|
|
if ( data._stepSizeNodes[0] )
|
|
{
|
|
double dist =
|
|
SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]);
|
|
data._stepSizeCoeff = data._stepSize / dist;
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Limit data._stepSize by evaluating curvature of shapes and fill data._convexFaces
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::limitStepSizeByCurvature( _SolidData& data )
|
|
{
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
|
|
BRepLProp_SLProps surfProp( 2, 1e-6 );
|
|
data._convexFaces.clear();
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eof = data._edgesOnShape[iS];
|
|
if ( eof.ShapeType() != TopAbs_FACE ||
|
|
data._ignoreFaceIds.count( eof._shapeID ))
|
|
continue;
|
|
|
|
TopoDS_Face F = TopoDS::Face( eof._shape );
|
|
const TGeomID faceID = eof._shapeID;
|
|
|
|
BRepAdaptor_Surface surface( F, false );
|
|
surfProp.SetSurface( surface );
|
|
|
|
_ConvexFace cnvFace;
|
|
cnvFace._face = F;
|
|
cnvFace._normalsFixed = false;
|
|
cnvFace._isTooCurved = false;
|
|
|
|
double maxCurvature = cnvFace.GetMaxCurvature( data, eof, surfProp, helper );
|
|
if ( maxCurvature > 0 )
|
|
{
|
|
limitStepSize( data, 0.9 / maxCurvature );
|
|
findEdgesToUpdateNormalNearConvexFace( cnvFace, data, helper );
|
|
}
|
|
if ( !cnvFace._isTooCurved ) continue;
|
|
|
|
_ConvexFace & convFace =
|
|
data._convexFaces.insert( make_pair( faceID, cnvFace )).first->second;
|
|
|
|
// skip a closed surface (data._convexFaces is useful anyway)
|
|
bool isClosedF = false;
|
|
helper.SetSubShape( F );
|
|
if ( helper.HasRealSeam() )
|
|
{
|
|
// in the closed surface there must be a closed EDGE
|
|
for ( TopExp_Explorer eIt( F, TopAbs_EDGE ); eIt.More() && !isClosedF; eIt.Next() )
|
|
isClosedF = helper.IsClosedEdge( TopoDS::Edge( eIt.Current() ));
|
|
}
|
|
if ( isClosedF )
|
|
{
|
|
// limit _LayerEdge::_maxLen on the FACE
|
|
const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. );
|
|
const double minCurvature =
|
|
1. / ( eof._hyp.GetTotalThickness() * ( 1 + theThickToIntersection ));
|
|
map< TGeomID, _EdgesOnShape* >::iterator id2eos = cnvFace._subIdToEOS.find( faceID );
|
|
if ( id2eos != cnvFace._subIdToEOS.end() )
|
|
{
|
|
_EdgesOnShape& eos = * id2eos->second;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* ledge = eos._edges[ i ];
|
|
gp_XY uv = helper.GetNodeUV( F, ledge->_nodes[0] );
|
|
surfProp.SetParameters( uv.X(), uv.Y() );
|
|
if ( surfProp.IsCurvatureDefined() )
|
|
{
|
|
double curvature = Max( surfProp.MaxCurvature() * oriFactor,
|
|
surfProp.MinCurvature() * oriFactor );
|
|
if ( curvature > minCurvature )
|
|
ledge->SetMaxLen( Min( ledge->_maxLen, 1. / curvature ));
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Fill _ConvexFace::_simplexTestEdges. These _LayerEdge's are used to detect
|
|
// prism distortion.
|
|
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID );
|
|
if ( id2eos != convFace._subIdToEOS.end() && !id2eos->second->_edges.empty() )
|
|
{
|
|
// there are _LayerEdge's on the FACE it-self;
|
|
// select _LayerEdge's near EDGEs
|
|
_EdgesOnShape& eos = * id2eos->second;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* ledge = eos._edges[ i ];
|
|
for ( size_t j = 0; j < ledge->_simplices.size(); ++j )
|
|
if ( ledge->_simplices[j]._nNext->GetPosition()->GetDim() < 2 )
|
|
{
|
|
// do not select _LayerEdge's neighboring sharp EDGEs
|
|
bool sharpNbr = false;
|
|
for ( size_t iN = 0; iN < ledge->_neibors.size() && !sharpNbr; ++iN )
|
|
sharpNbr = ( ledge->_neibors[iN]->_cosin > theMinSmoothCosin );
|
|
if ( !sharpNbr )
|
|
convFace._simplexTestEdges.push_back( ledge );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// where there are no _LayerEdge's on a _ConvexFace,
|
|
// as e.g. on a fillet surface with no internal nodes - issue 22580,
|
|
// so that collision of viscous internal faces is not detected by check of
|
|
// intersection of _LayerEdge's with the viscous internal faces.
|
|
|
|
set< const SMDS_MeshNode* > usedNodes;
|
|
|
|
// look for _LayerEdge's with null _sWOL
|
|
id2eos = convFace._subIdToEOS.begin();
|
|
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
|
|
{
|
|
_EdgesOnShape& eos = * id2eos->second;
|
|
if ( !eos._sWOL.IsNull() )
|
|
continue;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* ledge = eos._edges[ i ];
|
|
const SMDS_MeshNode* srcNode = ledge->_nodes[0];
|
|
if ( !usedNodes.insert( srcNode ).second ) continue;
|
|
|
|
for ( size_t i = 0; i < ledge->_simplices.size(); ++i )
|
|
{
|
|
usedNodes.insert( ledge->_simplices[i]._nPrev );
|
|
usedNodes.insert( ledge->_simplices[i]._nNext );
|
|
}
|
|
convFace._simplexTestEdges.push_back( ledge );
|
|
}
|
|
}
|
|
}
|
|
} // loop on FACEs of data._solid
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Detect shapes (and _LayerEdge's on them) to smooth
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::findShapesToSmooth( _SolidData& data )
|
|
{
|
|
// define allowed thickness
|
|
computeGeomSize( data ); // compute data._geomSize and _LayerEdge::_maxLen
|
|
|
|
|
|
// Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's
|
|
// boundary inclined to the shape at a sharp angle
|
|
|
|
TopTools_MapOfShape edgesOfSmooFaces;
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
bool ok = true;
|
|
|
|
vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape;
|
|
data._nbShapesToSmooth = 0;
|
|
|
|
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs
|
|
{
|
|
_EdgesOnShape& eos = edgesByGeom[iS];
|
|
eos._toSmooth = false;
|
|
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE )
|
|
continue;
|
|
|
|
double tgtThick = eos._hyp.GetTotalThickness();
|
|
SMESH_subMeshIteratorPtr subIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false );
|
|
while ( subIt->more() && !eos._toSmooth )
|
|
{
|
|
TGeomID iSub = subIt->next()->GetId();
|
|
const vector<_LayerEdge*>& eSub = edgesByGeom[ iSub ]._edges;
|
|
if ( eSub.empty() ) continue;
|
|
|
|
double faceSize;
|
|
for ( size_t i = 0; i < eSub.size() && !eos._toSmooth; ++i )
|
|
if ( eSub[i]->_cosin > theMinSmoothCosin )
|
|
{
|
|
SMDS_ElemIteratorPtr fIt = eSub[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() && !eos._toSmooth )
|
|
{
|
|
const SMDS_MeshElement* face = fIt->next();
|
|
if ( face->getshapeId() == eos._shapeID &&
|
|
getDistFromEdge( face, eSub[i]->_nodes[0], faceSize ))
|
|
{
|
|
eos._toSmooth = needSmoothing( eSub[i]->_cosin,
|
|
tgtThick * eSub[i]->_lenFactor,
|
|
faceSize);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( eos._toSmooth )
|
|
{
|
|
for ( TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE ); eExp.More(); eExp.Next() )
|
|
edgesOfSmooFaces.Add( eExp.Current() );
|
|
|
|
data.PrepareEdgesToSmoothOnFace( &edgesByGeom[iS], /*substituteSrcNodes=*/false );
|
|
}
|
|
data._nbShapesToSmooth += eos._toSmooth;
|
|
|
|
} // check FACEs
|
|
|
|
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check EDGEs
|
|
{
|
|
_EdgesOnShape& eos = edgesByGeom[iS];
|
|
eos._edgeSmoother = NULL;
|
|
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_EDGE ) continue;
|
|
if ( !eos._hyp.ToSmooth() ) continue;
|
|
|
|
const TopoDS_Edge& E = TopoDS::Edge( edgesByGeom[iS]._shape );
|
|
if ( SMESH_Algo::isDegenerated( E ) || !edgesOfSmooFaces.Contains( E ))
|
|
continue;
|
|
|
|
double tgtThick = eos._hyp.GetTotalThickness();
|
|
for ( TopoDS_Iterator vIt( E ); vIt.More() && !eos._toSmooth; vIt.Next() )
|
|
{
|
|
TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() );
|
|
vector<_LayerEdge*>& eV = edgesByGeom[ iV ]._edges;
|
|
if ( eV.empty() || eV[0]->Is( _LayerEdge::MULTI_NORMAL )) continue;
|
|
gp_Vec eDir = getEdgeDir( E, TopoDS::Vertex( vIt.Value() ));
|
|
double angle = eDir.Angle( eV[0]->_normal );
|
|
double cosin = Cos( angle );
|
|
double cosinAbs = Abs( cosin );
|
|
if ( cosinAbs > theMinSmoothCosin )
|
|
{
|
|
// always smooth analytic EDGEs
|
|
Handle(Geom_Curve) curve = _Smoother1D::CurveForSmooth( E, eos, helper );
|
|
eos._toSmooth = ! curve.IsNull();
|
|
|
|
// compare tgtThick with the length of an end segment
|
|
SMDS_ElemIteratorPtr eIt = eV[0]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
|
|
while ( eIt->more() && !eos._toSmooth )
|
|
{
|
|
const SMDS_MeshElement* endSeg = eIt->next();
|
|
if ( endSeg->getshapeId() == (int) iS )
|
|
{
|
|
double segLen =
|
|
SMESH_TNodeXYZ( endSeg->GetNode( 0 )).Distance( endSeg->GetNode( 1 ));
|
|
eos._toSmooth = needSmoothing( cosinAbs, tgtThick * eV[0]->_lenFactor, segLen );
|
|
}
|
|
}
|
|
if ( eos._toSmooth )
|
|
{
|
|
eos._edgeSmoother = new _Smoother1D( curve, eos );
|
|
|
|
// for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
// eos._edges[i]->Set( _LayerEdge::TO_SMOOTH );
|
|
}
|
|
}
|
|
}
|
|
data._nbShapesToSmooth += eos._toSmooth;
|
|
|
|
} // check EDGEs
|
|
|
|
// Reset _cosin if no smooth is allowed by the user
|
|
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = edgesByGeom[iS];
|
|
if ( eos._edges.empty() ) continue;
|
|
|
|
if ( !eos._hyp.ToSmooth() )
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
//eos._edges[i]->SetCosin( 0 ); // keep _cosin to use in limitMaxLenByCurvature()
|
|
eos._edges[i]->_lenFactor = 1;
|
|
}
|
|
|
|
|
|
// Fill _eosC1 to make that C1 FACEs and EDGEs between them to be smoothed as a whole
|
|
|
|
TopTools_MapOfShape c1VV;
|
|
|
|
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs
|
|
{
|
|
_EdgesOnShape& eos = edgesByGeom[iS];
|
|
if ( eos._edges.empty() ||
|
|
eos.ShapeType() != TopAbs_FACE ||
|
|
!eos._toSmooth )
|
|
continue;
|
|
|
|
// check EDGEs of a FACE
|
|
TopTools_MapOfShape checkedEE, allVV;
|
|
list< SMESH_subMesh* > smQueue( 1, eos._subMesh ); // sm of FACEs
|
|
while ( !smQueue.empty() )
|
|
{
|
|
SMESH_subMesh* sm = smQueue.front();
|
|
smQueue.pop_front();
|
|
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false);
|
|
while ( smIt->more() )
|
|
{
|
|
sm = smIt->next();
|
|
if ( sm->GetSubShape().ShapeType() == TopAbs_VERTEX )
|
|
allVV.Add( sm->GetSubShape() );
|
|
if ( sm->GetSubShape().ShapeType() != TopAbs_EDGE ||
|
|
!checkedEE.Add( sm->GetSubShape() ))
|
|
continue;
|
|
|
|
_EdgesOnShape* eoe = data.GetShapeEdges( sm->GetId() );
|
|
vector<_LayerEdge*>& eE = eoe->_edges;
|
|
if ( eE.empty() || !eoe->_sWOL.IsNull() )
|
|
continue;
|
|
|
|
bool isC1 = true; // check continuity along an EDGE
|
|
for ( size_t i = 0; i < eE.size() && isC1; ++i )
|
|
isC1 = ( Abs( eE[i]->_cosin ) < theMinSmoothCosin );
|
|
if ( !isC1 )
|
|
continue;
|
|
|
|
// check that mesh faces are C1 as well
|
|
{
|
|
gp_XYZ norm1, norm2;
|
|
const SMDS_MeshNode* n = eE[ eE.size() / 2 ]->_nodes[0];
|
|
SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face);
|
|
if ( !SMESH_MeshAlgos::FaceNormal( fIt->next(), norm1, /*normalized=*/true ))
|
|
continue;
|
|
while ( fIt->more() && isC1 )
|
|
isC1 = ( SMESH_MeshAlgos::FaceNormal( fIt->next(), norm2, /*normalized=*/true ) &&
|
|
Abs( norm1 * norm2 ) >= ( 1. - theMinSmoothCosin ));
|
|
if ( !isC1 )
|
|
continue;
|
|
}
|
|
|
|
// add the EDGE and an adjacent FACE to _eosC1
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* face = fIt->next() )
|
|
{
|
|
_EdgesOnShape* eof = data.GetShapeEdges( *face );
|
|
if ( !eof ) continue; // other solid
|
|
if ( eos._shapeID == eof->_shapeID ) continue;
|
|
if ( !eos.HasC1( eof ))
|
|
{
|
|
// check the FACEs
|
|
eos._eosC1.push_back( eof );
|
|
eof->_toSmooth = false;
|
|
data.PrepareEdgesToSmoothOnFace( eof, /*substituteSrcNodes=*/false );
|
|
smQueue.push_back( eof->_subMesh );
|
|
}
|
|
if ( !eos.HasC1( eoe ))
|
|
{
|
|
eos._eosC1.push_back( eoe );
|
|
eoe->_toSmooth = false;
|
|
data.PrepareEdgesToSmoothOnFace( eoe, /*substituteSrcNodes=*/false );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( eos._eosC1.empty() )
|
|
continue;
|
|
|
|
// check VERTEXes of C1 FACEs
|
|
TopTools_MapIteratorOfMapOfShape vIt( allVV );
|
|
for ( ; vIt.More(); vIt.Next() )
|
|
{
|
|
_EdgesOnShape* eov = data.GetShapeEdges( vIt.Key() );
|
|
if ( !eov || eov->_edges.empty() || !eov->_sWOL.IsNull() )
|
|
continue;
|
|
|
|
bool isC1 = true; // check if all adjacent FACEs are in eos._eosC1
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( vIt.Key(), *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* face = fIt->next() )
|
|
{
|
|
_EdgesOnShape* eof = data.GetShapeEdges( *face );
|
|
if ( !eof ) continue; // other solid
|
|
isC1 = ( face->IsSame( eos._shape ) || eos.HasC1( eof ));
|
|
if ( !isC1 )
|
|
break;
|
|
}
|
|
if ( isC1 )
|
|
{
|
|
eos._eosC1.push_back( eov );
|
|
data.PrepareEdgesToSmoothOnFace( eov, /*substituteSrcNodes=*/false );
|
|
c1VV.Add( eov->_shape );
|
|
}
|
|
}
|
|
|
|
} // fill _eosC1 of FACEs
|
|
|
|
|
|
// Find C1 EDGEs
|
|
|
|
vector< pair< _EdgesOnShape*, gp_XYZ > > dirOfEdges;
|
|
|
|
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check VERTEXes
|
|
{
|
|
_EdgesOnShape& eov = edgesByGeom[iS];
|
|
if ( eov._edges.empty() ||
|
|
eov.ShapeType() != TopAbs_VERTEX ||
|
|
c1VV.Contains( eov._shape ))
|
|
continue;
|
|
const TopoDS_Vertex& V = TopoDS::Vertex( eov._shape );
|
|
|
|
// get directions of surrounding EDGEs
|
|
dirOfEdges.clear();
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( eov._shape, *_mesh, TopAbs_EDGE );
|
|
while ( const TopoDS_Shape* e = fIt->next() )
|
|
{
|
|
_EdgesOnShape* eoe = data.GetShapeEdges( *e );
|
|
if ( !eoe ) continue; // other solid
|
|
gp_XYZ eDir = getEdgeDir( TopoDS::Edge( *e ), V );
|
|
if ( !Precision::IsInfinite( eDir.X() ))
|
|
dirOfEdges.push_back( make_pair( eoe, eDir.Normalized() ));
|
|
}
|
|
|
|
// find EDGEs with C1 directions
|
|
for ( size_t i = 0; i < dirOfEdges.size(); ++i )
|
|
for ( size_t j = i+1; j < dirOfEdges.size(); ++j )
|
|
if ( dirOfEdges[i].first && dirOfEdges[j].first )
|
|
{
|
|
double dot = dirOfEdges[i].second * dirOfEdges[j].second;
|
|
bool isC1 = ( dot < - ( 1. - theMinSmoothCosin ));
|
|
if ( isC1 )
|
|
{
|
|
double maxEdgeLen = 3 * Min( eov._edges[0]->_maxLen, eov._hyp.GetTotalThickness() );
|
|
for ( int isJ = 0; isJ < 2; ++isJ ) // loop on [i,j]
|
|
{
|
|
size_t k = isJ ? j : i;
|
|
const TopoDS_Edge& e = TopoDS::Edge( dirOfEdges[k].first->_shape );
|
|
double eLen = SMESH_Algo::EdgeLength( e );
|
|
if ( eLen < maxEdgeLen )
|
|
{
|
|
TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e );
|
|
if ( oppV.IsSame( V ))
|
|
oppV = SMESH_MesherHelper::IthVertex( 1, e );
|
|
_EdgesOnShape* eovOpp = data.GetShapeEdges( oppV );
|
|
if ( dirOfEdges[k].second * eovOpp->_edges[0]->_normal < 0 )
|
|
eov._eosC1.push_back( dirOfEdges[k].first );
|
|
}
|
|
dirOfEdges[k].first = 0;
|
|
}
|
|
}
|
|
}
|
|
} // fill _eosC1 of VERTEXes
|
|
|
|
|
|
|
|
return ok;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set up _SolidData::_edgesOnShape
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::makeEdgesOnShape()
|
|
{
|
|
const int nbShapes = getMeshDS()->MaxShapeIndex();
|
|
|
|
for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
_SolidData& data = _sdVec[ i ];
|
|
vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape;
|
|
edgesByGeom.resize( nbShapes+1 );
|
|
|
|
// set data of _EdgesOnShape's
|
|
if ( SMESH_subMesh* sm = _mesh->GetSubMesh( data._solid ))
|
|
{
|
|
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false);
|
|
while ( smIt->more() )
|
|
{
|
|
sm = smIt->next();
|
|
if ( sm->GetSubShape().ShapeType() == TopAbs_FACE &&
|
|
data._ignoreFaceIds.count( sm->GetId() ))
|
|
continue;
|
|
|
|
setShapeData( edgesByGeom[ sm->GetId() ], sm, data );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief initialize data of _EdgesOnShape
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::setShapeData( _EdgesOnShape& eos,
|
|
SMESH_subMesh* sm,
|
|
_SolidData& data )
|
|
{
|
|
if ( !eos._shape.IsNull() ||
|
|
sm->GetSubShape().ShapeType() == TopAbs_WIRE )
|
|
return;
|
|
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
|
|
eos._subMesh = sm;
|
|
eos._shapeID = sm->GetId();
|
|
eos._shape = sm->GetSubShape();
|
|
if ( eos.ShapeType() == TopAbs_FACE )
|
|
eos._shape.Orientation( helper.GetSubShapeOri( data._solid, eos._shape ));
|
|
eos._toSmooth = false;
|
|
eos._data = &data;
|
|
|
|
// set _SWOL
|
|
map< TGeomID, TopoDS_Shape >::const_iterator s2s =
|
|
data._shrinkShape2Shape.find( eos._shapeID );
|
|
if ( s2s != data._shrinkShape2Shape.end() )
|
|
eos._sWOL = s2s->second;
|
|
|
|
eos._isRegularSWOL = true;
|
|
if ( eos.SWOLType() == TopAbs_FACE )
|
|
{
|
|
const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
|
|
Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( F );
|
|
eos._isRegularSWOL = ( ! surface->HasSingularities( 1e-7 ));
|
|
}
|
|
|
|
// set _hyp
|
|
if ( data._hyps.size() == 1 )
|
|
{
|
|
eos._hyp = data._hyps.back();
|
|
}
|
|
else
|
|
{
|
|
// compute average StdMeshers_ViscousLayers parameters
|
|
map< TGeomID, const StdMeshers_ViscousLayers* >::iterator f2hyp;
|
|
if ( eos.ShapeType() == TopAbs_FACE )
|
|
{
|
|
if (( f2hyp = data._face2hyp.find( eos._shapeID )) != data._face2hyp.end() )
|
|
eos._hyp = f2hyp->second;
|
|
}
|
|
else
|
|
{
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* face = fIt->next() )
|
|
{
|
|
TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
|
|
if (( f2hyp = data._face2hyp.find( faceID )) != data._face2hyp.end() )
|
|
eos._hyp.Add( f2hyp->second );
|
|
}
|
|
}
|
|
}
|
|
|
|
// set _faceNormals
|
|
if ( ! eos._hyp.UseSurfaceNormal() )
|
|
{
|
|
if ( eos.ShapeType() == TopAbs_FACE ) // get normals to elements on a FACE
|
|
{
|
|
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
|
|
if ( !smDS ) return;
|
|
eos._faceNormals.reserve( smDS->NbElements() );
|
|
|
|
double oriFactor = helper.IsReversedSubMesh( TopoDS::Face( eos._shape )) ? 1.: -1.;
|
|
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
|
|
for ( ; eIt->more(); )
|
|
{
|
|
const SMDS_MeshElement* face = eIt->next();
|
|
gp_XYZ& norm = eos._faceNormals[face];
|
|
if ( !SMESH_MeshAlgos::FaceNormal( face, norm, /*normalized=*/true ))
|
|
norm.SetCoord( 0,0,0 );
|
|
norm *= oriFactor;
|
|
}
|
|
}
|
|
else // find EOS of adjacent FACEs
|
|
{
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* face = fIt->next() )
|
|
{
|
|
TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
|
|
eos._faceEOS.push_back( & data._edgesOnShape[ faceID ]);
|
|
if ( eos._faceEOS.back()->_shape.IsNull() )
|
|
// avoid using uninitialised _shapeID in GetNormal()
|
|
eos._faceEOS.back()->_shapeID = faceID;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns normal of a face
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _EdgesOnShape::GetNormal( const SMDS_MeshElement* face, gp_Vec& norm )
|
|
{
|
|
bool ok = false;
|
|
_EdgesOnShape* eos = 0;
|
|
|
|
if ( face->getshapeId() == _shapeID )
|
|
{
|
|
eos = this;
|
|
}
|
|
else
|
|
{
|
|
for ( size_t iF = 0; iF < _faceEOS.size() && !eos; ++iF )
|
|
if ( face->getshapeId() == _faceEOS[ iF ]->_shapeID )
|
|
eos = _faceEOS[ iF ];
|
|
}
|
|
|
|
if (( eos ) &&
|
|
( ok = ( eos->_faceNormals.count( face ) )))
|
|
{
|
|
norm = eos->_faceNormals[ face ];
|
|
}
|
|
else if ( !eos )
|
|
{
|
|
debugMsg( "_EdgesOnShape::Normal() failed for face "<<face->GetID()
|
|
<< " on _shape #" << _shapeID );
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief EdgesOnShape destructor
|
|
*/
|
|
//================================================================================
|
|
|
|
_EdgesOnShape::~_EdgesOnShape()
|
|
{
|
|
delete _edgeSmoother;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set data of _LayerEdge needed for smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::setEdgeData(_LayerEdge& edge,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper,
|
|
_SolidData& data)
|
|
{
|
|
const SMDS_MeshNode* node = edge._nodes[0]; // source node
|
|
|
|
edge._len = 0;
|
|
edge._maxLen = Precision::Infinite();
|
|
edge._minAngle = 0;
|
|
edge._2neibors = 0;
|
|
edge._curvature = 0;
|
|
edge._flags = 0;
|
|
edge._smooFunction = 0;
|
|
|
|
// --------------------------
|
|
// Compute _normal and _cosin
|
|
// --------------------------
|
|
|
|
edge._cosin = 0;
|
|
edge._lenFactor = 1.;
|
|
edge._normal.SetCoord(0,0,0);
|
|
_Simplex::GetSimplices( node, edge._simplices, data._ignoreFaceIds, &data );
|
|
|
|
int totalNbFaces = 0;
|
|
TopoDS_Face F;
|
|
std::pair< TopoDS_Face, gp_XYZ > face2Norm[20];
|
|
gp_Vec geomNorm;
|
|
bool normOK = true;
|
|
|
|
const bool onShrinkShape = !eos._sWOL.IsNull();
|
|
const bool useGeometry = (( eos._hyp.UseSurfaceNormal() ) ||
|
|
( eos.ShapeType() != TopAbs_FACE /*&& !onShrinkShape*/ ));
|
|
|
|
// get geom FACEs the node lies on
|
|
//if ( useGeometry )
|
|
{
|
|
set<TGeomID> faceIds;
|
|
if ( eos.ShapeType() == TopAbs_FACE )
|
|
{
|
|
faceIds.insert( eos._shapeID );
|
|
}
|
|
else
|
|
{
|
|
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() )
|
|
faceIds.insert( fIt->next()->getshapeId() );
|
|
}
|
|
set<TGeomID>::iterator id = faceIds.begin();
|
|
for ( ; id != faceIds.end(); ++id )
|
|
{
|
|
const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id );
|
|
if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || data._ignoreFaceIds.count( *id ))
|
|
continue;
|
|
F = TopoDS::Face( s );
|
|
face2Norm[ totalNbFaces ].first = F;
|
|
totalNbFaces++;
|
|
}
|
|
}
|
|
|
|
// find _normal
|
|
bool fromVonF = false;
|
|
if ( useGeometry )
|
|
{
|
|
fromVonF = ( eos.ShapeType() == TopAbs_VERTEX &&
|
|
eos.SWOLType() == TopAbs_FACE &&
|
|
totalNbFaces > 1 );
|
|
|
|
if ( onShrinkShape && !fromVonF ) // one of faces the node is on has no layers
|
|
{
|
|
if ( eos.SWOLType() == TopAbs_EDGE )
|
|
{
|
|
// inflate from VERTEX along EDGE
|
|
edge._normal = getEdgeDir( TopoDS::Edge( eos._sWOL ), TopoDS::Vertex( eos._shape ));
|
|
}
|
|
else if ( eos.ShapeType() == TopAbs_VERTEX )
|
|
{
|
|
// inflate from VERTEX along FACE
|
|
edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Vertex( eos._shape ),
|
|
node, helper, normOK, &edge._cosin);
|
|
}
|
|
else
|
|
{
|
|
// inflate from EDGE along FACE
|
|
edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Edge( eos._shape ),
|
|
node, helper, normOK);
|
|
}
|
|
}
|
|
else // layers are on all FACEs of SOLID the node is on (or fromVonF)
|
|
{
|
|
if ( fromVonF )
|
|
face2Norm[ totalNbFaces++ ].first = TopoDS::Face( eos._sWOL );
|
|
|
|
int nbOkNorms = 0;
|
|
for ( int iF = totalNbFaces - 1; iF >= 0; --iF )
|
|
{
|
|
F = face2Norm[ iF ].first;
|
|
geomNorm = getFaceNormal( node, F, helper, normOK );
|
|
if ( !normOK ) continue;
|
|
nbOkNorms++;
|
|
|
|
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
|
|
geomNorm.Reverse();
|
|
face2Norm[ iF ].second = geomNorm.XYZ();
|
|
edge._normal += geomNorm.XYZ();
|
|
}
|
|
if ( nbOkNorms == 0 )
|
|
return error(SMESH_Comment("Can't get normal to node ") << node->GetID(), data._index);
|
|
|
|
if ( totalNbFaces >= 3 )
|
|
{
|
|
edge._normal = getNormalByOffset( &edge, face2Norm, totalNbFaces, fromVonF );
|
|
}
|
|
|
|
if ( edge._normal.Modulus() < 1e-3 && nbOkNorms > 1 )
|
|
{
|
|
// opposite normals, re-get normals at shifted positions (IPAL 52426)
|
|
edge._normal.SetCoord( 0,0,0 );
|
|
for ( int iF = 0; iF < totalNbFaces - fromVonF; ++iF )
|
|
{
|
|
const TopoDS_Face& F = face2Norm[iF].first;
|
|
geomNorm = getFaceNormal( node, F, helper, normOK, /*shiftInside=*/true );
|
|
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
|
|
geomNorm.Reverse();
|
|
if ( normOK )
|
|
face2Norm[ iF ].second = geomNorm.XYZ();
|
|
edge._normal += face2Norm[ iF ].second;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else // !useGeometry - get _normal using surrounding mesh faces
|
|
{
|
|
edge._normal = getWeigthedNormal( &edge );
|
|
|
|
// set<TGeomID> faceIds;
|
|
//
|
|
// SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
|
|
// while ( fIt->more() )
|
|
// {
|
|
// const SMDS_MeshElement* face = fIt->next();
|
|
// if ( eos.GetNormal( face, geomNorm ))
|
|
// {
|
|
// if ( onShrinkShape && !faceIds.insert( face->getshapeId() ).second )
|
|
// continue; // use only one mesh face on FACE
|
|
// edge._normal += geomNorm.XYZ();
|
|
// totalNbFaces++;
|
|
// }
|
|
// }
|
|
}
|
|
|
|
// compute _cosin
|
|
//if ( eos._hyp.UseSurfaceNormal() )
|
|
{
|
|
switch ( eos.ShapeType() )
|
|
{
|
|
case TopAbs_FACE: {
|
|
edge._cosin = 0;
|
|
break;
|
|
}
|
|
case TopAbs_EDGE: {
|
|
TopoDS_Edge E = TopoDS::Edge( eos._shape );
|
|
gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK );
|
|
double angle = inFaceDir.Angle( edge._normal ); // [0,PI]
|
|
edge._cosin = Cos( angle );
|
|
break;
|
|
}
|
|
case TopAbs_VERTEX: {
|
|
if ( fromVonF )
|
|
{
|
|
getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Vertex( eos._shape ),
|
|
node, helper, normOK, &edge._cosin );
|
|
}
|
|
else if ( eos.SWOLType() != TopAbs_FACE ) // else _cosin is set by getFaceDir()
|
|
{
|
|
TopoDS_Vertex V = TopoDS::Vertex( eos._shape );
|
|
gp_Vec inFaceDir = getFaceDir( F, V, node, helper, normOK );
|
|
double angle = inFaceDir.Angle( edge._normal ); // [0,PI]
|
|
edge._cosin = Cos( angle );
|
|
if ( totalNbFaces > 2 || helper.IsSeamShape( node->getshapeId() ))
|
|
for ( int iF = 1; iF < totalNbFaces; ++iF )
|
|
{
|
|
F = face2Norm[ iF ].first;
|
|
inFaceDir = getFaceDir( F, V, node, helper, normOK=true );
|
|
if ( normOK ) {
|
|
double angle = inFaceDir.Angle( edge._normal );
|
|
double cosin = Cos( angle );
|
|
if ( Abs( cosin ) > Abs( edge._cosin ))
|
|
edge._cosin = cosin;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
return error(SMESH_Comment("Invalid shape position of node ")<<node, data._index);
|
|
}
|
|
}
|
|
|
|
double normSize = edge._normal.SquareModulus();
|
|
if ( normSize < numeric_limits<double>::min() )
|
|
return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index );
|
|
|
|
edge._normal /= sqrt( normSize );
|
|
|
|
if ( edge.Is( _LayerEdge::MULTI_NORMAL ) && edge._nodes.size() == 2 )
|
|
{
|
|
getMeshDS()->RemoveFreeNode( edge._nodes.back(), 0, /*fromGroups=*/false );
|
|
edge._nodes.resize( 1 );
|
|
edge._normal.SetCoord( 0,0,0 );
|
|
edge.SetMaxLen( 0 );
|
|
}
|
|
|
|
// Set the rest data
|
|
// --------------------
|
|
|
|
edge.SetCosin( edge._cosin ); // to update edge._lenFactor
|
|
|
|
if ( onShrinkShape )
|
|
{
|
|
const SMDS_MeshNode* tgtNode = edge._nodes.back();
|
|
if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid ))
|
|
sm->RemoveNode( tgtNode );
|
|
|
|
// set initial position which is parameters on _sWOL in this case
|
|
if ( eos.SWOLType() == TopAbs_EDGE )
|
|
{
|
|
double u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), node, 0, &normOK );
|
|
edge._pos.push_back( gp_XYZ( u, 0, 0 ));
|
|
if ( edge._nodes.size() > 1 )
|
|
getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( eos._sWOL ), u );
|
|
}
|
|
else // eos.SWOLType() == TopAbs_FACE
|
|
{
|
|
gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), node, 0, &normOK );
|
|
edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0));
|
|
if ( edge._nodes.size() > 1 )
|
|
getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( eos._sWOL ), uv.X(), uv.Y() );
|
|
}
|
|
|
|
if ( edge._nodes.size() > 1 )
|
|
{
|
|
// check if an angle between a FACE with layers and SWOL is sharp,
|
|
// else the edge should not inflate
|
|
F.Nullify();
|
|
for ( int iF = 0; iF < totalNbFaces && F.IsNull(); ++iF ) // find a FACE with VL
|
|
if ( ! helper.IsSubShape( eos._sWOL, face2Norm[iF].first ))
|
|
F = face2Norm[iF].first;
|
|
if ( !F.IsNull())
|
|
{
|
|
geomNorm = getFaceNormal( node, F, helper, normOK );
|
|
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
|
|
geomNorm.Reverse(); // inside the SOLID
|
|
if ( geomNorm * edge._normal < -0.001 )
|
|
{
|
|
getMeshDS()->RemoveFreeNode( tgtNode, 0, /*fromGroups=*/false );
|
|
edge._nodes.resize( 1 );
|
|
}
|
|
else if ( edge._lenFactor > 3 )
|
|
{
|
|
edge._lenFactor = 2;
|
|
edge.Set( _LayerEdge::RISKY_SWOL );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
edge._pos.push_back( SMESH_TNodeXYZ( node ));
|
|
|
|
if ( eos.ShapeType() == TopAbs_FACE )
|
|
{
|
|
double angle;
|
|
for ( size_t i = 0; i < edge._simplices.size(); ++i )
|
|
{
|
|
edge._simplices[i].IsMinAngleOK( edge._pos.back(), angle );
|
|
edge._minAngle = Max( edge._minAngle, angle ); // "angle" is actually cosine
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set neighbor nodes for a _LayerEdge based on EDGE
|
|
|
|
if ( eos.ShapeType() == TopAbs_EDGE /*||
|
|
( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/)
|
|
{
|
|
edge._2neibors = _Factory::NewNearEdges();
|
|
// target nodes instead of source ones will be set later
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return normal to a FACE at a node
|
|
* \param [in] n - node
|
|
* \param [in] face - FACE
|
|
* \param [in] helper - helper
|
|
* \param [out] isOK - true or false
|
|
* \param [in] shiftInside - to find normal at a position shifted inside the face
|
|
* \return gp_XYZ - normal
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _ViscousBuilder::getFaceNormal(const SMDS_MeshNode* node,
|
|
const TopoDS_Face& face,
|
|
SMESH_MesherHelper& helper,
|
|
bool& isOK,
|
|
bool shiftInside)
|
|
{
|
|
gp_XY uv;
|
|
if ( shiftInside )
|
|
{
|
|
// get a shifted position
|
|
gp_Pnt p = SMESH_TNodeXYZ( node );
|
|
gp_XYZ shift( 0,0,0 );
|
|
TopoDS_Shape S = helper.GetSubShapeByNode( node, helper.GetMeshDS() );
|
|
switch ( S.ShapeType() ) {
|
|
case TopAbs_VERTEX:
|
|
{
|
|
shift = getFaceDir( face, TopoDS::Vertex( S ), node, helper, isOK );
|
|
break;
|
|
}
|
|
case TopAbs_EDGE:
|
|
{
|
|
shift = getFaceDir( face, TopoDS::Edge( S ), node, helper, isOK );
|
|
break;
|
|
}
|
|
default:
|
|
isOK = false;
|
|
}
|
|
if ( isOK )
|
|
shift.Normalize();
|
|
p.Translate( shift * 1e-5 );
|
|
|
|
TopLoc_Location loc;
|
|
GeomAPI_ProjectPointOnSurf& projector = helper.GetProjector( face, loc, 1e-7 );
|
|
|
|
if ( !loc.IsIdentity() ) p.Transform( loc.Transformation().Inverted() );
|
|
|
|
projector.Perform( p );
|
|
if ( !projector.IsDone() || projector.NbPoints() < 1 )
|
|
{
|
|
isOK = false;
|
|
return p.XYZ();
|
|
}
|
|
Standard_Real U,V;
|
|
projector.LowerDistanceParameters(U,V);
|
|
uv.SetCoord( U,V );
|
|
}
|
|
else
|
|
{
|
|
uv = helper.GetNodeUV( face, node, 0, &isOK );
|
|
}
|
|
|
|
gp_Dir normal;
|
|
isOK = false;
|
|
|
|
Handle(Geom_Surface) surface = BRep_Tool::Surface( face );
|
|
|
|
if ( !shiftInside &&
|
|
helper.IsDegenShape( node->getshapeId() ) &&
|
|
getFaceNormalAtSingularity( uv, face, helper, normal ))
|
|
{
|
|
isOK = true;
|
|
return normal.XYZ();
|
|
}
|
|
|
|
int pointKind = GeomLib::NormEstim( surface, uv, 1e-5, normal );
|
|
enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE };
|
|
|
|
if ( pointKind == IMPOSSIBLE &&
|
|
node->GetPosition()->GetDim() == 2 ) // node inside the FACE
|
|
{
|
|
// probably NormEstim() failed due to a too high tolerance
|
|
pointKind = GeomLib::NormEstim( surface, uv, 1e-20, normal );
|
|
isOK = ( pointKind < IMPOSSIBLE );
|
|
}
|
|
if ( pointKind < IMPOSSIBLE )
|
|
{
|
|
if ( pointKind != REGULAR &&
|
|
!shiftInside &&
|
|
node->GetPosition()->GetDim() < 2 ) // FACE boundary
|
|
{
|
|
gp_XYZ normShift = getFaceNormal( node, face, helper, isOK, /*shiftInside=*/true );
|
|
if ( normShift * normal.XYZ() < 0. )
|
|
normal = normShift;
|
|
}
|
|
isOK = true;
|
|
}
|
|
|
|
if ( !isOK ) // hard singularity, to call with shiftInside=true ?
|
|
{
|
|
const TGeomID faceID = helper.GetMeshDS()->ShapeToIndex( face );
|
|
|
|
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement* f = fIt->next();
|
|
if ( f->getshapeId() == faceID )
|
|
{
|
|
isOK = SMESH_MeshAlgos::FaceNormal( f, (gp_XYZ&) normal.XYZ(), /*normalized=*/true );
|
|
if ( isOK )
|
|
{
|
|
TopoDS_Face ff = face;
|
|
ff.Orientation( TopAbs_FORWARD );
|
|
if ( helper.IsReversedSubMesh( ff ))
|
|
normal.Reverse();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return normal.XYZ();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Try to get normal at a singularity of a surface basing on it's nature
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::getFaceNormalAtSingularity( const gp_XY& uv,
|
|
const TopoDS_Face& face,
|
|
SMESH_MesherHelper& helper,
|
|
gp_Dir& normal )
|
|
{
|
|
BRepAdaptor_Surface surface( face );
|
|
gp_Dir axis;
|
|
if ( !getRovolutionAxis( surface, axis ))
|
|
return false;
|
|
|
|
double f,l, d, du, dv;
|
|
f = surface.FirstUParameter();
|
|
l = surface.LastUParameter();
|
|
d = ( uv.X() - f ) / ( l - f );
|
|
du = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f );
|
|
f = surface.FirstVParameter();
|
|
l = surface.LastVParameter();
|
|
d = ( uv.Y() - f ) / ( l - f );
|
|
dv = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f );
|
|
|
|
gp_Dir refDir;
|
|
gp_Pnt2d testUV = uv;
|
|
enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE };
|
|
double tol = 1e-5;
|
|
Handle(Geom_Surface) geomsurf = surface.Surface().Surface();
|
|
for ( int iLoop = 0; true ; ++iLoop )
|
|
{
|
|
testUV.SetCoord( testUV.X() + du, testUV.Y() + dv );
|
|
if ( GeomLib::NormEstim( geomsurf, testUV, tol, refDir ) == REGULAR )
|
|
break;
|
|
if ( iLoop > 20 )
|
|
return false;
|
|
tol /= 10.;
|
|
}
|
|
|
|
if ( axis * refDir < 0. )
|
|
axis.Reverse();
|
|
|
|
normal = axis;
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return a normal at a node weighted with angles taken by faces
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _ViscousBuilder::getWeigthedNormal( const _LayerEdge* edge )
|
|
{
|
|
const SMDS_MeshNode* n = edge->_nodes[0];
|
|
|
|
gp_XYZ resNorm(0,0,0);
|
|
SMESH_TNodeXYZ p0( n ), pP, pN;
|
|
for ( size_t i = 0; i < edge->_simplices.size(); ++i )
|
|
{
|
|
pP.Set( edge->_simplices[i]._nPrev );
|
|
pN.Set( edge->_simplices[i]._nNext );
|
|
gp_Vec v0P( p0, pP ), v0N( p0, pN ), vPN( pP, pN ), norm = v0P ^ v0N;
|
|
double l0P = v0P.SquareMagnitude();
|
|
double l0N = v0N.SquareMagnitude();
|
|
double lPN = vPN.SquareMagnitude();
|
|
if ( l0P < std::numeric_limits<double>::min() ||
|
|
l0N < std::numeric_limits<double>::min() ||
|
|
lPN < std::numeric_limits<double>::min() )
|
|
continue;
|
|
double lNorm = norm.SquareMagnitude();
|
|
double sin2 = lNorm / l0P / l0N;
|
|
double angle = ACos(( v0P * v0N ) / Sqrt( l0P ) / Sqrt( l0N ));
|
|
|
|
double weight = sin2 * angle / lPN;
|
|
resNorm += weight * norm.XYZ() / Sqrt( lNorm );
|
|
}
|
|
|
|
return resNorm;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return a normal at a node by getting a common point of offset planes
|
|
* defined by the FACE normals
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _ViscousBuilder::getNormalByOffset( _LayerEdge* edge,
|
|
std::pair< TopoDS_Face, gp_XYZ > f2Normal[],
|
|
int nbFaces,
|
|
bool lastNoOffset)
|
|
{
|
|
SMESH_TNodeXYZ p0 = edge->_nodes[0];
|
|
|
|
gp_XYZ resNorm(0,0,0);
|
|
TopoDS_Shape V = SMESH_MesherHelper::GetSubShapeByNode( p0._node, getMeshDS() );
|
|
if ( V.ShapeType() != TopAbs_VERTEX || nbFaces < 3 )
|
|
{
|
|
for ( int i = 0; i < nbFaces; ++i )
|
|
resNorm += f2Normal[i].second;
|
|
return resNorm;
|
|
}
|
|
|
|
// prepare _OffsetPlane's
|
|
vector< _OffsetPlane > pln( nbFaces );
|
|
for ( int i = 0; i < nbFaces - lastNoOffset; ++i )
|
|
{
|
|
pln[i]._faceIndex = i;
|
|
pln[i]._plane = gp_Pln( p0 + f2Normal[i].second, f2Normal[i].second );
|
|
}
|
|
if ( lastNoOffset )
|
|
{
|
|
pln[ nbFaces - 1 ]._faceIndex = nbFaces - 1;
|
|
pln[ nbFaces - 1 ]._plane = gp_Pln( p0, f2Normal[ nbFaces - 1 ].second );
|
|
}
|
|
|
|
// intersect neighboring OffsetPlane's
|
|
PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( V, *_mesh, TopAbs_EDGE );
|
|
while ( const TopoDS_Shape* edge = edgeIt->next() )
|
|
{
|
|
int f1 = -1, f2 = -1;
|
|
for ( int i = 0; i < nbFaces && f2 < 0; ++i )
|
|
if ( SMESH_MesherHelper::IsSubShape( *edge, f2Normal[i].first ))
|
|
(( f1 < 0 ) ? f1 : f2 ) = i;
|
|
|
|
if ( f2 >= 0 )
|
|
pln[ f1 ].ComputeIntersectionLine( pln[ f2 ], TopoDS::Edge( *edge ), TopoDS::Vertex( V ));
|
|
}
|
|
|
|
// get a common point
|
|
gp_XYZ commonPnt( 0, 0, 0 );
|
|
int nbPoints = 0;
|
|
bool isPointFound;
|
|
for ( int i = 0; i < nbFaces; ++i )
|
|
{
|
|
commonPnt += pln[ i ].GetCommonPoint( isPointFound, TopoDS::Vertex( V ));
|
|
nbPoints += isPointFound;
|
|
}
|
|
gp_XYZ wgtNorm = getWeigthedNormal( edge );
|
|
if ( nbPoints == 0 )
|
|
return wgtNorm;
|
|
|
|
commonPnt /= nbPoints;
|
|
resNorm = commonPnt - p0;
|
|
if ( lastNoOffset )
|
|
return resNorm;
|
|
|
|
// choose the best among resNorm and wgtNorm
|
|
resNorm.Normalize();
|
|
wgtNorm.Normalize();
|
|
double resMinDot = std::numeric_limits<double>::max();
|
|
double wgtMinDot = std::numeric_limits<double>::max();
|
|
for ( int i = 0; i < nbFaces - lastNoOffset; ++i )
|
|
{
|
|
resMinDot = Min( resMinDot, resNorm * f2Normal[i].second );
|
|
wgtMinDot = Min( wgtMinDot, wgtNorm * f2Normal[i].second );
|
|
}
|
|
|
|
if ( Max( resMinDot, wgtMinDot ) < theMinSmoothCosin )
|
|
{
|
|
edge->Set( _LayerEdge::MULTI_NORMAL );
|
|
}
|
|
|
|
return ( resMinDot > wgtMinDot ) ? resNorm : wgtNorm;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Compute line of intersection of 2 planes
|
|
*/
|
|
//================================================================================
|
|
|
|
void _OffsetPlane::ComputeIntersectionLine( _OffsetPlane& pln,
|
|
const TopoDS_Edge& E,
|
|
const TopoDS_Vertex& V )
|
|
{
|
|
int iNext = bool( _faceIndexNext[0] >= 0 );
|
|
_faceIndexNext[ iNext ] = pln._faceIndex;
|
|
|
|
gp_XYZ n1 = _plane.Axis().Direction().XYZ();
|
|
gp_XYZ n2 = pln._plane.Axis().Direction().XYZ();
|
|
|
|
gp_XYZ lineDir = n1 ^ n2;
|
|
|
|
double x = Abs( lineDir.X() );
|
|
double y = Abs( lineDir.Y() );
|
|
double z = Abs( lineDir.Z() );
|
|
|
|
int cooMax; // max coordinate
|
|
if (x > y) {
|
|
if (x > z) cooMax = 1;
|
|
else cooMax = 3;
|
|
}
|
|
else {
|
|
if (y > z) cooMax = 2;
|
|
else cooMax = 3;
|
|
}
|
|
|
|
gp_Pnt linePos;
|
|
if ( Abs( lineDir.Coord( cooMax )) < 0.05 )
|
|
{
|
|
// parallel planes - intersection is an offset of the common EDGE
|
|
gp_Pnt p = BRep_Tool::Pnt( V );
|
|
linePos = 0.5 * (( p.XYZ() + n1 ) + ( p.XYZ() + n2 ));
|
|
lineDir = getEdgeDir( E, V );
|
|
}
|
|
else
|
|
{
|
|
// the constants in the 2 plane equations
|
|
double d1 = - ( _plane.Axis().Direction().XYZ() * _plane.Location().XYZ() );
|
|
double d2 = - ( pln._plane.Axis().Direction().XYZ() * pln._plane.Location().XYZ() );
|
|
|
|
switch ( cooMax ) {
|
|
case 1:
|
|
linePos.SetX( 0 );
|
|
linePos.SetY(( d2*n1.Z() - d1*n2.Z()) / lineDir.X() );
|
|
linePos.SetZ(( d1*n2.Y() - d2*n1.Y()) / lineDir.X() );
|
|
break;
|
|
case 2:
|
|
linePos.SetX(( d1*n2.Z() - d2*n1.Z()) / lineDir.Y() );
|
|
linePos.SetY( 0 );
|
|
linePos.SetZ(( d2*n1.X() - d1*n2.X()) / lineDir.Y() );
|
|
break;
|
|
case 3:
|
|
linePos.SetX(( d2*n1.Y() - d1*n2.Y()) / lineDir.Z() );
|
|
linePos.SetY(( d1*n2.X() - d2*n1.X()) / lineDir.Z() );
|
|
linePos.SetZ( 0 );
|
|
}
|
|
}
|
|
gp_Lin& line = _lines[ iNext ];
|
|
line.SetDirection( lineDir );
|
|
line.SetLocation ( linePos );
|
|
|
|
_isLineOK[ iNext ] = true;
|
|
|
|
|
|
iNext = bool( pln._faceIndexNext[0] >= 0 );
|
|
pln._lines [ iNext ] = line;
|
|
pln._faceIndexNext[ iNext ] = this->_faceIndex;
|
|
pln._isLineOK [ iNext ] = true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes intersection point of two _lines
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _OffsetPlane::GetCommonPoint(bool& isFound,
|
|
const TopoDS_Vertex & V) const
|
|
{
|
|
gp_XYZ p( 0,0,0 );
|
|
isFound = false;
|
|
|
|
if ( NbLines() == 2 )
|
|
{
|
|
gp_Vec lPerp0 = _lines[0].Direction().XYZ() ^ _plane.Axis().Direction().XYZ();
|
|
double dot01 = lPerp0 * _lines[1].Direction().XYZ();
|
|
if ( Abs( dot01 ) > 0.05 )
|
|
{
|
|
gp_Vec l0l1 = _lines[1].Location().XYZ() - _lines[0].Location().XYZ();
|
|
double u1 = - ( lPerp0 * l0l1 ) / dot01;
|
|
p = ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * u1 );
|
|
isFound = true;
|
|
}
|
|
else
|
|
{
|
|
gp_Pnt pV ( BRep_Tool::Pnt( V ));
|
|
gp_Vec lv0( _lines[0].Location(), pV ), lv1(_lines[1].Location(), pV );
|
|
double dot0( lv0 * _lines[0].Direction() ), dot1( lv1 * _lines[1].Direction() );
|
|
p += 0.5 * ( _lines[0].Location().XYZ() + _lines[0].Direction().XYZ() * dot0 );
|
|
p += 0.5 * ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * dot1 );
|
|
isFound = true;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Find 2 neighbor nodes of a node on EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge,
|
|
const SMDS_MeshNode*& n1,
|
|
const SMDS_MeshNode*& n2,
|
|
_EdgesOnShape& eos,
|
|
_SolidData& data)
|
|
{
|
|
const SMDS_MeshNode* node = edge->_nodes[0];
|
|
const int shapeInd = eos._shapeID;
|
|
SMESHDS_SubMesh* edgeSM = 0;
|
|
if ( eos.ShapeType() == TopAbs_EDGE )
|
|
{
|
|
edgeSM = eos._subMesh->GetSubMeshDS();
|
|
if ( !edgeSM || edgeSM->NbElements() == 0 )
|
|
return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index);
|
|
}
|
|
int iN = 0;
|
|
n2 = 0;
|
|
SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge);
|
|
while ( eIt->more() && !n2 )
|
|
{
|
|
const SMDS_MeshElement* e = eIt->next();
|
|
const SMDS_MeshNode* nNeibor = e->GetNode( 0 );
|
|
if ( nNeibor == node ) nNeibor = e->GetNode( 1 );
|
|
if ( edgeSM )
|
|
{
|
|
if (!edgeSM->Contains(e)) continue;
|
|
}
|
|
else
|
|
{
|
|
TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode( nNeibor, getMeshDS() );
|
|
if ( !SMESH_MesherHelper::IsSubShape( s, eos._sWOL )) continue;
|
|
}
|
|
( iN++ ? n2 : n1 ) = nNeibor;
|
|
}
|
|
if ( !n2 )
|
|
return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index);
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create _Curvature
|
|
*/
|
|
//================================================================================
|
|
|
|
_Curvature* _Curvature::New( double avgNormProj, double avgDist )
|
|
{
|
|
// double _r; // radius
|
|
// double _k; // factor to correct node smoothed position
|
|
// double _h2lenRatio; // avgNormProj / (2*avgDist)
|
|
// gp_Pnt2d _uv; // UV used in putOnOffsetSurface()
|
|
|
|
_Curvature* c = 0;
|
|
if ( fabs( avgNormProj / avgDist ) > 1./200 )
|
|
{
|
|
c = _Factory::NewCurvature();
|
|
c->_r = avgDist * avgDist / avgNormProj;
|
|
c->_k = avgDist * avgDist / c->_r / c->_r;
|
|
//c->_k = avgNormProj / c->_r;
|
|
c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive
|
|
c->_h2lenRatio = avgNormProj / ( avgDist + avgDist );
|
|
|
|
c->_uv.SetCoord( 0., 0. );
|
|
}
|
|
return c;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set _curvature and _2neibors->_plnNorm by 2 neighbor nodes residing the same EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1,
|
|
const SMDS_MeshNode* n2,
|
|
const _EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
if ( eos.ShapeType() != TopAbs_EDGE )
|
|
return;
|
|
if ( _curvature && Is( SMOOTHED_C1 ))
|
|
return;
|
|
|
|
gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] );
|
|
gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 );
|
|
gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 );
|
|
|
|
// Set _curvature
|
|
|
|
double sumLen = vec1.Modulus() + vec2.Modulus();
|
|
_2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen;
|
|
_2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen;
|
|
double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 );
|
|
double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() );
|
|
_curvature = _Curvature::New( avgNormProj, avgLen );
|
|
// if ( _curvature )
|
|
// debugMsg( _nodes[0]->GetID()
|
|
// << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k
|
|
// << " proj = "<<avgNormProj<< " len = " << avgLen << "| lenDelta(0) = "
|
|
// << _curvature->lenDelta(0) );
|
|
|
|
// Set _plnNorm
|
|
|
|
if ( eos._sWOL.IsNull() )
|
|
{
|
|
TopoDS_Edge E = TopoDS::Edge( eos._shape );
|
|
// if ( SMESH_Algo::isDegenerated( E ))
|
|
// return;
|
|
gp_XYZ dirE = getEdgeDir( E, _nodes[0], helper );
|
|
gp_XYZ plnNorm = dirE ^ _normal;
|
|
double proj0 = plnNorm * vec1;
|
|
double proj1 = plnNorm * vec2;
|
|
if ( fabs( proj0 ) > 1e-10 || fabs( proj1 ) > 1e-10 )
|
|
{
|
|
if ( _2neibors->_plnNorm ) delete _2neibors->_plnNorm;
|
|
_2neibors->_plnNorm = new gp_XYZ( plnNorm.Normalized() );
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Copy data from a _LayerEdge of other SOLID and based on the same node;
|
|
* this and the other _LayerEdge are inflated along a FACE or an EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _LayerEdge::Copy( _LayerEdge& other,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper )
|
|
{
|
|
_nodes = other._nodes;
|
|
_normal = other._normal;
|
|
_len = 0;
|
|
_lenFactor = other._lenFactor;
|
|
_cosin = other._cosin;
|
|
_2neibors = other._2neibors;
|
|
_curvature = other._curvature;
|
|
_2neibors = other._2neibors;
|
|
_maxLen = Precision::Infinite();//other._maxLen;
|
|
_flags = 0;
|
|
_smooFunction = 0;
|
|
|
|
gp_XYZ lastPos( 0,0,0 );
|
|
if ( eos.SWOLType() == TopAbs_EDGE )
|
|
{
|
|
double u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), _nodes[0] );
|
|
_pos.push_back( gp_XYZ( u, 0, 0));
|
|
|
|
u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), _nodes.back() );
|
|
lastPos.SetX( u );
|
|
}
|
|
else // TopAbs_FACE
|
|
{
|
|
gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), _nodes[0]);
|
|
_pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0));
|
|
|
|
uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), _nodes.back() );
|
|
lastPos.SetX( uv.X() );
|
|
lastPos.SetY( uv.Y() );
|
|
}
|
|
return lastPos;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set _cosin and _lenFactor
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::SetCosin( double cosin )
|
|
{
|
|
_cosin = cosin;
|
|
cosin = Abs( _cosin );
|
|
//_lenFactor = ( cosin < 1.-1e-12 ) ? Min( 2., 1./sqrt(1-cosin*cosin )) : 1.0;
|
|
_lenFactor = ( cosin < 1.-1e-12 ) ? 1./sqrt(1-cosin*cosin ) : 1.0;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Check if another _LayerEdge is a neighbor on EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _LayerEdge::IsNeiborOnEdge( const _LayerEdge* edge ) const
|
|
{
|
|
return (( this->_2neibors && this->_2neibors->include( edge )) ||
|
|
( edge->_2neibors && edge->_2neibors->include( this )));
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Fills a vector<_Simplex >
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Simplex::GetSimplices( const SMDS_MeshNode* node,
|
|
vector<_Simplex>& simplices,
|
|
const set<TGeomID>& ingnoreShapes,
|
|
const _SolidData* dataToCheckOri,
|
|
const bool toSort)
|
|
{
|
|
simplices.clear();
|
|
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement* f = fIt->next();
|
|
const TGeomID shapeInd = f->getshapeId();
|
|
if ( ingnoreShapes.count( shapeInd )) continue;
|
|
const int nbNodes = f->NbCornerNodes();
|
|
const int srcInd = f->GetNodeIndex( node );
|
|
const SMDS_MeshNode* nPrev = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd-1, nbNodes ));
|
|
const SMDS_MeshNode* nNext = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+1, nbNodes ));
|
|
const SMDS_MeshNode* nOpp = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+2, nbNodes ));
|
|
if ( dataToCheckOri && dataToCheckOri->_reversedFaceIds.count( shapeInd ))
|
|
std::swap( nPrev, nNext );
|
|
simplices.push_back( _Simplex( nPrev, nNext, ( nbNodes == 3 ? 0 : nOpp )));
|
|
}
|
|
|
|
if ( toSort )
|
|
SortSimplices( simplices );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set neighbor simplices side by side
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Simplex::SortSimplices(vector<_Simplex>& simplices)
|
|
{
|
|
vector<_Simplex> sortedSimplices( simplices.size() );
|
|
sortedSimplices[0] = simplices[0];
|
|
size_t nbFound = 0;
|
|
for ( size_t i = 1; i < simplices.size(); ++i )
|
|
{
|
|
for ( size_t j = 1; j < simplices.size(); ++j )
|
|
if ( sortedSimplices[i-1]._nNext == simplices[j]._nPrev )
|
|
{
|
|
sortedSimplices[i] = simplices[j];
|
|
nbFound++;
|
|
break;
|
|
}
|
|
}
|
|
if ( nbFound == simplices.size() - 1 )
|
|
simplices.swap( sortedSimplices );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief DEBUG. Create groups containing temporary data of _LayerEdge's
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::makeGroupOfLE()
|
|
{
|
|
#ifdef _DEBUG_
|
|
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
|
|
{
|
|
if ( _sdVec[i]._n2eMap.empty() ) continue;
|
|
|
|
dumpFunction( SMESH_Comment("make_LayerEdge_") << i );
|
|
TNode2Edge::iterator n2e;
|
|
for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e )
|
|
{
|
|
_LayerEdge* le = n2e->second;
|
|
// for ( size_t iN = 1; iN < le->_nodes.size(); ++iN )
|
|
// dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[iN-1]->GetID()
|
|
// << ", " << le->_nodes[iN]->GetID() <<"])");
|
|
if ( le ) {
|
|
dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[0]->GetID()
|
|
<< ", " << le->_nodes.back()->GetID() <<"]) # " << le->_flags );
|
|
}
|
|
}
|
|
dumpFunctionEnd();
|
|
|
|
dumpFunction( SMESH_Comment("makeNormals") << i );
|
|
for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e )
|
|
{
|
|
_LayerEdge* edge = n2e->second;
|
|
SMESH_TNodeXYZ nXYZ( edge->_nodes[0] );
|
|
nXYZ += edge->_normal * _sdVec[i]._stepSize;
|
|
dumpCmd(SMESH_Comment("mesh.AddEdge([ ") << edge->_nodes[0]->GetID()
|
|
<< ", mesh.AddNode( "<< nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])");
|
|
}
|
|
dumpFunctionEnd();
|
|
|
|
dumpFunction( SMESH_Comment("makeTmpFaces_") << i );
|
|
dumpCmd( "faceId1 = mesh.NbElements()" );
|
|
TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE );
|
|
for ( ; fExp.More(); fExp.Next() )
|
|
{
|
|
if ( const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current() ))
|
|
{
|
|
if ( sm->NbElements() == 0 ) continue;
|
|
SMDS_ElemIteratorPtr fIt = sm->GetElements();
|
|
while ( fIt->more())
|
|
{
|
|
const SMDS_MeshElement* e = fIt->next();
|
|
SMESH_Comment cmd("mesh.AddFace([");
|
|
for ( int j = 0; j < e->NbCornerNodes(); ++j )
|
|
cmd << e->GetNode(j)->GetID() << (j+1 < e->NbCornerNodes() ? ",": "])");
|
|
dumpCmd( cmd );
|
|
}
|
|
}
|
|
}
|
|
dumpCmd( "faceId2 = mesh.NbElements()" );
|
|
dumpCmd( SMESH_Comment( "mesh.MakeGroup( 'tmpFaces_" ) << i << "',"
|
|
<< "SMESH.FACE, SMESH.FT_RangeOfIds,'=',"
|
|
<< "'%s-%s' % (faceId1+1, faceId2))");
|
|
dumpFunctionEnd();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Find maximal _LayerEdge length (layer thickness) limited by geometry
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::computeGeomSize( _SolidData& data )
|
|
{
|
|
data._geomSize = Precision::Infinite();
|
|
double intersecDist;
|
|
const SMDS_MeshElement* face;
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
|
|
SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
|
|
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(),
|
|
data._proxyMesh->GetFaces( data._solid )));
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( eos._edges.empty() )
|
|
continue;
|
|
// get neighbor faces, intersection with which should not be considered since
|
|
// collisions are avoided by means of smoothing
|
|
set< TGeomID > neighborFaces;
|
|
if ( eos._hyp.ToSmooth() )
|
|
{
|
|
SMESH_subMeshIteratorPtr subIt =
|
|
eos._subMesh->getDependsOnIterator(/*includeSelf=*/eos.ShapeType() != TopAbs_FACE );
|
|
while ( subIt->more() )
|
|
{
|
|
SMESH_subMesh* sm = subIt->next();
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* face = fIt->next() )
|
|
neighborFaces.insert( getMeshDS()->ShapeToIndex( *face ));
|
|
}
|
|
}
|
|
// find intersections
|
|
double thinkness = eos._hyp.GetTotalThickness();
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
|
|
eos._edges[i]->SetMaxLen( thinkness );
|
|
eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos, &face );
|
|
if ( intersecDist > 0 && face )
|
|
{
|
|
data._geomSize = Min( data._geomSize, intersecDist );
|
|
if ( !neighborFaces.count( face->getshapeId() ))
|
|
eos[i]->SetMaxLen( Min( thinkness, intersecDist / ( face->GetID() < 0 ? 3. : 2. )));
|
|
}
|
|
}
|
|
}
|
|
|
|
data._maxThickness = 0;
|
|
data._minThickness = 1e100;
|
|
list< const StdMeshers_ViscousLayers* >::iterator hyp = data._hyps.begin();
|
|
for ( ; hyp != data._hyps.end(); ++hyp )
|
|
{
|
|
data._maxThickness = Max( data._maxThickness, (*hyp)->GetTotalThickness() );
|
|
data._minThickness = Min( data._minThickness, (*hyp)->GetTotalThickness() );
|
|
}
|
|
|
|
// Limit inflation step size by geometry size found by intersecting
|
|
// normals of _LayerEdge's with mesh faces
|
|
if ( data._stepSize > 0.3 * data._geomSize )
|
|
limitStepSize( data, 0.3 * data._geomSize );
|
|
|
|
if ( data._stepSize > data._minThickness )
|
|
limitStepSize( data, data._minThickness );
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Detect _LayerEdge which can't intersect with opposite or neighbor layer,
|
|
// so no need in detecting intersection at each inflation step
|
|
// -------------------------------------------------------------------------
|
|
|
|
int nbSteps = data._maxThickness / data._stepSize;
|
|
if ( nbSteps < 3 || nbSteps * data._n2eMap.size() < 100000 )
|
|
return;
|
|
|
|
vector< const SMDS_MeshElement* > closeFaces;
|
|
int nbDetected = 0;
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE )
|
|
continue;
|
|
|
|
for ( size_t i = 0; i < eos.size(); ++i )
|
|
{
|
|
SMESH_NodeXYZ p( eos[i]->_nodes[0] );
|
|
double radius = data._maxThickness + 2 * eos[i]->_maxLen;
|
|
closeFaces.clear();
|
|
searcher->GetElementsInSphere( p, radius, SMDSAbs_Face, closeFaces );
|
|
|
|
bool toIgnore = true;
|
|
for ( size_t iF = 0; iF < closeFaces.size() && toIgnore; ++iF )
|
|
if ( !( toIgnore = ( closeFaces[ iF ]->getshapeId() == eos._shapeID ||
|
|
data._ignoreFaceIds.count( closeFaces[ iF ]->getshapeId() ))))
|
|
{
|
|
// check if a _LayerEdge will inflate in a direction opposite to a direction
|
|
// toward a close face
|
|
bool allBehind = true;
|
|
for ( int iN = 0; iN < closeFaces[ iF ]->NbCornerNodes() && allBehind; ++iN )
|
|
{
|
|
SMESH_NodeXYZ pi( closeFaces[ iF ]->GetNode( iN ));
|
|
allBehind = (( pi - p ) * eos[i]->_normal < 0.1 * data._stepSize );
|
|
}
|
|
toIgnore = allBehind;
|
|
}
|
|
|
|
|
|
if ( toIgnore ) // no need to detect intersection
|
|
{
|
|
eos[i]->Set( _LayerEdge::INTERSECTED );
|
|
++nbDetected;
|
|
}
|
|
}
|
|
}
|
|
|
|
debugMsg( "Nb LE to intersect " << data._n2eMap.size()-nbDetected << ", ignore " << nbDetected );
|
|
|
|
return;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Increase length of _LayerEdge's to reach the required thickness of layers
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::inflate(_SolidData& data)
|
|
{
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
|
|
const double tgtThick = data._maxThickness;
|
|
|
|
if ( data._stepSize < 1. )
|
|
data._epsilon = data._stepSize * 1e-7;
|
|
|
|
debugMsg( "-- geomSize = " << data._geomSize << ", stepSize = " << data._stepSize );
|
|
_pyDump->Pause();
|
|
|
|
findCollisionEdges( data, helper );
|
|
|
|
limitMaxLenByCurvature( data, helper );
|
|
|
|
_pyDump->Resume();
|
|
|
|
// limit length of _LayerEdge's around MULTI_NORMAL _LayerEdge's
|
|
for ( size_t i = 0; i < data._edgesOnShape.size(); ++i )
|
|
if ( data._edgesOnShape[i].ShapeType() == TopAbs_VERTEX &&
|
|
data._edgesOnShape[i]._edges.size() > 0 &&
|
|
data._edgesOnShape[i]._edges[0]->Is( _LayerEdge::MULTI_NORMAL ))
|
|
{
|
|
data._edgesOnShape[i]._edges[0]->Unset( _LayerEdge::BLOCKED );
|
|
data._edgesOnShape[i]._edges[0]->Block( data );
|
|
}
|
|
|
|
const double safeFactor = ( 2*data._maxThickness < data._geomSize ) ? 1 : theThickToIntersection;
|
|
|
|
double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite();
|
|
int nbSteps = 0, nbRepeats = 0;
|
|
while ( avgThick < 0.99 )
|
|
{
|
|
// new target length
|
|
double prevThick = curThick;
|
|
curThick += data._stepSize;
|
|
if ( curThick > tgtThick )
|
|
{
|
|
curThick = tgtThick + tgtThick*( 1.-avgThick ) * nbRepeats;
|
|
nbRepeats++;
|
|
}
|
|
|
|
double stepSize = curThick - prevThick;
|
|
updateNormalsOfSmoothed( data, helper, nbSteps, stepSize ); // to ease smoothing
|
|
|
|
// Elongate _LayerEdge's
|
|
dumpFunction(SMESH_Comment("inflate")<<data._index<<"_step"<<nbSteps); // debug
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
if ( eos._edges.empty() ) continue;
|
|
|
|
const double shapeCurThick = Min( curThick, eos._hyp.GetTotalThickness() );
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
eos._edges[i]->SetNewLength( shapeCurThick, eos, helper );
|
|
}
|
|
}
|
|
dumpFunctionEnd();
|
|
|
|
if ( !updateNormals( data, helper, nbSteps, stepSize )) // to avoid collisions
|
|
return false;
|
|
|
|
// Improve and check quality
|
|
if ( !smoothAndCheck( data, nbSteps, distToIntersection ))
|
|
{
|
|
if ( nbSteps > 0 )
|
|
{
|
|
#ifdef __NOT_INVALIDATE_BAD_SMOOTH
|
|
debugMsg("NOT INVALIDATED STEP!");
|
|
return error("Smoothing failed", data._index);
|
|
#endif
|
|
dumpFunction(SMESH_Comment("invalidate")<<data._index<<"_step"<<nbSteps); // debug
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
eos._edges[i]->InvalidateStep( nbSteps+1, eos );
|
|
}
|
|
dumpFunctionEnd();
|
|
}
|
|
break; // no more inflating possible
|
|
}
|
|
nbSteps++;
|
|
|
|
// Evaluate achieved thickness
|
|
avgThick = 0;
|
|
int nbActiveEdges = 0;
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
if ( eos._edges.empty() ) continue;
|
|
|
|
const double shapeTgtThick = eos._hyp.GetTotalThickness();
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
if ( eos._edges[i]->_nodes.size() > 1 )
|
|
avgThick += Min( 1., eos._edges[i]->_len / shapeTgtThick );
|
|
else
|
|
avgThick += shapeTgtThick;
|
|
nbActiveEdges += ( ! eos._edges[i]->Is( _LayerEdge::BLOCKED ));
|
|
}
|
|
}
|
|
avgThick /= data._n2eMap.size();
|
|
debugMsg( "-- Thickness " << curThick << " ("<< avgThick*100 << "%) reached" );
|
|
|
|
#ifdef BLOCK_INFLATION
|
|
if ( nbActiveEdges == 0 )
|
|
{
|
|
debugMsg( "-- Stop inflation since all _LayerEdge's BLOCKED " );
|
|
break;
|
|
}
|
|
#else
|
|
if ( distToIntersection < tgtThick * avgThick * safeFactor && avgThick < 0.9 )
|
|
{
|
|
debugMsg( "-- Stop inflation since "
|
|
<< " distToIntersection( "<<distToIntersection<<" ) < avgThick( "
|
|
<< tgtThick * avgThick << " ) * " << safeFactor );
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// new step size
|
|
limitStepSize( data, 0.25 * distToIntersection );
|
|
if ( data._stepSizeNodes[0] )
|
|
data._stepSize = data._stepSizeCoeff *
|
|
SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]);
|
|
|
|
} // while ( avgThick < 0.99 )
|
|
|
|
if ( nbSteps == 0 )
|
|
return error("failed at the very first inflation step", data._index);
|
|
|
|
if ( avgThick < 0.99 )
|
|
{
|
|
if ( !data._proxyMesh->_warning || data._proxyMesh->_warning->IsOK() )
|
|
{
|
|
data._proxyMesh->_warning.reset
|
|
( new SMESH_ComputeError (COMPERR_WARNING,
|
|
SMESH_Comment("Thickness ") << tgtThick <<
|
|
" of viscous layers not reached,"
|
|
" average reached thickness is " << avgThick*tgtThick));
|
|
}
|
|
}
|
|
|
|
// Restore position of src nodes moved by inflation on _noShrinkShapes
|
|
dumpFunction(SMESH_Comment("restoNoShrink_So")<<data._index); // debug
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
if ( !eos._edges.empty() && eos._edges[0]->_nodes.size() == 1 )
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
restoreNoShrink( *eos._edges[ i ] );
|
|
}
|
|
}
|
|
dumpFunctionEnd();
|
|
|
|
return safeFactor > 0; // == true (avoid warning: unused variable 'safeFactor')
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Improve quality of layer inner surface and check intersection
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::smoothAndCheck(_SolidData& data,
|
|
const int infStep,
|
|
double & distToIntersection)
|
|
{
|
|
if ( data._nbShapesToSmooth == 0 )
|
|
return true; // no shapes needing smoothing
|
|
|
|
bool moved, improved;
|
|
double vol;
|
|
vector< _LayerEdge* > movedEdges, badEdges;
|
|
vector< _EdgesOnShape* > eosC1; // C1 continues shapes
|
|
vector< bool > isConcaveFace;
|
|
|
|
SMESH_MesherHelper helper(*_mesh);
|
|
Handle(ShapeAnalysis_Surface) surface;
|
|
TopoDS_Face F;
|
|
|
|
for ( int isFace = 0; isFace < 2; ++isFace ) // smooth on [ EDGEs, FACEs ]
|
|
{
|
|
const TopAbs_ShapeEnum shapeType = isFace ? TopAbs_FACE : TopAbs_EDGE;
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( !eos._toSmooth ||
|
|
eos.ShapeType() != shapeType ||
|
|
eos._edges.empty() )
|
|
continue;
|
|
|
|
// already smoothed?
|
|
// bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= infStep+1 );
|
|
// if ( !toSmooth ) continue;
|
|
|
|
if ( !eos._hyp.ToSmooth() )
|
|
{
|
|
// smooth disabled by the user; check validy only
|
|
if ( !isFace ) continue;
|
|
badEdges.clear();
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos._edges[i];
|
|
for ( size_t iF = 0; iF < edge->_simplices.size(); ++iF )
|
|
if ( !edge->_simplices[iF].IsForward( edge->_nodes[0], edge->_pos.back(), vol ))
|
|
{
|
|
// debugMsg( "-- Stop inflation. Bad simplex ("
|
|
// << " "<< edge->_nodes[0]->GetID()
|
|
// << " "<< edge->_nodes.back()->GetID()
|
|
// << " "<< edge->_simplices[iF]._nPrev->GetID()
|
|
// << " "<< edge->_simplices[iF]._nNext->GetID() << " ) ");
|
|
// return false;
|
|
badEdges.push_back( edge );
|
|
}
|
|
}
|
|
if ( !badEdges.empty() )
|
|
{
|
|
eosC1.resize(1);
|
|
eosC1[0] = &eos;
|
|
int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
|
|
if ( nbBad > 0 )
|
|
return false;
|
|
}
|
|
continue; // goto the next EDGE or FACE
|
|
}
|
|
|
|
// prepare data
|
|
if ( eos.SWOLType() == TopAbs_FACE )
|
|
{
|
|
if ( !F.IsSame( eos._sWOL )) {
|
|
F = TopoDS::Face( eos._sWOL );
|
|
helper.SetSubShape( F );
|
|
surface = helper.GetSurface( F );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
F.Nullify(); surface.Nullify();
|
|
}
|
|
const TGeomID sInd = eos._shapeID;
|
|
|
|
// perform smoothing
|
|
|
|
if ( eos.ShapeType() == TopAbs_EDGE )
|
|
{
|
|
dumpFunction(SMESH_Comment("smooth")<<data._index << "_Ed"<<sInd <<"_InfStep"<<infStep);
|
|
|
|
if ( !eos._edgeSmoother->Perform( data, surface, F, helper ))
|
|
{
|
|
// smooth on EDGE's (normally we should not get here)
|
|
int step = 0;
|
|
do {
|
|
moved = false;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
moved |= eos._edges[i]->SmoothOnEdge( surface, F, helper );
|
|
}
|
|
dumpCmd( SMESH_Comment("# end step ")<<step);
|
|
}
|
|
while ( moved && step++ < 5 );
|
|
}
|
|
dumpFunctionEnd();
|
|
}
|
|
|
|
else // smooth on FACE
|
|
{
|
|
eosC1.clear();
|
|
eosC1.push_back( & eos );
|
|
eosC1.insert( eosC1.end(), eos._eosC1.begin(), eos._eosC1.end() );
|
|
|
|
movedEdges.clear();
|
|
isConcaveFace.resize( eosC1.size() );
|
|
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
|
|
{
|
|
isConcaveFace[ iEOS ] = data._concaveFaces.count( eosC1[ iEOS ]->_shapeID );
|
|
vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges;
|
|
for ( size_t i = 0; i < edges.size(); ++i )
|
|
if ( edges[i]->Is( _LayerEdge::MOVED ) ||
|
|
edges[i]->Is( _LayerEdge::NEAR_BOUNDARY ))
|
|
movedEdges.push_back( edges[i] );
|
|
|
|
makeOffsetSurface( *eosC1[ iEOS ], helper );
|
|
}
|
|
|
|
int step = 0, stepLimit = 5, nbBad = 0;
|
|
while (( ++step <= stepLimit ) || improved )
|
|
{
|
|
dumpFunction(SMESH_Comment("smooth")<<data._index<<"_Fa"<<sInd
|
|
<<"_InfStep"<<infStep<<"_"<<step); // debug
|
|
int oldBadNb = nbBad;
|
|
badEdges.clear();
|
|
|
|
#ifdef INCREMENTAL_SMOOTH
|
|
bool findBest = false; // ( step == stepLimit );
|
|
for ( size_t i = 0; i < movedEdges.size(); ++i )
|
|
{
|
|
movedEdges[i]->Unset( _LayerEdge::SMOOTHED );
|
|
if ( movedEdges[i]->Smooth( step, findBest, movedEdges ) > 0 )
|
|
badEdges.push_back( movedEdges[i] );
|
|
}
|
|
#else
|
|
bool findBest = ( step == stepLimit || isConcaveFace[ iEOS ]);
|
|
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
|
|
{
|
|
vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges;
|
|
for ( size_t i = 0; i < edges.size(); ++i )
|
|
{
|
|
edges[i]->Unset( _LayerEdge::SMOOTHED );
|
|
if ( edges[i]->Smooth( step, findBest, false ) > 0 )
|
|
badEdges.push_back( eos._edges[i] );
|
|
}
|
|
}
|
|
#endif
|
|
nbBad = badEdges.size();
|
|
|
|
if ( nbBad > 0 )
|
|
debugMsg(SMESH_Comment("nbBad = ") << nbBad );
|
|
|
|
if ( !badEdges.empty() && step >= stepLimit / 2 )
|
|
{
|
|
if ( badEdges[0]->Is( _LayerEdge::ON_CONCAVE_FACE ))
|
|
stepLimit = 9;
|
|
|
|
// resolve hard smoothing situation around concave VERTEXes
|
|
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
|
|
{
|
|
vector< _EdgesOnShape* > & eosCoVe = eosC1[ iEOS ]->_eosConcaVer;
|
|
for ( size_t i = 0; i < eosCoVe.size(); ++i )
|
|
eosCoVe[i]->_edges[0]->MoveNearConcaVer( eosCoVe[i], eosC1[ iEOS ],
|
|
step, badEdges );
|
|
}
|
|
// look for the best smooth of _LayerEdge's neighboring badEdges
|
|
nbBad = 0;
|
|
for ( size_t i = 0; i < badEdges.size(); ++i )
|
|
{
|
|
_LayerEdge* ledge = badEdges[i];
|
|
for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN )
|
|
{
|
|
ledge->_neibors[iN]->Unset( _LayerEdge::SMOOTHED );
|
|
nbBad += ledge->_neibors[iN]->Smooth( step, true, /*findBest=*/true );
|
|
}
|
|
ledge->Unset( _LayerEdge::SMOOTHED );
|
|
nbBad += ledge->Smooth( step, true, /*findBest=*/true );
|
|
}
|
|
debugMsg(SMESH_Comment("nbBad = ") << nbBad );
|
|
}
|
|
|
|
if ( nbBad == oldBadNb &&
|
|
nbBad > 0 &&
|
|
step < stepLimit ) // smooth w/o check of validity
|
|
{
|
|
dumpFunctionEnd();
|
|
dumpFunction(SMESH_Comment("smoothWoCheck")<<data._index<<"_Fa"<<sInd
|
|
<<"_InfStep"<<infStep<<"_"<<step); // debug
|
|
for ( size_t i = 0; i < movedEdges.size(); ++i )
|
|
{
|
|
movedEdges[i]->SmoothWoCheck();
|
|
}
|
|
if ( stepLimit < 9 )
|
|
stepLimit++;
|
|
}
|
|
|
|
improved = ( nbBad < oldBadNb );
|
|
|
|
dumpFunctionEnd();
|
|
|
|
if (( step % 3 == 1 ) || ( nbBad > 0 && step >= stepLimit / 2 ))
|
|
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
|
|
{
|
|
putOnOffsetSurface( *eosC1[ iEOS ], infStep, eosC1, step, /*moveAll=*/step == 1 );
|
|
}
|
|
|
|
} // smoothing steps
|
|
|
|
// project -- to prevent intersections or fix bad simplices
|
|
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
|
|
{
|
|
if ( ! eosC1[ iEOS ]->_eosConcaVer.empty() || nbBad > 0 )
|
|
putOnOffsetSurface( *eosC1[ iEOS ], infStep, eosC1 );
|
|
}
|
|
|
|
//if ( !badEdges.empty() )
|
|
{
|
|
badEdges.clear();
|
|
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
|
|
{
|
|
for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i )
|
|
{
|
|
if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue;
|
|
|
|
_LayerEdge* edge = eosC1[ iEOS ]->_edges[i];
|
|
edge->CheckNeiborsOnBoundary( & badEdges );
|
|
if (( nbBad > 0 ) ||
|
|
( edge->Is( _LayerEdge::BLOCKED ) && edge->Is( _LayerEdge::NEAR_BOUNDARY )))
|
|
{
|
|
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
|
|
gp_XYZ prevXYZ = edge->PrevCheckPos();
|
|
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
|
|
if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
|
|
{
|
|
debugMsg("Bad simplex ( " << edge->_nodes[0]->GetID()
|
|
<< " "<< tgtXYZ._node->GetID()
|
|
<< " "<< edge->_simplices[j]._nPrev->GetID()
|
|
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
|
|
badEdges.push_back( edge );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// try to fix bad simplices by removing the last inflation step of some _LayerEdge's
|
|
nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
|
|
|
|
if ( nbBad > 0 )
|
|
return false;
|
|
}
|
|
|
|
} // // smooth on FACE's
|
|
} // loop on shapes
|
|
} // smooth on [ EDGEs, FACEs ]
|
|
|
|
// Check orientation of simplices of _LayerEdge's on EDGEs and VERTEXes
|
|
eosC1.resize(1);
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( eos.ShapeType() == TopAbs_FACE ||
|
|
eos._edges.empty() ||
|
|
!eos._sWOL.IsNull() )
|
|
continue;
|
|
|
|
badEdges.clear();
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos._edges[i];
|
|
if ( edge->_nodes.size() < 2 ) continue;
|
|
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
|
|
//SMESH_TNodeXYZ prevXYZ = edge->_nodes[0];
|
|
gp_XYZ prevXYZ = edge->PrevCheckPos( &eos );
|
|
//const gp_XYZ& prevXYZ = edge->PrevPos();
|
|
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
|
|
if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
|
|
{
|
|
debugMsg("Bad simplex on bnd ( " << edge->_nodes[0]->GetID()
|
|
<< " "<< tgtXYZ._node->GetID()
|
|
<< " "<< edge->_simplices[j]._nPrev->GetID()
|
|
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
|
|
badEdges.push_back( edge );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// try to fix bad simplices by removing the last inflation step of some _LayerEdge's
|
|
eosC1[0] = &eos;
|
|
int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
|
|
if ( nbBad > 0 )
|
|
return false;
|
|
}
|
|
|
|
|
|
// Check if the last segments of _LayerEdge intersects 2D elements;
|
|
// checked elements are either temporary faces or faces on surfaces w/o the layers
|
|
|
|
SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
|
|
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(),
|
|
data._proxyMesh->GetFaces( data._solid )) );
|
|
|
|
#ifdef BLOCK_INFLATION
|
|
const bool toBlockInfaltion = true;
|
|
#else
|
|
const bool toBlockInfaltion = false;
|
|
#endif
|
|
distToIntersection = Precision::Infinite();
|
|
double dist;
|
|
const SMDS_MeshElement* intFace = 0;
|
|
const SMDS_MeshElement* closestFace = 0;
|
|
_LayerEdge* le = 0;
|
|
bool is1stBlocked = true; // dbg
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( eos._edges.empty() || !eos._sWOL.IsNull() )
|
|
continue;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
if ( eos._edges[i]->Is( _LayerEdge::INTERSECTED ) ||
|
|
eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL ))
|
|
continue;
|
|
if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace ))
|
|
{
|
|
return false;
|
|
// commented due to "Illegal hash-positionPosition" error in NETGEN
|
|
// on Debian60 on viscous_layers_01/B2 case
|
|
// Collision; try to deflate _LayerEdge's causing it
|
|
// badEdges.clear();
|
|
// badEdges.push_back( eos._edges[i] );
|
|
// eosC1[0] = & eos;
|
|
// int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
|
|
// if ( nbBad > 0 )
|
|
// return false;
|
|
|
|
// badEdges.clear();
|
|
// if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() ))
|
|
// {
|
|
// if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace ))
|
|
// {
|
|
// const SMDS_MeshElement* srcFace =
|
|
// eof->_subMesh->GetSubMeshDS()->GetElement( f->getIdInShape() );
|
|
// SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator();
|
|
// while ( nIt->more() )
|
|
// {
|
|
// const SMDS_MeshNode* srcNode = static_cast<const SMDS_MeshNode*>( nIt->next() );
|
|
// TNode2Edge::iterator n2e = data._n2eMap.find( srcNode );
|
|
// if ( n2e != data._n2eMap.end() )
|
|
// badEdges.push_back( n2e->second );
|
|
// }
|
|
// eosC1[0] = eof;
|
|
// nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
|
|
// if ( nbBad > 0 )
|
|
// return false;
|
|
// }
|
|
// }
|
|
// if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace ))
|
|
// return false;
|
|
// else
|
|
// continue;
|
|
}
|
|
if ( !intFace )
|
|
{
|
|
SMESH_Comment msg("Invalid? normal at node "); msg << eos._edges[i]->_nodes[0]->GetID();
|
|
debugMsg( msg );
|
|
continue;
|
|
}
|
|
|
|
const bool isShorterDist = ( distToIntersection > dist );
|
|
if ( toBlockInfaltion || isShorterDist )
|
|
{
|
|
// ignore intersection of a _LayerEdge based on a _ConvexFace with a face
|
|
// lying on this _ConvexFace
|
|
if ( _ConvexFace* convFace = data.GetConvexFace( intFace->getshapeId() ))
|
|
if ( convFace->_isTooCurved && convFace->_subIdToEOS.count ( eos._shapeID ))
|
|
continue;
|
|
|
|
// ignore intersection of a _LayerEdge based on a FACE with an element on this FACE
|
|
// ( avoid limiting the thickness on the case of issue 22576)
|
|
if ( intFace->getshapeId() == eos._shapeID )
|
|
continue;
|
|
|
|
// ignore intersection with intFace of an adjacent FACE
|
|
if ( dist > 0.1 * eos._edges[i]->_len )
|
|
{
|
|
bool toIgnore = false;
|
|
if ( eos._toSmooth )
|
|
{
|
|
const TopoDS_Shape& S = getMeshDS()->IndexToShape( intFace->getshapeId() );
|
|
if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE )
|
|
{
|
|
TopExp_Explorer sub( eos._shape,
|
|
eos.ShapeType() == TopAbs_FACE ? TopAbs_EDGE : TopAbs_VERTEX );
|
|
for ( ; !toIgnore && sub.More(); sub.Next() )
|
|
// is adjacent - has a common EDGE or VERTEX
|
|
toIgnore = ( helper.IsSubShape( sub.Current(), S ));
|
|
|
|
if ( toIgnore ) // check angle between normals
|
|
{
|
|
gp_XYZ normal;
|
|
if ( SMESH_MeshAlgos::FaceNormal( intFace, normal, /*normalized=*/true ))
|
|
toIgnore = ( normal * eos._edges[i]->_normal > -0.5 );
|
|
}
|
|
}
|
|
}
|
|
if ( !toIgnore ) // check if the edge is a neighbor of intFace
|
|
{
|
|
for ( size_t iN = 0; !toIgnore && iN < eos._edges[i]->_neibors.size(); ++iN )
|
|
{
|
|
int nInd = intFace->GetNodeIndex( eos._edges[i]->_neibors[ iN ]->_nodes.back() );
|
|
toIgnore = ( nInd >= 0 );
|
|
}
|
|
}
|
|
if ( toIgnore )
|
|
continue;
|
|
}
|
|
|
|
// intersection not ignored
|
|
|
|
if ( toBlockInfaltion &&
|
|
dist < ( eos._edges[i]->_len * theThickToIntersection ))
|
|
{
|
|
if ( is1stBlocked ) { is1stBlocked = false; // debug
|
|
dumpFunction(SMESH_Comment("blockIntersected") <<data._index<<"_InfStep"<<infStep);
|
|
}
|
|
eos._edges[i]->Set( _LayerEdge::INTERSECTED ); // not to intersect
|
|
eos._edges[i]->Block( data ); // not to inflate
|
|
|
|
//if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() ))
|
|
{
|
|
// block _LayerEdge's, on top of which intFace is
|
|
if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace ))
|
|
{
|
|
const SMDS_MeshElement* srcFace = f->_srcFace;
|
|
SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator();
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshNode* srcNode = static_cast<const SMDS_MeshNode*>( nIt->next() );
|
|
TNode2Edge::iterator n2e = data._n2eMap.find( srcNode );
|
|
if ( n2e != data._n2eMap.end() )
|
|
n2e->second->Block( data );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( isShorterDist )
|
|
{
|
|
distToIntersection = dist;
|
|
le = eos._edges[i];
|
|
closestFace = intFace;
|
|
}
|
|
|
|
} // if ( toBlockInfaltion || isShorterDist )
|
|
} // loop on eos._edges
|
|
} // loop on data._edgesOnShape
|
|
|
|
if ( !is1stBlocked )
|
|
dumpFunctionEnd();
|
|
|
|
if ( closestFace && le )
|
|
{
|
|
#ifdef __myDEBUG
|
|
SMDS_MeshElement::iterator nIt = closestFace->begin_nodes();
|
|
cout << "#Shortest distance: _LayerEdge nodes: tgt " << le->_nodes.back()->GetID()
|
|
<< " src " << le->_nodes[0]->GetID()<< ", intersection with face ("
|
|
<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()
|
|
<< ") distance = " << distToIntersection<< endl;
|
|
#endif
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief try to fix bad simplices by removing the last inflation step of some _LayerEdge's
|
|
* \param [in,out] badSmooEdges - _LayerEdge's to fix
|
|
* \return int - resulting nb of bad _LayerEdge's
|
|
*/
|
|
//================================================================================
|
|
|
|
int _ViscousBuilder::invalidateBadSmooth( _SolidData& data,
|
|
SMESH_MesherHelper& helper,
|
|
vector< _LayerEdge* >& badSmooEdges,
|
|
vector< _EdgesOnShape* >& eosC1,
|
|
const int infStep )
|
|
{
|
|
if ( badSmooEdges.empty() || infStep == 0 ) return 0;
|
|
|
|
dumpFunction(SMESH_Comment("invalidateBadSmooth")<<"_S"<<eosC1[0]->_shapeID<<"_InfStep"<<infStep);
|
|
|
|
enum {
|
|
INVALIDATED = _LayerEdge::UNUSED_FLAG,
|
|
TO_INVALIDATE = _LayerEdge::UNUSED_FLAG * 2,
|
|
ADDED = _LayerEdge::UNUSED_FLAG * 4
|
|
};
|
|
data.UnmarkEdges( TO_INVALIDATE & INVALIDATED & ADDED );
|
|
|
|
double vol;
|
|
bool haveInvalidated = true;
|
|
while ( haveInvalidated )
|
|
{
|
|
haveInvalidated = false;
|
|
for ( size_t i = 0; i < badSmooEdges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = badSmooEdges[i];
|
|
_EdgesOnShape* eos = data.GetShapeEdges( edge );
|
|
edge->Set( ADDED );
|
|
bool invalidated = false;
|
|
if ( edge->Is( TO_INVALIDATE ) && edge->NbSteps() > 1 )
|
|
{
|
|
edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true );
|
|
edge->Block( data );
|
|
edge->Set( INVALIDATED );
|
|
edge->Unset( TO_INVALIDATE );
|
|
invalidated = true;
|
|
haveInvalidated = true;
|
|
}
|
|
|
|
// look for _LayerEdge's of bad _simplices
|
|
int nbBad = 0;
|
|
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
|
|
gp_XYZ prevXYZ1 = edge->PrevCheckPos( eos );
|
|
//const gp_XYZ& prevXYZ2 = edge->PrevPos();
|
|
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
|
|
{
|
|
if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol ))/* &&
|
|
( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/)
|
|
continue;
|
|
|
|
bool isBad = true;
|
|
_LayerEdge* ee[2] = { 0,0 };
|
|
for ( size_t iN = 0; iN < edge->_neibors.size() && !ee[1] ; ++iN )
|
|
if ( edge->_simplices[j].Includes( edge->_neibors[iN]->_nodes.back() ))
|
|
ee[ ee[0] != 0 ] = edge->_neibors[iN];
|
|
|
|
int maxNbSteps = Max( ee[0]->NbSteps(), ee[1]->NbSteps() );
|
|
while ( maxNbSteps > edge->NbSteps() && isBad )
|
|
{
|
|
--maxNbSteps;
|
|
for ( int iE = 0; iE < 2; ++iE )
|
|
{
|
|
if ( ee[ iE ]->NbSteps() > maxNbSteps &&
|
|
ee[ iE ]->NbSteps() > 1 )
|
|
{
|
|
_EdgesOnShape* eos = data.GetShapeEdges( ee[ iE ] );
|
|
ee[ iE ]->InvalidateStep( ee[ iE ]->NbSteps(), *eos, /*restoreLength=*/true );
|
|
ee[ iE ]->Block( data );
|
|
ee[ iE ]->Set( INVALIDATED );
|
|
haveInvalidated = true;
|
|
}
|
|
}
|
|
if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol )) /*&&
|
|
( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/)
|
|
isBad = false;
|
|
}
|
|
nbBad += isBad;
|
|
if ( !ee[0]->Is( ADDED )) badSmooEdges.push_back( ee[0] );
|
|
if ( !ee[1]->Is( ADDED )) badSmooEdges.push_back( ee[1] );
|
|
ee[0]->Set( ADDED );
|
|
ee[1]->Set( ADDED );
|
|
if ( isBad )
|
|
{
|
|
ee[0]->Set( TO_INVALIDATE );
|
|
ee[1]->Set( TO_INVALIDATE );
|
|
}
|
|
}
|
|
|
|
if ( !invalidated && nbBad > 0 && edge->NbSteps() > 1 )
|
|
{
|
|
_EdgesOnShape* eos = data.GetShapeEdges( edge );
|
|
edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true );
|
|
edge->Block( data );
|
|
edge->Set( INVALIDATED );
|
|
edge->Unset( TO_INVALIDATE );
|
|
haveInvalidated = true;
|
|
}
|
|
} // loop on badSmooEdges
|
|
} // while ( haveInvalidated )
|
|
|
|
// re-smooth on analytical EDGEs
|
|
for ( size_t i = 0; i < badSmooEdges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = badSmooEdges[i];
|
|
if ( !edge->Is( INVALIDATED )) continue;
|
|
|
|
_EdgesOnShape* eos = data.GetShapeEdges( edge );
|
|
if ( eos->ShapeType() == TopAbs_VERTEX )
|
|
{
|
|
PShapeIteratorPtr eIt = helper.GetAncestors( eos->_shape, *_mesh, TopAbs_EDGE );
|
|
while ( const TopoDS_Shape* e = eIt->next() )
|
|
if ( _EdgesOnShape* eoe = data.GetShapeEdges( *e ))
|
|
if ( eoe->_edgeSmoother && eoe->_edgeSmoother->isAnalytic() )
|
|
{
|
|
// TopoDS_Face F; Handle(ShapeAnalysis_Surface) surface;
|
|
// if ( eoe->SWOLType() == TopAbs_FACE ) {
|
|
// F = TopoDS::Face( eoe->_sWOL );
|
|
// surface = helper.GetSurface( F );
|
|
// }
|
|
// eoe->_edgeSmoother->Perform( data, surface, F, helper );
|
|
eoe->_edgeSmoother->_anaCurve.Nullify();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// check result of invalidation
|
|
|
|
int nbBad = 0;
|
|
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
|
|
{
|
|
for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i )
|
|
{
|
|
if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue;
|
|
_LayerEdge* edge = eosC1[ iEOS ]->_edges[i];
|
|
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
|
|
gp_XYZ prevXYZ = edge->PrevCheckPos( eosC1[ iEOS ]);
|
|
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
|
|
if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
|
|
{
|
|
++nbBad;
|
|
debugMsg("Bad simplex remains ( " << edge->_nodes[0]->GetID()
|
|
<< " "<< tgtXYZ._node->GetID()
|
|
<< " "<< edge->_simplices[j]._nPrev->GetID()
|
|
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
|
|
}
|
|
}
|
|
}
|
|
dumpFunctionEnd();
|
|
|
|
return nbBad;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create an offset surface
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& helper )
|
|
{
|
|
if ( eos._offsetSurf.IsNull() ||
|
|
eos._edgeForOffset == 0 ||
|
|
eos._edgeForOffset->Is( _LayerEdge::BLOCKED ))
|
|
return;
|
|
|
|
Handle(ShapeAnalysis_Surface) baseSurface = helper.GetSurface( TopoDS::Face( eos._shape ));
|
|
|
|
// find offset
|
|
gp_Pnt tgtP = SMESH_TNodeXYZ( eos._edgeForOffset->_nodes.back() );
|
|
/*gp_Pnt2d uv=*/baseSurface->ValueOfUV( tgtP, Precision::Confusion() );
|
|
double offset = baseSurface->Gap();
|
|
|
|
eos._offsetSurf.Nullify();
|
|
|
|
try
|
|
{
|
|
BRepOffsetAPI_MakeOffsetShape offsetMaker;
|
|
offsetMaker.PerformByJoin( eos._shape, -offset, Precision::Confusion() );
|
|
if ( !offsetMaker.IsDone() ) return;
|
|
|
|
TopExp_Explorer fExp( offsetMaker.Shape(), TopAbs_FACE );
|
|
if ( !fExp.More() ) return;
|
|
|
|
TopoDS_Face F = TopoDS::Face( fExp.Current() );
|
|
Handle(Geom_Surface) surf = BRep_Tool::Surface( F );
|
|
if ( surf.IsNull() ) return;
|
|
|
|
eos._offsetSurf = new ShapeAnalysis_Surface( surf );
|
|
}
|
|
catch ( Standard_Failure )
|
|
{
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Put nodes of a curved FACE to its offset surface
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::putOnOffsetSurface( _EdgesOnShape& eos,
|
|
int infStep,
|
|
vector< _EdgesOnShape* >& eosC1,
|
|
int smooStep,
|
|
int moveAll )
|
|
{
|
|
_EdgesOnShape * eof = & eos;
|
|
if ( eos.ShapeType() != TopAbs_FACE ) // eos is a boundary of C1 FACE, look for the FACE eos
|
|
{
|
|
eof = 0;
|
|
for ( size_t i = 0; i < eosC1.size() && !eof; ++i )
|
|
{
|
|
if ( eosC1[i]->_offsetSurf.IsNull() ||
|
|
eosC1[i]->ShapeType() != TopAbs_FACE ||
|
|
eosC1[i]->_edgeForOffset == 0 ||
|
|
eosC1[i]->_edgeForOffset->Is( _LayerEdge::BLOCKED ))
|
|
continue;
|
|
if ( SMESH_MesherHelper::IsSubShape( eos._shape, eosC1[i]->_shape ))
|
|
eof = eosC1[i];
|
|
}
|
|
}
|
|
if ( !eof ||
|
|
eof->_offsetSurf.IsNull() ||
|
|
eof->ShapeType() != TopAbs_FACE ||
|
|
eof->_edgeForOffset == 0 ||
|
|
eof->_edgeForOffset->Is( _LayerEdge::BLOCKED ))
|
|
return;
|
|
|
|
double preci = BRep_Tool::Tolerance( TopoDS::Face( eof->_shape )), vol;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos._edges[i];
|
|
edge->Unset( _LayerEdge::MARKED );
|
|
if ( edge->Is( _LayerEdge::BLOCKED ) || !edge->_curvature )
|
|
continue;
|
|
if ( moveAll == _LayerEdge::UPD_NORMAL_CONV )
|
|
{
|
|
if ( !edge->Is( _LayerEdge::UPD_NORMAL_CONV ))
|
|
continue;
|
|
}
|
|
else if ( !moveAll && !edge->Is( _LayerEdge::MOVED ))
|
|
continue;
|
|
|
|
int nbBlockedAround = 0;
|
|
for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN )
|
|
nbBlockedAround += edge->_neibors[iN]->Is( _LayerEdge::BLOCKED );
|
|
if ( nbBlockedAround > 1 )
|
|
continue;
|
|
|
|
gp_Pnt tgtP = SMESH_TNodeXYZ( edge->_nodes.back() );
|
|
gp_Pnt2d uv = eof->_offsetSurf->NextValueOfUV( edge->_curvature->_uv, tgtP, preci );
|
|
if ( eof->_offsetSurf->Gap() > edge->_len ) continue; // NextValueOfUV() bug
|
|
edge->_curvature->_uv = uv;
|
|
if ( eof->_offsetSurf->Gap() < 10 * preci ) continue; // same pos
|
|
|
|
gp_XYZ newP = eof->_offsetSurf->Value( uv ).XYZ();
|
|
gp_XYZ prevP = edge->PrevCheckPos();
|
|
bool ok = true;
|
|
if ( !moveAll )
|
|
for ( size_t iS = 0; iS < edge->_simplices.size() && ok; ++iS )
|
|
{
|
|
ok = edge->_simplices[iS].IsForward( &prevP, &newP, vol );
|
|
}
|
|
if ( ok )
|
|
{
|
|
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( edge->_nodes.back() );
|
|
n->setXYZ( newP.X(), newP.Y(), newP.Z());
|
|
edge->_pos.back() = newP;
|
|
|
|
edge->Set( _LayerEdge::MARKED );
|
|
if ( moveAll == _LayerEdge::UPD_NORMAL_CONV )
|
|
{
|
|
edge->_normal = ( newP - prevP ).Normalized();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#ifdef _DEBUG_
|
|
// dumpMove() for debug
|
|
size_t i = 0;
|
|
for ( ; i < eos._edges.size(); ++i )
|
|
if ( eos._edges[i]->Is( _LayerEdge::MARKED ))
|
|
break;
|
|
if ( i < eos._edges.size() )
|
|
{
|
|
dumpFunction(SMESH_Comment("putOnOffsetSurface_S") << eos._shapeID
|
|
<< "_InfStep" << infStep << "_" << smooStep );
|
|
for ( ; i < eos._edges.size(); ++i )
|
|
{
|
|
if ( eos._edges[i]->Is( _LayerEdge::MARKED ))
|
|
dumpMove( eos._edges[i]->_nodes.back() );
|
|
}
|
|
dumpFunctionEnd();
|
|
}
|
|
#endif
|
|
|
|
_ConvexFace* cnvFace;
|
|
if ( moveAll != _LayerEdge::UPD_NORMAL_CONV &&
|
|
eos.ShapeType() == TopAbs_FACE &&
|
|
(cnvFace = eos.GetData().GetConvexFace( eos._shapeID )) &&
|
|
!cnvFace->_normalsFixedOnBorders )
|
|
{
|
|
// put on the surface nodes built on FACE boundaries
|
|
SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false);
|
|
while ( smIt->more() )
|
|
{
|
|
SMESH_subMesh* sm = smIt->next();
|
|
_EdgesOnShape* subEOS = eos.GetData().GetShapeEdges( sm->GetId() );
|
|
if ( !subEOS->_sWOL.IsNull() ) continue;
|
|
if ( std::find( eosC1.begin(), eosC1.end(), subEOS ) != eosC1.end() ) continue;
|
|
|
|
putOnOffsetSurface( *subEOS, infStep, eosC1, smooStep, _LayerEdge::UPD_NORMAL_CONV );
|
|
}
|
|
cnvFace->_normalsFixedOnBorders = true;
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return a curve of the EDGE to be used for smoothing and arrange
|
|
* _LayerEdge's to be in a consequent order
|
|
*/
|
|
//================================================================================
|
|
|
|
Handle(Geom_Curve) _Smoother1D::CurveForSmooth( const TopoDS_Edge& E,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
SMESHDS_SubMesh* smDS = eos._subMesh->GetSubMeshDS();
|
|
|
|
TopLoc_Location loc; double f,l;
|
|
|
|
Handle(Geom_Line) line;
|
|
Handle(Geom_Circle) circle;
|
|
bool isLine, isCirc;
|
|
if ( eos._sWOL.IsNull() ) /////////////////////////////////////////// 3D case
|
|
{
|
|
// check if the EDGE is a line
|
|
Handle(Geom_Curve) curve = BRep_Tool::Curve( E, f, l);
|
|
if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve )))
|
|
curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve();
|
|
|
|
line = Handle(Geom_Line)::DownCast( curve );
|
|
circle = Handle(Geom_Circle)::DownCast( curve );
|
|
isLine = (!line.IsNull());
|
|
isCirc = (!circle.IsNull());
|
|
|
|
if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
|
|
{
|
|
isLine = SMESH_Algo::IsStraight( E );
|
|
|
|
if ( isLine )
|
|
line = new Geom_Line( gp::OX() ); // only type does matter
|
|
}
|
|
if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle
|
|
{
|
|
// TODO
|
|
}
|
|
}
|
|
else //////////////////////////////////////////////////////////////////////// 2D case
|
|
{
|
|
if ( !eos._isRegularSWOL ) // 23190
|
|
return NULL;
|
|
|
|
const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
|
|
|
|
// check if the EDGE is a line
|
|
Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l );
|
|
if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve )))
|
|
curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve();
|
|
|
|
Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve );
|
|
Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve );
|
|
isLine = (!line2d.IsNull());
|
|
isCirc = (!circle2d.IsNull());
|
|
|
|
if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
|
|
{
|
|
Bnd_B2d bndBox;
|
|
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
|
|
while ( nIt->more() )
|
|
bndBox.Add( helper.GetNodeUV( F, nIt->next() ));
|
|
gp_XY size = bndBox.CornerMax() - bndBox.CornerMin();
|
|
|
|
const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() );
|
|
for ( int i = 0; i < 2 && !isLine; ++i )
|
|
isLine = ( size.Coord( i+1 ) <= lineTol );
|
|
}
|
|
if ( !isLine && !isCirc && eos._edges.size() > 2 ) // Check if the EDGE is close to a circle
|
|
{
|
|
// TODO
|
|
}
|
|
if ( isLine )
|
|
{
|
|
line = new Geom_Line( gp::OX() ); // only type does matter
|
|
}
|
|
else if ( isCirc )
|
|
{
|
|
gp_Pnt2d p = circle2d->Location();
|
|
gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX());
|
|
circle = new Geom_Circle( ax, 1.); // only center position does matter
|
|
}
|
|
}
|
|
|
|
if ( isLine )
|
|
return line;
|
|
if ( isCirc )
|
|
return circle;
|
|
|
|
return Handle(Geom_Curve)();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Smooth edges on EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _Smoother1D::Perform(_SolidData& data,
|
|
Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper )
|
|
{
|
|
if ( _leParams.empty() || ( !isAnalytic() && _offPoints.empty() ))
|
|
prepare( data );
|
|
|
|
findEdgesToSmooth();
|
|
if ( isAnalytic() )
|
|
return smoothAnalyticEdge( data, surface, F, helper );
|
|
else
|
|
return smoothComplexEdge ( data, surface, F, helper );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Find edges to smooth
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Smoother1D::findEdgesToSmooth()
|
|
{
|
|
_LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
|
|
for ( int iEnd = 0; iEnd < 2; ++iEnd )
|
|
if ( leOnV[iEnd]->Is( _LayerEdge::NORMAL_UPDATED ))
|
|
_leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal );
|
|
|
|
_eToSmooth[0].first = _eToSmooth[0].second = 0;
|
|
|
|
for ( size_t i = 0; i < _eos.size(); ++i )
|
|
{
|
|
if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH ))
|
|
{
|
|
if ( needSmoothing( _leOnV[0]._cosin,
|
|
_eos[i]->_len * leOnV[0]->_lenFactor, _curveLen * _leParams[i] ) ||
|
|
isToSmooth( i )
|
|
)
|
|
_eos[i]->Set( _LayerEdge::TO_SMOOTH );
|
|
else
|
|
break;
|
|
}
|
|
_eToSmooth[0].second = i+1;
|
|
}
|
|
|
|
_eToSmooth[1].first = _eToSmooth[1].second = _eos.size();
|
|
|
|
for ( int i = _eos.size() - 1; i >= _eToSmooth[0].second; --i )
|
|
{
|
|
if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH ))
|
|
{
|
|
if ( needSmoothing( _leOnV[1]._cosin,
|
|
_eos[i]->_len * leOnV[1]->_lenFactor, _curveLen * ( 1.-_leParams[i] )) ||
|
|
isToSmooth( i ))
|
|
_eos[i]->Set( _LayerEdge::TO_SMOOTH );
|
|
else
|
|
break;
|
|
}
|
|
_eToSmooth[1].first = i;
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Check if iE-th _LayerEdge needs smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _Smoother1D::isToSmooth( int iE )
|
|
{
|
|
SMESH_NodeXYZ pi( _eos[iE]->_nodes[0] );
|
|
SMESH_NodeXYZ p0( _eos[iE]->_2neibors->srcNode(0) );
|
|
SMESH_NodeXYZ p1( _eos[iE]->_2neibors->srcNode(1) );
|
|
gp_XYZ seg0 = pi - p0;
|
|
gp_XYZ seg1 = p1 - pi;
|
|
gp_XYZ tangent = seg0 + seg1;
|
|
double tangentLen = tangent.Modulus();
|
|
double segMinLen = Min( seg0.Modulus(), seg1.Modulus() );
|
|
if ( tangentLen < std::numeric_limits<double>::min() )
|
|
return false;
|
|
tangent /= tangentLen;
|
|
|
|
for ( size_t i = 0; i < _eos[iE]->_neibors.size(); ++i )
|
|
{
|
|
_LayerEdge* ne = _eos[iE]->_neibors[i];
|
|
if ( !ne->Is( _LayerEdge::TO_SMOOTH ) ||
|
|
ne->_nodes.size() < 2 ||
|
|
ne->_nodes[0]->GetPosition()->GetDim() != 2 )
|
|
continue;
|
|
gp_XYZ edgeVec = SMESH_NodeXYZ( ne->_nodes.back() ) - SMESH_NodeXYZ( ne->_nodes[0] );
|
|
double proj = edgeVec * tangent;
|
|
if ( needSmoothing( 1., proj, segMinLen ))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief smooth _LayerEdge's on a staight EDGE or circular EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _Smoother1D::smoothAnalyticEdge( _SolidData& data,
|
|
Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
if ( !isAnalytic() ) return false;
|
|
|
|
size_t iFrom = 0, iTo = _eos._edges.size();
|
|
|
|
if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Line )))
|
|
{
|
|
if ( F.IsNull() ) // 3D
|
|
{
|
|
SMESH_TNodeXYZ pSrc0( _eos._edges[iFrom]->_2neibors->srcNode(0) );
|
|
SMESH_TNodeXYZ pSrc1( _eos._edges[iTo-1]->_2neibors->srcNode(1) );
|
|
//const gp_XYZ lineDir = pSrc1 - pSrc0;
|
|
//_LayerEdge* vLE0 = getLEdgeOnV( 0 );
|
|
//_LayerEdge* vLE1 = getLEdgeOnV( 1 );
|
|
// bool shiftOnly = ( vLE0->Is( _LayerEdge::NORMAL_UPDATED ) ||
|
|
// vLE0->Is( _LayerEdge::BLOCKED ) ||
|
|
// vLE1->Is( _LayerEdge::NORMAL_UPDATED ) ||
|
|
// vLE1->Is( _LayerEdge::BLOCKED ));
|
|
for ( int iEnd = 0; iEnd < 2; ++iEnd )
|
|
{
|
|
iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second;
|
|
if ( iFrom >= iTo ) continue;
|
|
SMESH_TNodeXYZ p0( _eos[iFrom]->_2neibors->tgtNode(0) );
|
|
SMESH_TNodeXYZ p1( _eos[iTo-1]->_2neibors->tgtNode(1) );
|
|
double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ];
|
|
double param1 = _leParams[ iTo ];
|
|
for ( size_t i = iFrom; i < iTo; ++i )
|
|
{
|
|
_LayerEdge* edge = _eos[i];
|
|
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edge->_nodes.back() );
|
|
double param = ( _leParams[i] - param0 ) / ( param1 - param0 );
|
|
gp_XYZ newPos = p0 * ( 1. - param ) + p1 * param;
|
|
|
|
// if ( shiftOnly || edge->Is( _LayerEdge::NORMAL_UPDATED ))
|
|
// {
|
|
// gp_XYZ curPos = SMESH_TNodeXYZ ( tgtNode );
|
|
// double shift = ( lineDir * ( newPos - pSrc0 ) -
|
|
// lineDir * ( curPos - pSrc0 ));
|
|
// newPos = curPos + lineDir * shift / lineDir.SquareModulus();
|
|
// }
|
|
if ( edge->Is( _LayerEdge::BLOCKED ))
|
|
{
|
|
SMESH_TNodeXYZ pSrc( edge->_nodes[0] );
|
|
double curThick = pSrc.SquareDistance( tgtNode );
|
|
double newThink = ( pSrc - newPos ).SquareModulus();
|
|
if ( newThink > curThick )
|
|
continue;
|
|
}
|
|
edge->_pos.back() = newPos;
|
|
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
dumpMove( tgtNode );
|
|
}
|
|
}
|
|
}
|
|
else // 2D
|
|
{
|
|
_LayerEdge* eV0 = getLEdgeOnV( 0 );
|
|
_LayerEdge* eV1 = getLEdgeOnV( 1 );
|
|
gp_XY uvV0 = eV0->LastUV( F, *data.GetShapeEdges( eV0 ));
|
|
gp_XY uvV1 = eV1->LastUV( F, *data.GetShapeEdges( eV1 ));
|
|
if ( eV0->_nodes.back() == eV1->_nodes.back() ) // closed edge
|
|
{
|
|
int iPeriodic = helper.GetPeriodicIndex();
|
|
if ( iPeriodic == 1 || iPeriodic == 2 )
|
|
{
|
|
uvV1.SetCoord( iPeriodic, helper.GetOtherParam( uvV1.Coord( iPeriodic )));
|
|
if ( uvV0.Coord( iPeriodic ) > uvV1.Coord( iPeriodic ))
|
|
std::swap( uvV0, uvV1 );
|
|
}
|
|
}
|
|
for ( int iEnd = 0; iEnd < 2; ++iEnd )
|
|
{
|
|
iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second;
|
|
if ( iFrom >= iTo ) continue;
|
|
_LayerEdge* e0 = _eos[iFrom]->_2neibors->_edges[0];
|
|
_LayerEdge* e1 = _eos[iTo-1]->_2neibors->_edges[1];
|
|
gp_XY uv0 = ( e0 == eV0 ) ? uvV0 : e0->LastUV( F, _eos );
|
|
gp_XY uv1 = ( e1 == eV1 ) ? uvV1 : e1->LastUV( F, _eos );
|
|
double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ];
|
|
double param1 = _leParams[ iTo ];
|
|
gp_XY rangeUV = uv1 - uv0;
|
|
for ( size_t i = iFrom; i < iTo; ++i )
|
|
{
|
|
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
|
|
double param = ( _leParams[i] - param0 ) / ( param1 - param0 );
|
|
gp_XY newUV = uv0 + param * rangeUV;
|
|
|
|
gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
|
|
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos[i]->_nodes.back() );
|
|
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
dumpMove( tgtNode );
|
|
|
|
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
|
|
pos->SetUParameter( newUV.X() );
|
|
pos->SetVParameter( newUV.Y() );
|
|
|
|
gp_XYZ newUV0( newUV.X(), newUV.Y(), 0 );
|
|
|
|
if ( !_eos[i]->Is( _LayerEdge::SMOOTHED ))
|
|
{
|
|
_eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237)
|
|
if ( _eos[i]->_pos.size() > 2 )
|
|
{
|
|
// modify previous positions to make _LayerEdge less sharply bent
|
|
vector<gp_XYZ>& uvVec = _eos[i]->_pos;
|
|
const gp_XYZ uvShift = newUV0 - uvVec.back();
|
|
const double len2 = ( uvVec.back() - uvVec[ 0 ] ).SquareModulus();
|
|
int iPrev = uvVec.size() - 2;
|
|
while ( iPrev > 0 )
|
|
{
|
|
double r = ( uvVec[ iPrev ] - uvVec[0] ).SquareModulus() / len2;
|
|
uvVec[ iPrev ] += uvShift * r;
|
|
--iPrev;
|
|
}
|
|
}
|
|
}
|
|
_eos[i]->_pos.back() = newUV0;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Circle )))
|
|
{
|
|
Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( _anaCurve );
|
|
gp_Pnt center3D = circle->Location();
|
|
|
|
if ( F.IsNull() ) // 3D
|
|
{
|
|
if ( getLEdgeOnV( 0 )->_nodes.back() == getLEdgeOnV( 1 )->_nodes.back() )
|
|
return true; // closed EDGE - nothing to do
|
|
|
|
// circle is a real curve of EDGE
|
|
gp_Circ circ = circle->Circ();
|
|
|
|
// new center is shifted along its axis
|
|
const gp_Dir& axis = circ.Axis().Direction();
|
|
_LayerEdge* e0 = getLEdgeOnV(0);
|
|
_LayerEdge* e1 = getLEdgeOnV(1);
|
|
SMESH_TNodeXYZ p0 = e0->_nodes.back();
|
|
SMESH_TNodeXYZ p1 = e1->_nodes.back();
|
|
double shift1 = axis.XYZ() * ( p0 - center3D.XYZ() );
|
|
double shift2 = axis.XYZ() * ( p1 - center3D.XYZ() );
|
|
gp_Pnt newCenter = center3D.XYZ() + axis.XYZ() * 0.5 * ( shift1 + shift2 );
|
|
|
|
double newRadius = 0.5 * ( newCenter.Distance( p0 ) + newCenter.Distance( p1 ));
|
|
|
|
gp_Ax2 newAxis( newCenter, axis, gp_Vec( newCenter, p0 ));
|
|
gp_Circ newCirc( newAxis, newRadius );
|
|
gp_Vec vecC1 ( newCenter, p1 );
|
|
|
|
double uLast = newAxis.XDirection().AngleWithRef( vecC1, newAxis.Direction() ); // -PI - +PI
|
|
if ( uLast < 0 )
|
|
uLast += 2 * M_PI;
|
|
|
|
for ( size_t i = 0; i < _eos.size(); ++i )
|
|
{
|
|
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
|
|
//if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue;
|
|
double u = uLast * _leParams[i];
|
|
gp_Pnt p = ElCLib::Value( u, newCirc );
|
|
_eos._edges[i]->_pos.back() = p.XYZ();
|
|
|
|
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
|
|
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
|
|
dumpMove( tgtNode );
|
|
}
|
|
return true;
|
|
}
|
|
else // 2D
|
|
{
|
|
const gp_XY center( center3D.X(), center3D.Y() );
|
|
|
|
_LayerEdge* e0 = getLEdgeOnV(0);
|
|
_LayerEdge* eM = _eos._edges[ 0 ];
|
|
_LayerEdge* e1 = getLEdgeOnV(1);
|
|
gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ) );
|
|
gp_XY uvM = eM->LastUV( F, *data.GetShapeEdges( eM ) );
|
|
gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ) );
|
|
gp_Vec2d vec0( center, uv0 );
|
|
gp_Vec2d vecM( center, uvM );
|
|
gp_Vec2d vec1( center, uv1 );
|
|
double uLast = vec0.Angle( vec1 ); // -PI - +PI
|
|
double uMidl = vec0.Angle( vecM );
|
|
if ( uLast * uMidl <= 0. )
|
|
uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI;
|
|
const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() );
|
|
|
|
gp_Ax2d axis( center, vec0 );
|
|
gp_Circ2d circ( axis, radius );
|
|
for ( size_t i = 0; i < _eos.size(); ++i )
|
|
{
|
|
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
|
|
//if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue;
|
|
double newU = uLast * _leParams[i];
|
|
gp_Pnt2d newUV = ElCLib::Value( newU, circ );
|
|
_eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
|
|
|
|
gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
|
|
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
|
|
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
dumpMove( tgtNode );
|
|
|
|
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
|
|
pos->SetUParameter( newUV.X() );
|
|
pos->SetVParameter( newUV.Y() );
|
|
|
|
_eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237)
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief smooth _LayerEdge's on a an EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _Smoother1D::smoothComplexEdge( _SolidData& data,
|
|
Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
if ( _offPoints.empty() )
|
|
return false;
|
|
|
|
// ----------------------------------------------
|
|
// move _offPoints along normals of _LayerEdge's
|
|
// ----------------------------------------------
|
|
|
|
_LayerEdge* e[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
|
|
if ( e[0]->Is( _LayerEdge::NORMAL_UPDATED ))
|
|
_leOnV[0]._normal = getNormalNormal( e[0]->_normal, _edgeDir[0] );
|
|
if ( e[1]->Is( _LayerEdge::NORMAL_UPDATED ))
|
|
_leOnV[1]._normal = getNormalNormal( e[1]->_normal, _edgeDir[1] );
|
|
_leOnV[0]._len = e[0]->_len;
|
|
_leOnV[1]._len = e[1]->_len;
|
|
for ( size_t i = 0; i < _offPoints.size(); i++ )
|
|
{
|
|
_LayerEdge* e0 = _offPoints[i]._2edges._edges[0];
|
|
_LayerEdge* e1 = _offPoints[i]._2edges._edges[1];
|
|
const double w0 = _offPoints[i]._2edges._wgt[0];
|
|
const double w1 = _offPoints[i]._2edges._wgt[1];
|
|
gp_XYZ avgNorm = ( e0->_normal * w0 + e1->_normal * w1 ).Normalized();
|
|
double avgLen = ( e0->_len * w0 + e1->_len * w1 );
|
|
double avgFact = ( e0->_lenFactor * w0 + e1->_lenFactor * w1 );
|
|
if ( e0->Is( _LayerEdge::NORMAL_UPDATED ) ||
|
|
e1->Is( _LayerEdge::NORMAL_UPDATED ))
|
|
avgNorm = getNormalNormal( avgNorm, _offPoints[i]._edgeDir );
|
|
|
|
_offPoints[i]._xyz += avgNorm * ( avgLen - _offPoints[i]._len ) * avgFact;
|
|
_offPoints[i]._len = avgLen;
|
|
}
|
|
|
|
double fTol = 0;
|
|
if ( !surface.IsNull() ) // project _offPoints to the FACE
|
|
{
|
|
fTol = 100 * BRep_Tool::Tolerance( F );
|
|
//const double segLen = _offPoints[0].Distance( _offPoints[1] );
|
|
|
|
gp_Pnt2d uv = surface->ValueOfUV( _offPoints[0]._xyz, fTol );
|
|
//if ( surface->Gap() < 0.5 * segLen )
|
|
_offPoints[0]._xyz = surface->Value( uv ).XYZ();
|
|
|
|
for ( size_t i = 1; i < _offPoints.size(); ++i )
|
|
{
|
|
uv = surface->NextValueOfUV( uv, _offPoints[i]._xyz, fTol );
|
|
//if ( surface->Gap() < 0.5 * segLen )
|
|
_offPoints[i]._xyz = surface->Value( uv ).XYZ();
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------
|
|
// project tgt nodes of extreme _LayerEdge's to the offset segments
|
|
// -----------------------------------------------------------------
|
|
|
|
const int updatedOrBlocked = _LayerEdge::NORMAL_UPDATED | _LayerEdge::BLOCKED;
|
|
if ( e[0]->Is( updatedOrBlocked )) _iSeg[0] = 0;
|
|
if ( e[1]->Is( updatedOrBlocked )) _iSeg[1] = _offPoints.size()-2;
|
|
|
|
gp_Pnt pExtreme[2], pProj[2];
|
|
bool isProjected[2];
|
|
for ( int is2nd = 0; is2nd < 2; ++is2nd )
|
|
{
|
|
pExtreme[ is2nd ] = SMESH_TNodeXYZ( e[is2nd]->_nodes.back() );
|
|
int i = _iSeg[ is2nd ];
|
|
int di = is2nd ? -1 : +1;
|
|
bool & projected = isProjected[ is2nd ];
|
|
projected = false;
|
|
double uOnSeg, distMin = Precision::Infinite(), dist, distPrev = 0;
|
|
int nbWorse = 0;
|
|
do {
|
|
gp_Vec v0p( _offPoints[i]._xyz, pExtreme[ is2nd ] );
|
|
gp_Vec v01( _offPoints[i]._xyz, _offPoints[i+1]._xyz );
|
|
uOnSeg = ( v0p * v01 ) / v01.SquareMagnitude(); // param [0,1] along v01
|
|
projected = ( Abs( uOnSeg - 0.5 ) <= 0.5 );
|
|
dist = pExtreme[ is2nd ].SquareDistance( _offPoints[ i + ( uOnSeg > 0.5 )]._xyz );
|
|
if ( dist < distMin || projected )
|
|
{
|
|
_iSeg[ is2nd ] = i;
|
|
pProj[ is2nd ] = _offPoints[i]._xyz + ( v01 * uOnSeg ).XYZ();
|
|
distMin = dist;
|
|
}
|
|
else if ( dist > distPrev )
|
|
{
|
|
if ( ++nbWorse > 3 ) // avoid projection to the middle of a closed EDGE
|
|
break;
|
|
}
|
|
distPrev = dist;
|
|
i += di;
|
|
}
|
|
while ( !projected &&
|
|
i >= 0 && i+1 < (int)_offPoints.size() );
|
|
|
|
if ( !projected )
|
|
{
|
|
if (( is2nd && _iSeg[1] != _offPoints.size()-2 ) || ( !is2nd && _iSeg[0] != 0 ))
|
|
{
|
|
_iSeg[0] = 0;
|
|
_iSeg[1] = _offPoints.size()-2;
|
|
debugMsg( "smoothComplexEdge() failed to project nodes of extreme _LayerEdge's" );
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if ( _iSeg[0] > _iSeg[1] )
|
|
{
|
|
debugMsg( "smoothComplexEdge() incorrectly projected nodes of extreme _LayerEdge's" );
|
|
return false;
|
|
}
|
|
|
|
// adjust length of extreme LE (test viscous_layers_01/B7)
|
|
gp_Vec vDiv0( pExtreme[0], pProj[0] );
|
|
gp_Vec vDiv1( pExtreme[1], pProj[1] );
|
|
double d0 = vDiv0.Magnitude();
|
|
double d1 = isProjected[1] ? vDiv1.Magnitude() : 0;
|
|
if ( e[0]->Is( _LayerEdge::BLOCKED )) {
|
|
if ( e[0]->_normal * vDiv0.XYZ() < 0 ) e[0]->_len += d0;
|
|
else e[0]->_len -= d0;
|
|
}
|
|
if ( e[1]->Is( _LayerEdge::BLOCKED )) {
|
|
if ( e[1]->_normal * vDiv1.XYZ() < 0 ) e[1]->_len += d1;
|
|
else e[1]->_len -= d1;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------------
|
|
// compute normalized length of the offset segments located between the projections
|
|
// ---------------------------------------------------------------------------------
|
|
|
|
// temporary replace extreme _offPoints by pExtreme
|
|
gp_XYZ opXYZ[2] = { _offPoints[ _iSeg[0] ]._xyz,
|
|
_offPoints[ _iSeg[1]+1 ]._xyz };
|
|
_offPoints[ _iSeg[0] ]._xyz = pExtreme[0].XYZ();
|
|
_offPoints[ _iSeg[1]+ 1]._xyz = pExtreme[1].XYZ();
|
|
|
|
size_t iSeg = 0, nbSeg = _iSeg[1] - _iSeg[0] + 1;
|
|
vector< double > len( nbSeg + 1 );
|
|
len[ iSeg++ ] = 0;
|
|
len[ iSeg++ ] = pProj[ 0 ].Distance( _offPoints[ _iSeg[0]+1 ]._xyz );
|
|
for ( size_t i = _iSeg[0]+1; i <= _iSeg[1]; ++i, ++iSeg )
|
|
{
|
|
len[ iSeg ] = len[ iSeg-1 ] + _offPoints[i].Distance( _offPoints[i+1] );
|
|
}
|
|
// if ( isProjected[ 1 ])
|
|
// len[ nbSeg ] -= pProj[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz );
|
|
// else
|
|
// len[ nbSeg ] += pExtreme[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz );
|
|
|
|
double fullLen = len.back() - d0 - d1;
|
|
for ( iSeg = 0; iSeg < len.size(); ++iSeg )
|
|
len[iSeg] = ( len[iSeg] - d0 ) / fullLen;
|
|
|
|
// -------------------------------------------------------------
|
|
// distribute tgt nodes of _LayerEdge's between the projections
|
|
// -------------------------------------------------------------
|
|
|
|
iSeg = 0;
|
|
for ( size_t i = 0; i < _eos.size(); ++i )
|
|
{
|
|
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
|
|
//if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue;
|
|
while ( iSeg+2 < len.size() && _leParams[i] > len[ iSeg+1 ] )
|
|
iSeg++;
|
|
double r = ( _leParams[i] - len[ iSeg ]) / ( len[ iSeg+1 ] - len[ iSeg ]);
|
|
gp_XYZ p = ( _offPoints[ iSeg + _iSeg[0] ]._xyz * ( 1 - r ) +
|
|
_offPoints[ iSeg + _iSeg[0] + 1 ]._xyz * r );
|
|
|
|
if ( surface.IsNull() )
|
|
{
|
|
_eos[i]->_pos.back() = p;
|
|
}
|
|
else // project a new node position to a FACE
|
|
{
|
|
gp_Pnt2d uv ( _eos[i]->_pos.back().X(), _eos[i]->_pos.back().Y() );
|
|
gp_Pnt2d uv2( surface->NextValueOfUV( uv, p, fTol ));
|
|
|
|
p = surface->Value( uv2 ).XYZ();
|
|
_eos[i]->_pos.back().SetCoord( uv2.X(), uv2.Y(), 0 );
|
|
}
|
|
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos[i]->_nodes.back() );
|
|
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
|
|
dumpMove( tgtNode );
|
|
}
|
|
|
|
_offPoints[ _iSeg[0] ]._xyz = opXYZ[0];
|
|
_offPoints[ _iSeg[1]+1 ]._xyz = opXYZ[1];
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Prepare for smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Smoother1D::prepare(_SolidData& data)
|
|
{
|
|
const TopoDS_Edge& E = TopoDS::Edge( _eos._shape );
|
|
_curveLen = SMESH_Algo::EdgeLength( E );
|
|
|
|
// sort _LayerEdge's by position on the EDGE
|
|
data.SortOnEdge( E, _eos._edges );
|
|
|
|
// compute normalized param of _eos._edges on EDGE
|
|
_leParams.resize( _eos._edges.size() + 1 );
|
|
{
|
|
double curLen;
|
|
gp_Pnt pPrev = SMESH_TNodeXYZ( getLEdgeOnV( 0 )->_nodes[0] );
|
|
_leParams[0] = 0;
|
|
for ( size_t i = 0; i < _eos._edges.size(); ++i )
|
|
{
|
|
gp_Pnt p = SMESH_TNodeXYZ( _eos._edges[i]->_nodes[0] );
|
|
curLen = p.Distance( pPrev );
|
|
_leParams[i+1] = _leParams[i] + curLen;
|
|
pPrev = p;
|
|
}
|
|
double fullLen = _leParams.back() + pPrev.Distance( SMESH_TNodeXYZ( getLEdgeOnV(1)->_nodes[0]));
|
|
for ( size_t i = 0; i < _leParams.size()-1; ++i )
|
|
_leParams[i] = _leParams[i+1] / fullLen;
|
|
_leParams.back() = 1.;
|
|
}
|
|
|
|
_LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
|
|
|
|
// get cosin to use in findEdgesToSmooth()
|
|
_edgeDir[0] = getEdgeDir( E, leOnV[0]->_nodes[0], data.GetHelper() );
|
|
_edgeDir[1] = getEdgeDir( E, leOnV[1]->_nodes[0], data.GetHelper() );
|
|
_leOnV[0]._cosin = Abs( leOnV[0]->_cosin );
|
|
_leOnV[1]._cosin = Abs( leOnV[1]->_cosin );
|
|
if ( _eos._sWOL.IsNull() ) // 3D
|
|
for ( int iEnd = 0; iEnd < 2; ++iEnd )
|
|
_leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal );
|
|
|
|
if ( isAnalytic() )
|
|
return;
|
|
|
|
// divide E to have offset segments with low deflection
|
|
BRepAdaptor_Curve c3dAdaptor( E );
|
|
const double curDeflect = 0.1; //0.01; // Curvature deflection == |p1p2]*sin(p1p2,p1pM)
|
|
const double angDeflect = 0.1; //0.09; // Angular deflection == sin(p1pM,pMp2)
|
|
GCPnts_TangentialDeflection discret(c3dAdaptor, angDeflect, curDeflect);
|
|
if ( discret.NbPoints() <= 2 )
|
|
{
|
|
_anaCurve = new Geom_Line( gp::OX() ); // only type does matter
|
|
return;
|
|
}
|
|
|
|
const double u0 = c3dAdaptor.FirstParameter();
|
|
gp_Pnt p; gp_Vec tangent;
|
|
if ( discret.NbPoints() >= (int) _eos.size() + 2 )
|
|
{
|
|
_offPoints.resize( discret.NbPoints() );
|
|
for ( size_t i = 0; i < _offPoints.size(); i++ )
|
|
{
|
|
double u = discret.Parameter( i+1 );
|
|
c3dAdaptor.D1( u, p, tangent );
|
|
_offPoints[i]._xyz = p.XYZ();
|
|
_offPoints[i]._edgeDir = tangent.XYZ();
|
|
_offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
std::vector< double > params( _eos.size() + 2 );
|
|
|
|
params[0] = data.GetHelper().GetNodeU( E, leOnV[0]->_nodes[0] );
|
|
params.back() = data.GetHelper().GetNodeU( E, leOnV[1]->_nodes[0] );
|
|
for ( size_t i = 0; i < _eos.size(); i++ )
|
|
params[i+1] = data.GetHelper().GetNodeU( E, _eos[i]->_nodes[0] );
|
|
|
|
if ( params[1] > params[ _eos.size() ] )
|
|
std::reverse( params.begin() + 1, params.end() - 1 );
|
|
|
|
_offPoints.resize( _eos.size() + 2 );
|
|
for ( size_t i = 0; i < _offPoints.size(); i++ )
|
|
{
|
|
const double u = params[i];
|
|
c3dAdaptor.D1( u, p, tangent );
|
|
_offPoints[i]._xyz = p.XYZ();
|
|
_offPoints[i]._edgeDir = tangent.XYZ();
|
|
_offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen;
|
|
}
|
|
}
|
|
|
|
// set _2edges
|
|
_offPoints [0]._2edges.set( &_leOnV[0], &_leOnV[0], 0.5, 0.5 );
|
|
_offPoints.back()._2edges.set( &_leOnV[1], &_leOnV[1], 0.5, 0.5 );
|
|
_2NearEdges tmp2edges;
|
|
tmp2edges._edges[1] = _eos._edges[0];
|
|
_leOnV[0]._2neibors = & tmp2edges;
|
|
_leOnV[0]._nodes = leOnV[0]->_nodes;
|
|
_leOnV[1]._nodes = leOnV[1]->_nodes;
|
|
_LayerEdge* eNext, *ePrev = & _leOnV[0];
|
|
for ( size_t iLE = 0, i = 1; i < _offPoints.size()-1; i++ )
|
|
{
|
|
// find _LayerEdge's located before and after an offset point
|
|
// (_eos._edges[ iLE ] is next after ePrev)
|
|
while ( iLE < _eos._edges.size() && _offPoints[i]._param > _leParams[ iLE ] )
|
|
ePrev = _eos._edges[ iLE++ ];
|
|
eNext = ePrev->_2neibors->_edges[1];
|
|
|
|
gp_Pnt p0 = SMESH_TNodeXYZ( ePrev->_nodes[0] );
|
|
gp_Pnt p1 = SMESH_TNodeXYZ( eNext->_nodes[0] );
|
|
double r = p0.Distance( _offPoints[i]._xyz ) / p0.Distance( p1 );
|
|
_offPoints[i]._2edges.set( ePrev, eNext, 1-r, r );
|
|
}
|
|
|
|
// replace _LayerEdge's on VERTEX by _leOnV in _offPoints._2edges
|
|
for ( size_t i = 0; i < _offPoints.size(); i++ )
|
|
if ( _offPoints[i]._2edges._edges[0] == leOnV[0] )
|
|
_offPoints[i]._2edges._edges[0] = & _leOnV[0];
|
|
else break;
|
|
for ( size_t i = _offPoints.size()-1; i > 0; i-- )
|
|
if ( _offPoints[i]._2edges._edges[1] == leOnV[1] )
|
|
_offPoints[i]._2edges._edges[1] = & _leOnV[1];
|
|
else break;
|
|
|
|
// set _normal of _leOnV[0] and _leOnV[1] to be normal to the EDGE
|
|
|
|
int iLBO = _offPoints.size() - 2; // last but one
|
|
|
|
if ( leOnV[ 0 ]->Is( _LayerEdge::MULTI_NORMAL ))
|
|
_leOnV[ 0 ]._normal = getNormalNormal( _eos._edges[1]->_normal, _edgeDir[0] );
|
|
else
|
|
_leOnV[ 0 ]._normal = getNormalNormal( leOnV[0]->_normal, _edgeDir[0] );
|
|
if ( leOnV[ 1 ]->Is( _LayerEdge::MULTI_NORMAL ))
|
|
_leOnV[ 1 ]._normal = getNormalNormal( _eos._edges.back()->_normal, _edgeDir[1] );
|
|
else
|
|
_leOnV[ 1 ]._normal = getNormalNormal( leOnV[1]->_normal, _edgeDir[1] );
|
|
_leOnV[ 0 ]._len = 0;
|
|
_leOnV[ 1 ]._len = 0;
|
|
_leOnV[ 0 ]._lenFactor = _offPoints[1 ]._2edges._edges[1]->_lenFactor;
|
|
_leOnV[ 1 ]._lenFactor = _offPoints[iLBO]._2edges._edges[0]->_lenFactor;
|
|
|
|
_iSeg[0] = 0;
|
|
_iSeg[1] = _offPoints.size()-2;
|
|
|
|
// initialize OffPnt::_len
|
|
for ( size_t i = 0; i < _offPoints.size(); ++i )
|
|
_offPoints[i]._len = 0;
|
|
|
|
if ( _eos._edges[0]->NbSteps() > 1 ) // already inflated several times, init _xyz
|
|
{
|
|
_leOnV[0]._len = leOnV[0]->_len;
|
|
_leOnV[1]._len = leOnV[1]->_len;
|
|
for ( size_t i = 0; i < _offPoints.size(); i++ )
|
|
{
|
|
_LayerEdge* e0 = _offPoints[i]._2edges._edges[0];
|
|
_LayerEdge* e1 = _offPoints[i]._2edges._edges[1];
|
|
const double w0 = _offPoints[i]._2edges._wgt[0];
|
|
const double w1 = _offPoints[i]._2edges._wgt[1];
|
|
double avgLen = ( e0->_len * w0 + e1->_len * w1 );
|
|
gp_XYZ avgXYZ = ( SMESH_TNodeXYZ( e0->_nodes.back() ) * w0 +
|
|
SMESH_TNodeXYZ( e1->_nodes.back() ) * w1 );
|
|
_offPoints[i]._xyz = avgXYZ;
|
|
_offPoints[i]._len = avgLen;
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief return _normal of _leOnV[is2nd] normal to the EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _Smoother1D::getNormalNormal( const gp_XYZ & normal,
|
|
const gp_XYZ& edgeDir)
|
|
{
|
|
gp_XYZ cross = normal ^ edgeDir;
|
|
gp_XYZ norm = edgeDir ^ cross;
|
|
double size = norm.Modulus();
|
|
|
|
// if ( size == 0 ) // MULTI_NORMAL _LayerEdge
|
|
// return gp_XYZ( 1e-100, 1e-100, 1e-100 );
|
|
|
|
return norm / size;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Writes a script creating a mesh composed of _offPoints
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Smoother1D::offPointsToPython() const
|
|
{
|
|
const char* fname = "/tmp/offPoints.py";
|
|
cout << "exec(open('"<<fname<<"','rb').read() )"<<endl;
|
|
ofstream py(fname);
|
|
py << "import SMESH" << endl
|
|
<< "from salome.smesh import smeshBuilder" << endl
|
|
<< "smesh = smeshBuilder.New(salome.myStudy)" << endl
|
|
<< "mesh = smesh.Mesh( 'offPoints' )"<<endl;
|
|
for ( size_t i = 0; i < _offPoints.size(); i++ )
|
|
{
|
|
py << "mesh.AddNode( "
|
|
<< _offPoints[i]._xyz.X() << ", "
|
|
<< _offPoints[i]._xyz.Y() << ", "
|
|
<< _offPoints[i]._xyz.Z() << " )" << endl;
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Sort _LayerEdge's by a parameter on a given EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SolidData::SortOnEdge( const TopoDS_Edge& E,
|
|
vector< _LayerEdge* >& edges)
|
|
{
|
|
map< double, _LayerEdge* > u2edge;
|
|
for ( size_t i = 0; i < edges.size(); ++i )
|
|
u2edge.insert( u2edge.end(),
|
|
make_pair( _helper->GetNodeU( E, edges[i]->_nodes[0] ), edges[i] ));
|
|
|
|
ASSERT( u2edge.size() == edges.size() );
|
|
map< double, _LayerEdge* >::iterator u2e = u2edge.begin();
|
|
for ( size_t i = 0; i < edges.size(); ++i, ++u2e )
|
|
edges[i] = u2e->second;
|
|
|
|
Sort2NeiborsOnEdge( edges );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set _2neibors according to the order of _LayerEdge on EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SolidData::Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges )
|
|
{
|
|
if ( edges.size() < 2 || !edges[0]->_2neibors ) return;
|
|
|
|
for ( size_t i = 0; i < edges.size()-1; ++i )
|
|
if ( edges[i]->_2neibors->tgtNode(1) != edges[i+1]->_nodes.back() )
|
|
edges[i]->_2neibors->reverse();
|
|
|
|
const size_t iLast = edges.size() - 1;
|
|
if ( edges.size() > 1 &&
|
|
edges[iLast]->_2neibors->tgtNode(0) != edges[iLast-1]->_nodes.back() )
|
|
edges[iLast]->_2neibors->reverse();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return _EdgesOnShape* corresponding to the shape
|
|
*/
|
|
//================================================================================
|
|
|
|
_EdgesOnShape* _SolidData::GetShapeEdges(const TGeomID shapeID )
|
|
{
|
|
if ( shapeID < (int)_edgesOnShape.size() &&
|
|
_edgesOnShape[ shapeID ]._shapeID == shapeID )
|
|
return _edgesOnShape[ shapeID ]._subMesh ? & _edgesOnShape[ shapeID ] : 0;
|
|
|
|
for ( size_t i = 0; i < _edgesOnShape.size(); ++i )
|
|
if ( _edgesOnShape[i]._shapeID == shapeID )
|
|
return _edgesOnShape[i]._subMesh ? & _edgesOnShape[i] : 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return _EdgesOnShape* corresponding to the shape
|
|
*/
|
|
//================================================================================
|
|
|
|
_EdgesOnShape* _SolidData::GetShapeEdges(const TopoDS_Shape& shape )
|
|
{
|
|
SMESHDS_Mesh* meshDS = _proxyMesh->GetMesh()->GetMeshDS();
|
|
return GetShapeEdges( meshDS->ShapeToIndex( shape ));
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Prepare data of the _LayerEdge for smoothing on FACE
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SolidData::PrepareEdgesToSmoothOnFace( _EdgesOnShape* eos, bool substituteSrcNodes )
|
|
{
|
|
SMESH_MesherHelper helper( *_proxyMesh->GetMesh() );
|
|
|
|
set< TGeomID > vertices;
|
|
TopoDS_Face F;
|
|
if ( eos->ShapeType() == TopAbs_FACE )
|
|
{
|
|
// check FACE concavity and get concave VERTEXes
|
|
F = TopoDS::Face( eos->_shape );
|
|
if ( isConcave( F, helper, &vertices ))
|
|
_concaveFaces.insert( eos->_shapeID );
|
|
|
|
// set eos._eosConcaVer
|
|
eos->_eosConcaVer.clear();
|
|
eos->_eosConcaVer.reserve( vertices.size() );
|
|
for ( set< TGeomID >::iterator v = vertices.begin(); v != vertices.end(); ++v )
|
|
{
|
|
_EdgesOnShape* eov = GetShapeEdges( *v );
|
|
if ( eov && eov->_edges.size() == 1 )
|
|
{
|
|
eos->_eosConcaVer.push_back( eov );
|
|
for ( size_t i = 0; i < eov->_edges[0]->_neibors.size(); ++i )
|
|
eov->_edges[0]->_neibors[i]->Set( _LayerEdge::DIFFICULT );
|
|
}
|
|
}
|
|
|
|
// SetSmooLen() to _LayerEdge's on FACE
|
|
// for ( size_t i = 0; i < eos->_edges.size(); ++i )
|
|
// {
|
|
// eos->_edges[i]->SetSmooLen( Precision::Infinite() );
|
|
// }
|
|
// SMESH_subMeshIteratorPtr smIt = eos->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
|
|
// while ( smIt->more() ) // loop on sub-shapes of the FACE
|
|
// {
|
|
// _EdgesOnShape* eoe = GetShapeEdges( smIt->next()->GetId() );
|
|
// if ( !eoe ) continue;
|
|
|
|
// vector<_LayerEdge*>& eE = eoe->_edges;
|
|
// for ( size_t iE = 0; iE < eE.size(); ++iE ) // loop on _LayerEdge's on EDGE or VERTEX
|
|
// {
|
|
// if ( eE[iE]->_cosin <= theMinSmoothCosin )
|
|
// continue;
|
|
|
|
// SMDS_ElemIteratorPtr segIt = eE[iE]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
|
|
// while ( segIt->more() )
|
|
// {
|
|
// const SMDS_MeshElement* seg = segIt->next();
|
|
// if ( !eos->_subMesh->DependsOn( seg->getshapeId() ))
|
|
// continue;
|
|
// if ( seg->GetNode(0) != eE[iE]->_nodes[0] )
|
|
// continue; // not to check a seg twice
|
|
// for ( size_t iN = 0; iN < eE[iE]->_neibors.size(); ++iN )
|
|
// {
|
|
// _LayerEdge* eN = eE[iE]->_neibors[iN];
|
|
// if ( eN->_nodes[0]->getshapeId() != eos->_shapeID )
|
|
// continue;
|
|
// double dist = SMESH_MeshAlgos::GetDistance( seg, SMESH_TNodeXYZ( eN->_nodes[0] ));
|
|
// double smooLen = getSmoothingThickness( eE[iE]->_cosin, dist );
|
|
// eN->SetSmooLen( Min( smooLen, eN->GetSmooLen() ));
|
|
// eN->Set( _LayerEdge::NEAR_BOUNDARY );
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
} // if ( eos->ShapeType() == TopAbs_FACE )
|
|
|
|
for ( size_t i = 0; i < eos->_edges.size(); ++i )
|
|
{
|
|
eos->_edges[i]->_smooFunction = 0;
|
|
eos->_edges[i]->Set( _LayerEdge::TO_SMOOTH );
|
|
}
|
|
bool isCurved = false;
|
|
for ( size_t i = 0; i < eos->_edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos->_edges[i];
|
|
|
|
// get simplices sorted
|
|
_Simplex::SortSimplices( edge->_simplices );
|
|
|
|
// smoothing function
|
|
edge->ChooseSmooFunction( vertices, _n2eMap );
|
|
|
|
// set _curvature
|
|
double avgNormProj = 0, avgLen = 0;
|
|
for ( size_t iS = 0; iS < edge->_simplices.size(); ++iS )
|
|
{
|
|
_Simplex& s = edge->_simplices[iS];
|
|
|
|
gp_XYZ vec = edge->_pos.back() - SMESH_TNodeXYZ( s._nPrev );
|
|
avgNormProj += edge->_normal * vec;
|
|
avgLen += vec.Modulus();
|
|
if ( substituteSrcNodes )
|
|
{
|
|
s._nNext = _n2eMap[ s._nNext ]->_nodes.back();
|
|
s._nPrev = _n2eMap[ s._nPrev ]->_nodes.back();
|
|
}
|
|
}
|
|
avgNormProj /= edge->_simplices.size();
|
|
avgLen /= edge->_simplices.size();
|
|
if (( edge->_curvature = _Curvature::New( avgNormProj, avgLen )))
|
|
{
|
|
edge->Set( _LayerEdge::SMOOTHED_C1 );
|
|
isCurved = true;
|
|
SMDS_FacePositionPtr fPos = edge->_nodes[0]->GetPosition();
|
|
if ( !fPos )
|
|
for ( size_t iS = 0; iS < edge->_simplices.size() && !fPos; ++iS )
|
|
fPos = edge->_simplices[iS]._nPrev->GetPosition();
|
|
if ( fPos )
|
|
edge->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() );
|
|
}
|
|
}
|
|
|
|
// prepare for putOnOffsetSurface()
|
|
if (( eos->ShapeType() == TopAbs_FACE ) &&
|
|
( isCurved || !eos->_eosConcaVer.empty() ))
|
|
{
|
|
eos->_offsetSurf = helper.GetSurface( TopoDS::Face( eos->_shape ));
|
|
eos->_edgeForOffset = 0;
|
|
|
|
double maxCosin = -1;
|
|
for ( TopExp_Explorer eExp( eos->_shape, TopAbs_EDGE ); eExp.More(); eExp.Next() )
|
|
{
|
|
_EdgesOnShape* eoe = GetShapeEdges( eExp.Current() );
|
|
if ( !eoe || eoe->_edges.empty() ) continue;
|
|
|
|
vector<_LayerEdge*>& eE = eoe->_edges;
|
|
_LayerEdge* e = eE[ eE.size() / 2 ];
|
|
if ( e->_cosin > maxCosin )
|
|
{
|
|
eos->_edgeForOffset = e;
|
|
maxCosin = e->_cosin;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Add faces for smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SolidData::AddShapesToSmooth( const set< _EdgesOnShape* >& eosToSmooth,
|
|
const set< _EdgesOnShape* >* edgesNoAnaSmooth )
|
|
{
|
|
set< _EdgesOnShape * >::const_iterator eos = eosToSmooth.begin();
|
|
for ( ; eos != eosToSmooth.end(); ++eos )
|
|
{
|
|
if ( !*eos || (*eos)->_toSmooth ) continue;
|
|
|
|
(*eos)->_toSmooth = true;
|
|
|
|
if ( (*eos)->ShapeType() == TopAbs_FACE )
|
|
{
|
|
PrepareEdgesToSmoothOnFace( *eos, /*substituteSrcNodes=*/false );
|
|
(*eos)->_toSmooth = true;
|
|
}
|
|
}
|
|
|
|
// avoid _Smoother1D::smoothAnalyticEdge() of edgesNoAnaSmooth
|
|
if ( edgesNoAnaSmooth )
|
|
for ( eos = edgesNoAnaSmooth->begin(); eos != edgesNoAnaSmooth->end(); ++eos )
|
|
{
|
|
if ( (*eos)->_edgeSmoother )
|
|
(*eos)->_edgeSmoother->_anaCurve.Nullify();
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Limit _LayerEdge::_maxLen according to local curvature
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper )
|
|
{
|
|
// find intersection of neighbor _LayerEdge's to limit _maxLen
|
|
// according to local curvature (IPAL52648)
|
|
|
|
// This method must be called after findCollisionEdges() where _LayerEdge's
|
|
// get _lenFactor initialized in the case of eos._hyp.IsOffsetMethod()
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eosI = data._edgesOnShape[iS];
|
|
if ( eosI._edges.empty() ) continue;
|
|
if ( !eosI._hyp.ToSmooth() )
|
|
{
|
|
for ( size_t i = 0; i < eosI._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* eI = eosI._edges[i];
|
|
for ( size_t iN = 0; iN < eI->_neibors.size(); ++iN )
|
|
{
|
|
_LayerEdge* eN = eI->_neibors[iN];
|
|
if ( eI->_nodes[0]->GetID() < eN->_nodes[0]->GetID() ) // treat this pair once
|
|
{
|
|
_EdgesOnShape* eosN = data.GetShapeEdges( eN );
|
|
limitMaxLenByCurvature( eI, eN, eosI, *eosN, eosI._hyp.ToSmooth() );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if ( eosI.ShapeType() == TopAbs_EDGE )
|
|
{
|
|
const TopoDS_Edge& E = TopoDS::Edge( eosI._shape );
|
|
if ( SMESH_Algo::IsStraight( E, /*degenResult=*/true )) continue;
|
|
|
|
_LayerEdge* e0 = eosI._edges[0];
|
|
for ( size_t i = 1; i < eosI._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* eI = eosI._edges[i];
|
|
limitMaxLenByCurvature( eI, e0, eosI, eosI, eosI._hyp.ToSmooth() );
|
|
e0 = eI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Limit _LayerEdge::_maxLen according to local curvature
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::limitMaxLenByCurvature( _LayerEdge* e1,
|
|
_LayerEdge* e2,
|
|
_EdgesOnShape& eos1,
|
|
_EdgesOnShape& eos2,
|
|
const bool isSmoothable )
|
|
{
|
|
if (( e1->_nodes[0]->GetPosition()->GetDim() !=
|
|
e2->_nodes[0]->GetPosition()->GetDim() ) &&
|
|
( e1->_cosin < 0.75 ))
|
|
return; // angle > 90 deg at e1
|
|
|
|
gp_XYZ plnNorm = e1->_normal ^ e2->_normal;
|
|
double norSize = plnNorm.SquareModulus();
|
|
if ( norSize < std::numeric_limits<double>::min() )
|
|
return; // parallel normals
|
|
|
|
// find closest points of skew _LayerEdge's
|
|
SMESH_TNodeXYZ src1( e1->_nodes[0] ), src2( e2->_nodes[0] );
|
|
gp_XYZ dir12 = src2 - src1;
|
|
gp_XYZ perp1 = e1->_normal ^ plnNorm;
|
|
gp_XYZ perp2 = e2->_normal ^ plnNorm;
|
|
double dot1 = perp2 * e1->_normal;
|
|
double dot2 = perp1 * e2->_normal;
|
|
double u1 = ( perp2 * dir12 ) / dot1;
|
|
double u2 = - ( perp1 * dir12 ) / dot2;
|
|
if ( u1 > 0 && u2 > 0 )
|
|
{
|
|
double ovl = ( u1 * e1->_normal * dir12 -
|
|
u2 * e2->_normal * dir12 ) / dir12.SquareModulus();
|
|
if ( ovl > theSmoothThickToElemSizeRatio )
|
|
{
|
|
const double coef = 0.75;
|
|
e1->SetMaxLen( Min( e1->_maxLen, coef * u1 / e1->_lenFactor ));
|
|
e2->SetMaxLen( Min( e2->_maxLen, coef * u2 / e2->_lenFactor ));
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Fill data._collisionEdges
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper )
|
|
{
|
|
data._collisionEdges.clear();
|
|
|
|
// set the full thickness of the layers to LEs
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
if ( eos._edges.empty() ) continue;
|
|
if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue;
|
|
if ( !eos._sWOL.IsNull() ) continue; // PAL23566
|
|
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
|
|
double maxLen = eos._edges[i]->_maxLen;
|
|
eos._edges[i]->_maxLen = Precision::Infinite(); // avoid blocking
|
|
eos._edges[i]->SetNewLength( 1.5 * maxLen, eos, helper );
|
|
eos._edges[i]->_maxLen = maxLen;
|
|
}
|
|
}
|
|
|
|
// make temporary quadrangles got by extrusion of
|
|
// mesh edges along _LayerEdge._normal's
|
|
|
|
vector< const SMDS_MeshElement* > tmpFaces;
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( eos.ShapeType() != TopAbs_EDGE )
|
|
continue;
|
|
if ( eos._edges.empty() )
|
|
{
|
|
_LayerEdge* edge[2] = { 0, 0 }; // LE of 2 VERTEX'es
|
|
SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false);
|
|
while ( smIt->more() )
|
|
if ( _EdgesOnShape* eov = data.GetShapeEdges( smIt->next()->GetId() ))
|
|
if ( eov->_edges.size() == 1 )
|
|
edge[ bool( edge[0]) ] = eov->_edges[0];
|
|
|
|
if ( edge[1] )
|
|
{
|
|
_TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge[0], edge[1], --_tmpFaceID );
|
|
tmpFaces.push_back( f );
|
|
}
|
|
}
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos._edges[i];
|
|
for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges
|
|
{
|
|
const SMDS_MeshNode* src2 = edge->_2neibors->srcNode(j);
|
|
if ( src2->GetPosition()->GetDim() > 0 &&
|
|
src2->GetID() < edge->_nodes[0]->GetID() )
|
|
continue; // avoid using same segment twice
|
|
|
|
// a _LayerEdge containing tgt2
|
|
_LayerEdge* neiborEdge = edge->_2neibors->_edges[j];
|
|
|
|
_TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID );
|
|
tmpFaces.push_back( f );
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find _LayerEdge's intersecting tmpFaces.
|
|
|
|
SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(),
|
|
tmpFaces.end()));
|
|
SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
|
|
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt ));
|
|
|
|
double dist1, dist2, segLen, eps = 0.5;
|
|
_CollisionEdges collEdges;
|
|
vector< const SMDS_MeshElement* > suspectFaces;
|
|
const double angle45 = Cos( 45. * M_PI / 180. );
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( eos.ShapeType() == TopAbs_FACE || !eos._sWOL.IsNull() )
|
|
continue;
|
|
// find sub-shapes whose VL can influence VL on eos
|
|
set< TGeomID > neighborShapes;
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* face = fIt->next() )
|
|
{
|
|
TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
|
|
if ( _EdgesOnShape* eof = data.GetShapeEdges( faceID ))
|
|
{
|
|
SMESH_subMeshIteratorPtr subIt = eof->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
|
|
while ( subIt->more() )
|
|
neighborShapes.insert( subIt->next()->GetId() );
|
|
}
|
|
}
|
|
if ( eos.ShapeType() == TopAbs_VERTEX )
|
|
{
|
|
PShapeIteratorPtr eIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_EDGE );
|
|
while ( const TopoDS_Shape* edge = eIt->next() )
|
|
neighborShapes.erase( getMeshDS()->ShapeToIndex( *edge ));
|
|
}
|
|
// find intersecting _LayerEdge's
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
if ( eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL )) continue;
|
|
_LayerEdge* edge = eos._edges[i];
|
|
gp_Ax1 lastSegment = edge->LastSegment( segLen, eos );
|
|
segLen *= 1.2;
|
|
|
|
gp_Vec eSegDir0, eSegDir1;
|
|
if ( edge->IsOnEdge() )
|
|
{
|
|
SMESH_TNodeXYZ eP( edge->_nodes[0] );
|
|
eSegDir0 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(0) ) - eP;
|
|
eSegDir1 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(1) ) - eP;
|
|
}
|
|
suspectFaces.clear();
|
|
searcher->GetElementsInSphere( SMESH_TNodeXYZ( edge->_nodes.back()), edge->_len * 2,
|
|
SMDSAbs_Face, suspectFaces );
|
|
collEdges._intEdges.clear();
|
|
for ( size_t j = 0 ; j < suspectFaces.size(); ++j )
|
|
{
|
|
const _TmpMeshFaceOnEdge* f = (const _TmpMeshFaceOnEdge*) suspectFaces[j];
|
|
if ( f->_le1 == edge || f->_le2 == edge ) continue;
|
|
if ( !neighborShapes.count( f->_le1->_nodes[0]->getshapeId() )) continue;
|
|
if ( !neighborShapes.count( f->_le2->_nodes[0]->getshapeId() )) continue;
|
|
if ( edge->IsOnEdge() ) {
|
|
if ( edge->_2neibors->include( f->_le1 ) ||
|
|
edge->_2neibors->include( f->_le2 )) continue;
|
|
}
|
|
else {
|
|
if (( f->_le1->IsOnEdge() && f->_le1->_2neibors->include( edge )) ||
|
|
( f->_le2->IsOnEdge() && f->_le2->_2neibors->include( edge ))) continue;
|
|
}
|
|
dist1 = dist2 = Precision::Infinite();
|
|
if ( !edge->SegTriaInter( lastSegment, f->n(0), f->n(1), f->n(2), dist1, eps ))
|
|
dist1 = Precision::Infinite();
|
|
if ( !edge->SegTriaInter( lastSegment, f->n(3), f->n(2), f->n(0), dist2, eps ))
|
|
dist2 = Precision::Infinite();
|
|
if (( dist1 > segLen ) && ( dist2 > segLen ))
|
|
continue;
|
|
|
|
if ( edge->IsOnEdge() )
|
|
{
|
|
// skip perpendicular EDGEs
|
|
gp_Vec fSegDir = SMESH_TNodeXYZ( f->n(0) ) - SMESH_TNodeXYZ( f->n(3) );
|
|
bool isParallel = ( isLessAngle( eSegDir0, fSegDir, angle45 ) ||
|
|
isLessAngle( eSegDir1, fSegDir, angle45 ) ||
|
|
isLessAngle( eSegDir0, fSegDir.Reversed(), angle45 ) ||
|
|
isLessAngle( eSegDir1, fSegDir.Reversed(), angle45 ));
|
|
if ( !isParallel )
|
|
continue;
|
|
}
|
|
|
|
// either limit inflation of edges or remember them for updating _normal
|
|
// double dot = edge->_normal * f->GetDir();
|
|
// if ( dot > 0.1 )
|
|
{
|
|
collEdges._intEdges.push_back( f->_le1 );
|
|
collEdges._intEdges.push_back( f->_le2 );
|
|
}
|
|
// else
|
|
// {
|
|
// double shortLen = 0.75 * ( Min( dist1, dist2 ) / edge->_lenFactor );
|
|
// edge->SetMaxLen( Min( shortLen, edge->_maxLen ));
|
|
// }
|
|
}
|
|
|
|
if ( !collEdges._intEdges.empty() )
|
|
{
|
|
collEdges._edge = edge;
|
|
data._collisionEdges.push_back( collEdges );
|
|
}
|
|
}
|
|
}
|
|
|
|
for ( size_t i = 0 ; i < tmpFaces.size(); ++i )
|
|
delete tmpFaces[i];
|
|
|
|
// restore the zero thickness
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
if ( eos._edges.empty() ) continue;
|
|
if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue;
|
|
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
eos._edges[i]->InvalidateStep( 1, eos );
|
|
eos._edges[i]->_len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Find _LayerEdge's located on boundary of a convex FACE whose normal
|
|
* will be updated at each inflation step
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace,
|
|
_SolidData& data,
|
|
SMESH_MesherHelper& helper )
|
|
{
|
|
const TGeomID convFaceID = getMeshDS()->ShapeToIndex( convFace._face );
|
|
const double preci = BRep_Tool::Tolerance( convFace._face );
|
|
Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( convFace._face );
|
|
|
|
bool edgesToUpdateFound = false;
|
|
|
|
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin();
|
|
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
|
|
{
|
|
_EdgesOnShape& eos = * id2eos->second;
|
|
if ( !eos._sWOL.IsNull() ) continue;
|
|
if ( !eos._hyp.ToSmooth() ) continue;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* ledge = eos._edges[ i ];
|
|
if ( ledge->Is( _LayerEdge::UPD_NORMAL_CONV )) continue; // already checked
|
|
if ( ledge->Is( _LayerEdge::MULTI_NORMAL )) continue; // not inflatable
|
|
|
|
gp_XYZ tgtPos = ( SMESH_NodeXYZ( ledge->_nodes[0] ) +
|
|
ledge->_normal * ledge->_lenFactor * ledge->_maxLen );
|
|
|
|
// the normal must be updated if distance from tgtPos to surface is less than
|
|
// target thickness
|
|
|
|
// find an initial UV for search of a projection of tgtPos to surface
|
|
const SMDS_MeshNode* nodeInFace = 0;
|
|
SMDS_ElemIteratorPtr fIt = ledge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() && !nodeInFace )
|
|
{
|
|
const SMDS_MeshElement* f = fIt->next();
|
|
if ( convFaceID != f->getshapeId() ) continue;
|
|
|
|
SMDS_ElemIteratorPtr nIt = f->nodesIterator();
|
|
while ( nIt->more() && !nodeInFace )
|
|
{
|
|
const SMDS_MeshElement* n = nIt->next();
|
|
if ( n->getshapeId() == convFaceID )
|
|
nodeInFace = static_cast< const SMDS_MeshNode* >( n );
|
|
}
|
|
}
|
|
if ( !nodeInFace )
|
|
continue;
|
|
gp_XY uv = helper.GetNodeUV( convFace._face, nodeInFace );
|
|
|
|
// projection
|
|
surface->NextValueOfUV( uv, tgtPos, preci );
|
|
double dist = surface->Gap();
|
|
if ( dist < 0.95 * ledge->_maxLen )
|
|
{
|
|
ledge->Set( _LayerEdge::UPD_NORMAL_CONV );
|
|
if ( !ledge->_curvature ) ledge->_curvature = _Factory::NewCurvature();
|
|
ledge->_curvature->_uv.SetCoord( uv.X(), uv.Y() );
|
|
edgesToUpdateFound = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( !convFace._isTooCurved && edgesToUpdateFound )
|
|
{
|
|
data._convexFaces.insert( make_pair( convFaceID, convFace )).first->second;
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with
|
|
* _LayerEdge's on neighbor EDGE's
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::updateNormals( _SolidData& data,
|
|
SMESH_MesherHelper& helper,
|
|
int stepNb,
|
|
double stepSize)
|
|
{
|
|
updateNormalsOfC1Vertices( data );
|
|
|
|
if ( stepNb > 0 && !updateNormalsOfConvexFaces( data, helper, stepNb ))
|
|
return false;
|
|
|
|
// map to store new _normal and _cosin for each intersected edge
|
|
map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp > edge2newEdge;
|
|
map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp >::iterator e2neIt;
|
|
_LayerEdge zeroEdge;
|
|
zeroEdge._normal.SetCoord( 0,0,0 );
|
|
zeroEdge._maxLen = Precision::Infinite();
|
|
zeroEdge._nodes.resize(1); // to init _TmpMeshFaceOnEdge
|
|
|
|
set< _EdgesOnShape* > shapesToSmooth, edgesNoAnaSmooth;
|
|
|
|
double segLen, dist1, dist2, dist;
|
|
vector< pair< _LayerEdge*, double > > intEdgesDist;
|
|
_TmpMeshFaceOnEdge quad( &zeroEdge, &zeroEdge, 0 );
|
|
|
|
for ( int iter = 0; iter < 5; ++iter )
|
|
{
|
|
edge2newEdge.clear();
|
|
|
|
for ( size_t iE = 0; iE < data._collisionEdges.size(); ++iE )
|
|
{
|
|
_CollisionEdges& ce = data._collisionEdges[iE];
|
|
_LayerEdge* edge1 = ce._edge;
|
|
if ( !edge1 /*|| edge1->Is( _LayerEdge::BLOCKED )*/) continue;
|
|
_EdgesOnShape* eos1 = data.GetShapeEdges( edge1 );
|
|
if ( !eos1 ) continue;
|
|
|
|
// detect intersections
|
|
gp_Ax1 lastSeg = edge1->LastSegment( segLen, *eos1 );
|
|
double testLen = 1.5 * edge1->_maxLen * edge1->_lenFactor;
|
|
double eps = 0.5;
|
|
intEdgesDist.clear();
|
|
double minIntDist = Precision::Infinite();
|
|
for ( size_t i = 0; i < ce._intEdges.size(); i += 2 )
|
|
{
|
|
if ( edge1->Is( _LayerEdge::BLOCKED ) &&
|
|
ce._intEdges[i ]->Is( _LayerEdge::BLOCKED ) &&
|
|
ce._intEdges[i+1]->Is( _LayerEdge::BLOCKED ))
|
|
continue;
|
|
double dot = edge1->_normal * quad.GetDir( ce._intEdges[i], ce._intEdges[i+1] );
|
|
double fact = ( 1.1 + dot * dot );
|
|
SMESH_TNodeXYZ pSrc0( ce.nSrc(i) ), pSrc1( ce.nSrc(i+1) );
|
|
SMESH_TNodeXYZ pTgt0( ce.nTgt(i) ), pTgt1( ce.nTgt(i+1) );
|
|
gp_XYZ pLast0 = pSrc0 + ( pTgt0 - pSrc0 ) * fact;
|
|
gp_XYZ pLast1 = pSrc1 + ( pTgt1 - pSrc1 ) * fact;
|
|
dist1 = dist2 = Precision::Infinite();
|
|
if ( !edge1->SegTriaInter( lastSeg, pSrc0, pLast0, pSrc1, dist1, eps ) &&
|
|
!edge1->SegTriaInter( lastSeg, pSrc1, pLast1, pLast0, dist2, eps ))
|
|
continue;
|
|
dist = dist1;
|
|
if ( dist > testLen || dist <= 0 )
|
|
{
|
|
dist = dist2;
|
|
if ( dist > testLen || dist <= 0 )
|
|
continue;
|
|
}
|
|
// choose a closest edge
|
|
gp_Pnt intP( lastSeg.Location().XYZ() + lastSeg.Direction().XYZ() * ( dist + segLen ));
|
|
double d1 = intP.SquareDistance( pSrc0 );
|
|
double d2 = intP.SquareDistance( pSrc1 );
|
|
int iClose = i + ( d2 < d1 );
|
|
_LayerEdge* edge2 = ce._intEdges[iClose];
|
|
edge2->Unset( _LayerEdge::MARKED );
|
|
|
|
// choose a closest edge among neighbors
|
|
gp_Pnt srcP( SMESH_TNodeXYZ( edge1->_nodes[0] ));
|
|
d1 = srcP.SquareDistance( SMESH_TNodeXYZ( edge2->_nodes[0] ));
|
|
for ( size_t j = 0; j < intEdgesDist.size(); ++j )
|
|
{
|
|
_LayerEdge * edgeJ = intEdgesDist[j].first;
|
|
if ( edge2->IsNeiborOnEdge( edgeJ ))
|
|
{
|
|
d2 = srcP.SquareDistance( SMESH_TNodeXYZ( edgeJ->_nodes[0] ));
|
|
( d1 < d2 ? edgeJ : edge2 )->Set( _LayerEdge::MARKED );
|
|
}
|
|
}
|
|
intEdgesDist.push_back( make_pair( edge2, dist ));
|
|
// if ( Abs( d2 - d1 ) / Max( d2, d1 ) < 0.5 )
|
|
// {
|
|
// iClose = i + !( d2 < d1 );
|
|
// intEdges.push_back( ce._intEdges[iClose] );
|
|
// ce._intEdges[iClose]->Unset( _LayerEdge::MARKED );
|
|
// }
|
|
minIntDist = Min( edge1->_len * edge1->_lenFactor - segLen + dist, minIntDist );
|
|
}
|
|
|
|
//ce._edge = 0;
|
|
|
|
// compute new _normals
|
|
for ( size_t i = 0; i < intEdgesDist.size(); ++i )
|
|
{
|
|
_LayerEdge* edge2 = intEdgesDist[i].first;
|
|
double distWgt = edge1->_len / intEdgesDist[i].second;
|
|
// if ( edge1->Is( _LayerEdge::BLOCKED ) &&
|
|
// edge2->Is( _LayerEdge::BLOCKED )) continue;
|
|
if ( edge2->Is( _LayerEdge::MARKED )) continue;
|
|
edge2->Set( _LayerEdge::MARKED );
|
|
|
|
// get a new normal
|
|
gp_XYZ dir1 = edge1->_normal, dir2 = edge2->_normal;
|
|
|
|
double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin );
|
|
double wgt1 = ( cos1 + 0.001 ) / ( cos1 + cos2 + 0.002 );
|
|
double wgt2 = ( cos2 + 0.001 ) / ( cos1 + cos2 + 0.002 );
|
|
// double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin );
|
|
// double sgn1 = 0.1 * ( 1 + edge1->_cosin ), sgn2 = 0.1 * ( 1 + edge2->_cosin );
|
|
// double wgt1 = ( cos1 + sgn1 ) / ( cos1 + cos2 + sgn1 + sgn2 );
|
|
// double wgt2 = ( cos2 + sgn2 ) / ( cos1 + cos2 + sgn1 + sgn2 );
|
|
gp_XYZ newNormal = wgt1 * dir1 + wgt2 * dir2;
|
|
newNormal.Normalize();
|
|
|
|
// get new cosin
|
|
double newCos;
|
|
double sgn1 = edge1->_cosin / cos1, sgn2 = edge2->_cosin / cos2;
|
|
if ( cos1 < theMinSmoothCosin )
|
|
{
|
|
newCos = cos2 * sgn1;
|
|
}
|
|
else if ( cos2 > theMinSmoothCosin ) // both cos1 and cos2 > theMinSmoothCosin
|
|
{
|
|
newCos = ( wgt1 * cos1 + wgt2 * cos2 ) * edge1->_cosin / cos1;
|
|
}
|
|
else
|
|
{
|
|
newCos = edge1->_cosin;
|
|
}
|
|
|
|
e2neIt = edge2newEdge.insert( make_pair( edge1, zeroEdge )).first;
|
|
e2neIt->second._normal += distWgt * newNormal;
|
|
e2neIt->second._cosin = newCos;
|
|
e2neIt->second.SetMaxLen( 0.7 * minIntDist / edge1->_lenFactor );
|
|
if ( iter > 0 && sgn1 * sgn2 < 0 && edge1->_cosin < 0 )
|
|
e2neIt->second._normal += dir2;
|
|
|
|
e2neIt = edge2newEdge.insert( make_pair( edge2, zeroEdge )).first;
|
|
e2neIt->second._normal += distWgt * newNormal;
|
|
if ( Precision::IsInfinite( zeroEdge._maxLen ))
|
|
{
|
|
e2neIt->second._cosin = edge2->_cosin;
|
|
e2neIt->second.SetMaxLen( 1.3 * minIntDist / edge1->_lenFactor );
|
|
}
|
|
if ( iter > 0 && sgn1 * sgn2 < 0 && edge2->_cosin < 0 )
|
|
e2neIt->second._normal += dir1;
|
|
}
|
|
}
|
|
|
|
if ( edge2newEdge.empty() )
|
|
break; //return true;
|
|
|
|
dumpFunction(SMESH_Comment("updateNormals")<< data._index << "_" << stepNb << "_it" << iter);
|
|
|
|
// Update data of edges depending on a new _normal
|
|
|
|
data.UnmarkEdges();
|
|
for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt )
|
|
{
|
|
_LayerEdge* edge = e2neIt->first;
|
|
_LayerEdge& newEdge = e2neIt->second;
|
|
_EdgesOnShape* eos = data.GetShapeEdges( edge );
|
|
if ( edge->Is( _LayerEdge::BLOCKED && newEdge._maxLen > edge->_len ))
|
|
continue;
|
|
|
|
// Check if a new _normal is OK:
|
|
newEdge._normal.Normalize();
|
|
if ( !isNewNormalOk( data, *edge, newEdge._normal ))
|
|
{
|
|
if ( newEdge._maxLen < edge->_len && iter > 0 ) // limit _maxLen
|
|
{
|
|
edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
|
|
edge->SetMaxLen( newEdge._maxLen );
|
|
edge->SetNewLength( newEdge._maxLen, *eos, helper );
|
|
}
|
|
continue; // the new _normal is bad
|
|
}
|
|
// the new _normal is OK
|
|
|
|
// find shapes that need smoothing due to change of _normal
|
|
if ( edge->_cosin < theMinSmoothCosin &&
|
|
newEdge._cosin > theMinSmoothCosin )
|
|
{
|
|
if ( eos->_sWOL.IsNull() )
|
|
{
|
|
SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() )
|
|
shapesToSmooth.insert( data.GetShapeEdges( fIt->next()->getshapeId() ));
|
|
}
|
|
else // edge inflates along a FACE
|
|
{
|
|
TopoDS_Shape V = helper.GetSubShapeByNode( edge->_nodes[0], getMeshDS() );
|
|
PShapeIteratorPtr eIt = helper.GetAncestors( V, *_mesh, TopAbs_EDGE, &eos->_sWOL );
|
|
while ( const TopoDS_Shape* E = eIt->next() )
|
|
{
|
|
gp_Vec edgeDir = getEdgeDir( TopoDS::Edge( *E ), TopoDS::Vertex( V ));
|
|
double angle = edgeDir.Angle( newEdge._normal ); // [0,PI]
|
|
if ( angle < M_PI / 2 )
|
|
shapesToSmooth.insert( data.GetShapeEdges( *E ));
|
|
}
|
|
}
|
|
}
|
|
|
|
double len = edge->_len;
|
|
edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
|
|
edge->SetNormal( newEdge._normal );
|
|
edge->SetCosin( newEdge._cosin );
|
|
edge->SetNewLength( len, *eos, helper );
|
|
edge->Set( _LayerEdge::MARKED );
|
|
edge->Set( _LayerEdge::NORMAL_UPDATED );
|
|
edgesNoAnaSmooth.insert( eos );
|
|
}
|
|
|
|
// Update normals and other dependent data of not intersecting _LayerEdge's
|
|
// neighboring the intersecting ones
|
|
|
|
for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt )
|
|
{
|
|
_LayerEdge* edge1 = e2neIt->first;
|
|
_EdgesOnShape* eos1 = data.GetShapeEdges( edge1 );
|
|
if ( !edge1->Is( _LayerEdge::MARKED ))
|
|
continue;
|
|
|
|
if ( edge1->IsOnEdge() )
|
|
{
|
|
const SMDS_MeshNode * n1 = edge1->_2neibors->srcNode(0);
|
|
const SMDS_MeshNode * n2 = edge1->_2neibors->srcNode(1);
|
|
edge1->SetDataByNeighbors( n1, n2, *eos1, helper );
|
|
}
|
|
|
|
if ( !edge1->_2neibors || !eos1->_sWOL.IsNull() )
|
|
continue;
|
|
for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors
|
|
{
|
|
_LayerEdge* neighbor = edge1->_2neibors->_edges[j];
|
|
if ( neighbor->Is( _LayerEdge::MARKED ) /*edge2newEdge.count ( neighbor )*/)
|
|
continue; // j-th neighbor is also intersected
|
|
_LayerEdge* prevEdge = edge1;
|
|
const int nbSteps = 10;
|
|
for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction
|
|
{
|
|
if ( neighbor->Is( _LayerEdge::BLOCKED ) ||
|
|
neighbor->Is( _LayerEdge::MARKED ))
|
|
break;
|
|
_EdgesOnShape* eos = data.GetShapeEdges( neighbor );
|
|
if ( !eos ) continue;
|
|
_LayerEdge* nextEdge = neighbor;
|
|
if ( neighbor->_2neibors )
|
|
{
|
|
int iNext = 0;
|
|
nextEdge = neighbor->_2neibors->_edges[iNext];
|
|
if ( nextEdge == prevEdge )
|
|
nextEdge = neighbor->_2neibors->_edges[ ++iNext ];
|
|
}
|
|
double r = double(step-1)/nbSteps/(iter+1);
|
|
if ( !nextEdge->_2neibors )
|
|
r = Min( r, 0.5 );
|
|
|
|
gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r);
|
|
newNorm.Normalize();
|
|
if ( !isNewNormalOk( data, *neighbor, newNorm ))
|
|
break;
|
|
|
|
double len = neighbor->_len;
|
|
neighbor->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
|
|
neighbor->SetNormal( newNorm );
|
|
neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) );
|
|
if ( neighbor->_2neibors )
|
|
neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], *eos, helper );
|
|
neighbor->SetNewLength( len, *eos, helper );
|
|
neighbor->Set( _LayerEdge::MARKED );
|
|
neighbor->Set( _LayerEdge::NORMAL_UPDATED );
|
|
edgesNoAnaSmooth.insert( eos );
|
|
|
|
if ( !neighbor->_2neibors )
|
|
break; // neighbor is on VERTEX
|
|
|
|
// goto the next neighbor
|
|
prevEdge = neighbor;
|
|
neighbor = nextEdge;
|
|
}
|
|
}
|
|
}
|
|
dumpFunctionEnd();
|
|
} // iterations
|
|
|
|
data.AddShapesToSmooth( shapesToSmooth, &edgesNoAnaSmooth );
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Check if a new normal is OK
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::isNewNormalOk( _SolidData& data,
|
|
_LayerEdge& edge,
|
|
const gp_XYZ& newNormal)
|
|
{
|
|
// check a min angle between the newNormal and surrounding faces
|
|
vector<_Simplex> simplices;
|
|
SMESH_TNodeXYZ n0( edge._nodes[0] ), n1, n2;
|
|
_Simplex::GetSimplices( n0._node, simplices, data._ignoreFaceIds, &data );
|
|
double newMinDot = 1, curMinDot = 1;
|
|
for ( size_t i = 0; i < simplices.size(); ++i )
|
|
{
|
|
n1.Set( simplices[i]._nPrev );
|
|
n2.Set( simplices[i]._nNext );
|
|
gp_XYZ normFace = ( n1 - n0 ) ^ ( n2 - n0 );
|
|
double normLen2 = normFace.SquareModulus();
|
|
if ( normLen2 < std::numeric_limits<double>::min() )
|
|
continue;
|
|
normFace /= Sqrt( normLen2 );
|
|
newMinDot = Min( newNormal * normFace, newMinDot );
|
|
curMinDot = Min( edge._normal * normFace, curMinDot );
|
|
}
|
|
bool ok = true;
|
|
if ( newMinDot < 0.5 )
|
|
{
|
|
ok = ( newMinDot >= curMinDot * 0.9 );
|
|
//return ( newMinDot >= ( curMinDot * ( 0.8 + 0.1 * edge.NbSteps() )));
|
|
// double initMinDot2 = 1. - edge._cosin * edge._cosin;
|
|
// return ( newMinDot * newMinDot ) >= ( 0.8 * initMinDot2 );
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Modify normals of _LayerEdge's on FACE to reflex smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::updateNormalsOfSmoothed( _SolidData& data,
|
|
SMESH_MesherHelper& helper,
|
|
const int nbSteps,
|
|
const double stepSize )
|
|
{
|
|
if ( data._nbShapesToSmooth == 0 || nbSteps == 0 )
|
|
return true; // no shapes needing smoothing
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
|
|
if ( //!eos._toSmooth || _eosC1 have _toSmooth == false
|
|
!eos._hyp.ToSmooth() ||
|
|
eos.ShapeType() != TopAbs_FACE ||
|
|
eos._edges.empty() )
|
|
continue;
|
|
|
|
bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= nbSteps+1 );
|
|
if ( !toSmooth ) continue;
|
|
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = eos._edges[i];
|
|
if ( !edge->Is( _LayerEdge::SMOOTHED ))
|
|
continue;
|
|
if ( edge->Is( _LayerEdge::DIFFICULT ) && nbSteps != 1 )
|
|
continue;
|
|
|
|
const gp_XYZ& pPrev = edge->PrevPos();
|
|
const gp_XYZ& pLast = edge->_pos.back();
|
|
gp_XYZ stepVec = pLast - pPrev;
|
|
double realStepSize = stepVec.Modulus();
|
|
if ( realStepSize < numeric_limits<double>::min() )
|
|
continue;
|
|
|
|
edge->_lenFactor = realStepSize / stepSize;
|
|
edge->_normal = stepVec / realStepSize;
|
|
edge->Set( _LayerEdge::NORMAL_UPDATED );
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Modify normals of _LayerEdge's on C1 VERTEXes
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::updateNormalsOfC1Vertices( _SolidData& data )
|
|
{
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eov = data._edgesOnShape[ iS ];
|
|
if ( eov._eosC1.empty() ||
|
|
eov.ShapeType() != TopAbs_VERTEX ||
|
|
eov._edges.empty() )
|
|
continue;
|
|
|
|
gp_XYZ newNorm = eov._edges[0]->_normal;
|
|
double curThick = eov._edges[0]->_len * eov._edges[0]->_lenFactor;
|
|
bool normChanged = false;
|
|
|
|
for ( size_t i = 0; i < eov._eosC1.size(); ++i )
|
|
{
|
|
_EdgesOnShape* eoe = eov._eosC1[i];
|
|
const TopoDS_Edge& e = TopoDS::Edge( eoe->_shape );
|
|
const double eLen = SMESH_Algo::EdgeLength( e );
|
|
TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e );
|
|
if ( oppV.IsSame( eov._shape ))
|
|
oppV = SMESH_MesherHelper::IthVertex( 1, e );
|
|
_EdgesOnShape* eovOpp = data.GetShapeEdges( oppV );
|
|
if ( !eovOpp || eovOpp->_edges.empty() ) continue;
|
|
if ( eov._edges[0]->Is( _LayerEdge::BLOCKED )) continue;
|
|
|
|
double curThickOpp = eovOpp->_edges[0]->_len * eovOpp->_edges[0]->_lenFactor;
|
|
if ( curThickOpp + curThick < eLen )
|
|
continue;
|
|
|
|
double wgt = 2. * curThick / eLen;
|
|
newNorm += wgt * eovOpp->_edges[0]->_normal;
|
|
normChanged = true;
|
|
}
|
|
if ( normChanged )
|
|
{
|
|
eov._edges[0]->SetNormal( newNorm.Normalized() );
|
|
eov._edges[0]->Set( _LayerEdge::NORMAL_UPDATED );
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Modify normals of _LayerEdge's on _ConvexFace's
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::updateNormalsOfConvexFaces( _SolidData& data,
|
|
SMESH_MesherHelper& helper,
|
|
int stepNb )
|
|
{
|
|
SMESHDS_Mesh* meshDS = helper.GetMeshDS();
|
|
bool isOK;
|
|
|
|
map< TGeomID, _ConvexFace >::iterator id2face = data._convexFaces.begin();
|
|
for ( ; id2face != data._convexFaces.end(); ++id2face )
|
|
{
|
|
_ConvexFace & convFace = (*id2face).second;
|
|
convFace._normalsFixedOnBorders = false; // to update at each inflation step
|
|
|
|
if ( convFace._normalsFixed )
|
|
continue; // already fixed
|
|
if ( convFace.CheckPrisms() )
|
|
continue; // nothing to fix
|
|
|
|
convFace._normalsFixed = true;
|
|
|
|
BRepAdaptor_Surface surface ( convFace._face, false );
|
|
BRepLProp_SLProps surfProp( surface, 2, 1e-6 );
|
|
|
|
// check if the convex FACE is of spherical shape
|
|
|
|
Bnd_B3d centersBox; // bbox of centers of curvature of _LayerEdge's on VERTEXes
|
|
Bnd_B3d nodesBox;
|
|
gp_Pnt center;
|
|
|
|
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin();
|
|
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
|
|
{
|
|
_EdgesOnShape& eos = *(id2eos->second);
|
|
if ( eos.ShapeType() == TopAbs_VERTEX )
|
|
{
|
|
_LayerEdge* ledge = eos._edges[ 0 ];
|
|
if ( convFace.GetCenterOfCurvature( ledge, surfProp, helper, center ))
|
|
centersBox.Add( center );
|
|
}
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
nodesBox.Add( SMESH_TNodeXYZ( eos._edges[ i ]->_nodes[0] ));
|
|
}
|
|
if ( centersBox.IsVoid() )
|
|
{
|
|
debugMsg( "Error: centersBox.IsVoid()" );
|
|
return false;
|
|
}
|
|
const bool isSpherical =
|
|
( centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() );
|
|
|
|
int nbEdges = helper.Count( convFace._face, TopAbs_EDGE, /*ignoreSame=*/false );
|
|
vector < _CentralCurveOnEdge > centerCurves( nbEdges );
|
|
|
|
if ( isSpherical )
|
|
{
|
|
// set _LayerEdge::_normal as average of all normals
|
|
|
|
// WARNING: different density of nodes on EDGEs is not taken into account that
|
|
// can lead to an improper new normal
|
|
|
|
gp_XYZ avgNormal( 0,0,0 );
|
|
nbEdges = 0;
|
|
id2eos = convFace._subIdToEOS.begin();
|
|
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
|
|
{
|
|
_EdgesOnShape& eos = *(id2eos->second);
|
|
// set data of _CentralCurveOnEdge
|
|
if ( eos.ShapeType() == TopAbs_EDGE )
|
|
{
|
|
_CentralCurveOnEdge& ceCurve = centerCurves[ nbEdges++ ];
|
|
ceCurve.SetShapes( TopoDS::Edge( eos._shape ), convFace, data, helper );
|
|
if ( !eos._sWOL.IsNull() )
|
|
ceCurve._adjFace.Nullify();
|
|
else
|
|
ceCurve._ledges.insert( ceCurve._ledges.end(),
|
|
eos._edges.begin(), eos._edges.end());
|
|
}
|
|
// summarize normals
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
avgNormal += eos._edges[ i ]->_normal;
|
|
}
|
|
double normSize = avgNormal.SquareModulus();
|
|
if ( normSize < 1e-200 )
|
|
{
|
|
debugMsg( "updateNormalsOfConvexFaces(): zero avgNormal" );
|
|
return false;
|
|
}
|
|
avgNormal /= Sqrt( normSize );
|
|
|
|
// compute new _LayerEdge::_cosin on EDGEs
|
|
double avgCosin = 0;
|
|
int nbCosin = 0;
|
|
gp_Vec inFaceDir;
|
|
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
|
|
{
|
|
_CentralCurveOnEdge& ceCurve = centerCurves[ iE ];
|
|
if ( ceCurve._adjFace.IsNull() )
|
|
continue;
|
|
for ( size_t iLE = 0; iLE < ceCurve._ledges.size(); ++iLE )
|
|
{
|
|
const SMDS_MeshNode* node = ceCurve._ledges[ iLE ]->_nodes[0];
|
|
inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK );
|
|
if ( isOK )
|
|
{
|
|
double angle = inFaceDir.Angle( avgNormal ); // [0,PI]
|
|
ceCurve._ledges[ iLE ]->_cosin = Cos( angle );
|
|
avgCosin += ceCurve._ledges[ iLE ]->_cosin;
|
|
nbCosin++;
|
|
}
|
|
}
|
|
}
|
|
if ( nbCosin > 0 )
|
|
avgCosin /= nbCosin;
|
|
|
|
// set _LayerEdge::_normal = avgNormal
|
|
id2eos = convFace._subIdToEOS.begin();
|
|
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
|
|
{
|
|
_EdgesOnShape& eos = *(id2eos->second);
|
|
if ( eos.ShapeType() != TopAbs_EDGE )
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
eos._edges[ i ]->_cosin = avgCosin;
|
|
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
eos._edges[ i ]->SetNormal( avgNormal );
|
|
eos._edges[ i ]->Set( _LayerEdge::NORMAL_UPDATED );
|
|
}
|
|
}
|
|
}
|
|
else // if ( isSpherical )
|
|
{
|
|
// We suppose that centers of curvature at all points of the FACE
|
|
// lie on some curve, let's call it "central curve". For all _LayerEdge's
|
|
// having a common center of curvature we define the same new normal
|
|
// as a sum of normals of _LayerEdge's on EDGEs among them.
|
|
|
|
// get all centers of curvature for each EDGE
|
|
|
|
helper.SetSubShape( convFace._face );
|
|
_LayerEdge* vertexLEdges[2], **edgeLEdge, **edgeLEdgeEnd;
|
|
|
|
TopExp_Explorer edgeExp( convFace._face, TopAbs_EDGE );
|
|
for ( int iE = 0; edgeExp.More(); edgeExp.Next(), ++iE )
|
|
{
|
|
const TopoDS_Edge& edge = TopoDS::Edge( edgeExp.Current() );
|
|
|
|
// set adjacent FACE
|
|
centerCurves[ iE ].SetShapes( edge, convFace, data, helper );
|
|
|
|
// get _LayerEdge's of the EDGE
|
|
TGeomID edgeID = meshDS->ShapeToIndex( edge );
|
|
_EdgesOnShape* eos = data.GetShapeEdges( edgeID );
|
|
if ( !eos || eos->_edges.empty() )
|
|
{
|
|
// no _LayerEdge's on EDGE, use _LayerEdge's on VERTEXes
|
|
for ( int iV = 0; iV < 2; ++iV )
|
|
{
|
|
TopoDS_Vertex v = helper.IthVertex( iV, edge );
|
|
TGeomID vID = meshDS->ShapeToIndex( v );
|
|
eos = data.GetShapeEdges( vID );
|
|
vertexLEdges[ iV ] = eos->_edges[ 0 ];
|
|
}
|
|
edgeLEdge = &vertexLEdges[0];
|
|
edgeLEdgeEnd = edgeLEdge + 2;
|
|
|
|
centerCurves[ iE ]._adjFace.Nullify();
|
|
}
|
|
else
|
|
{
|
|
if ( ! eos->_toSmooth )
|
|
data.SortOnEdge( edge, eos->_edges );
|
|
edgeLEdge = &eos->_edges[ 0 ];
|
|
edgeLEdgeEnd = edgeLEdge + eos->_edges.size();
|
|
vertexLEdges[0] = eos->_edges.front()->_2neibors->_edges[0];
|
|
vertexLEdges[1] = eos->_edges.back() ->_2neibors->_edges[1];
|
|
|
|
if ( ! eos->_sWOL.IsNull() )
|
|
centerCurves[ iE ]._adjFace.Nullify();
|
|
}
|
|
|
|
// Get curvature centers
|
|
|
|
centersBox.Clear();
|
|
|
|
if ( edgeLEdge[0]->IsOnEdge() &&
|
|
convFace.GetCenterOfCurvature( vertexLEdges[0], surfProp, helper, center ))
|
|
{ // 1st VERTEX
|
|
centerCurves[ iE ].Append( center, vertexLEdges[0] );
|
|
centersBox.Add( center );
|
|
}
|
|
for ( ; edgeLEdge < edgeLEdgeEnd; ++edgeLEdge )
|
|
if ( convFace.GetCenterOfCurvature( *edgeLEdge, surfProp, helper, center ))
|
|
{ // EDGE or VERTEXes
|
|
centerCurves[ iE ].Append( center, *edgeLEdge );
|
|
centersBox.Add( center );
|
|
}
|
|
if ( edgeLEdge[-1]->IsOnEdge() &&
|
|
convFace.GetCenterOfCurvature( vertexLEdges[1], surfProp, helper, center ))
|
|
{ // 2nd VERTEX
|
|
centerCurves[ iE ].Append( center, vertexLEdges[1] );
|
|
centersBox.Add( center );
|
|
}
|
|
centerCurves[ iE ]._isDegenerated =
|
|
( centersBox.IsVoid() || centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() );
|
|
|
|
} // loop on EDGES of convFace._face to set up data of centerCurves
|
|
|
|
// Compute new normals for _LayerEdge's on EDGEs
|
|
|
|
double avgCosin = 0;
|
|
int nbCosin = 0;
|
|
gp_Vec inFaceDir;
|
|
for ( size_t iE1 = 0; iE1 < centerCurves.size(); ++iE1 )
|
|
{
|
|
_CentralCurveOnEdge& ceCurve = centerCurves[ iE1 ];
|
|
if ( ceCurve._isDegenerated )
|
|
continue;
|
|
const vector< gp_Pnt >& centers = ceCurve._curvaCenters;
|
|
vector< gp_XYZ > & newNormals = ceCurve._normals;
|
|
for ( size_t iC1 = 0; iC1 < centers.size(); ++iC1 )
|
|
{
|
|
isOK = false;
|
|
for ( size_t iE2 = 0; iE2 < centerCurves.size() && !isOK; ++iE2 )
|
|
{
|
|
if ( iE1 != iE2 )
|
|
isOK = centerCurves[ iE2 ].FindNewNormal( centers[ iC1 ], newNormals[ iC1 ]);
|
|
}
|
|
if ( isOK && !ceCurve._adjFace.IsNull() )
|
|
{
|
|
// compute new _LayerEdge::_cosin
|
|
const SMDS_MeshNode* node = ceCurve._ledges[ iC1 ]->_nodes[0];
|
|
inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK );
|
|
if ( isOK )
|
|
{
|
|
double angle = inFaceDir.Angle( newNormals[ iC1 ] ); // [0,PI]
|
|
ceCurve._ledges[ iC1 ]->_cosin = Cos( angle );
|
|
avgCosin += ceCurve._ledges[ iC1 ]->_cosin;
|
|
nbCosin++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// set new normals to _LayerEdge's of NOT degenerated central curves
|
|
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
|
|
{
|
|
if ( centerCurves[ iE ]._isDegenerated )
|
|
continue;
|
|
for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE )
|
|
{
|
|
centerCurves[ iE ]._ledges[ iLE ]->SetNormal( centerCurves[ iE ]._normals[ iLE ]);
|
|
centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED );
|
|
}
|
|
}
|
|
// set new normals to _LayerEdge's of degenerated central curves
|
|
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
|
|
{
|
|
if ( !centerCurves[ iE ]._isDegenerated ||
|
|
centerCurves[ iE ]._ledges.size() < 3 )
|
|
continue;
|
|
// new normal is an average of new normals at VERTEXes that
|
|
// was computed on non-degenerated _CentralCurveOnEdge's
|
|
gp_XYZ newNorm = ( centerCurves[ iE ]._ledges.front()->_normal +
|
|
centerCurves[ iE ]._ledges.back ()->_normal );
|
|
double sz = newNorm.Modulus();
|
|
if ( sz < 1e-200 )
|
|
continue;
|
|
newNorm /= sz;
|
|
double newCosin = ( 0.5 * centerCurves[ iE ]._ledges.front()->_cosin +
|
|
0.5 * centerCurves[ iE ]._ledges.back ()->_cosin );
|
|
for ( size_t iLE = 1, nb = centerCurves[ iE ]._ledges.size() - 1; iLE < nb; ++iLE )
|
|
{
|
|
centerCurves[ iE ]._ledges[ iLE ]->SetNormal( newNorm );
|
|
centerCurves[ iE ]._ledges[ iLE ]->_cosin = newCosin;
|
|
centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED );
|
|
}
|
|
}
|
|
|
|
// Find new normals for _LayerEdge's based on FACE
|
|
|
|
if ( nbCosin > 0 )
|
|
avgCosin /= nbCosin;
|
|
const TGeomID faceID = meshDS->ShapeToIndex( convFace._face );
|
|
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID );
|
|
if ( id2eos != convFace._subIdToEOS.end() )
|
|
{
|
|
int iE = 0;
|
|
gp_XYZ newNorm;
|
|
_EdgesOnShape& eos = * ( id2eos->second );
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* ledge = eos._edges[ i ];
|
|
if ( !convFace.GetCenterOfCurvature( ledge, surfProp, helper, center ))
|
|
continue;
|
|
for ( size_t i = 0; i < centerCurves.size(); ++i, ++iE )
|
|
{
|
|
iE = iE % centerCurves.size();
|
|
if ( centerCurves[ iE ]._isDegenerated )
|
|
continue;
|
|
newNorm.SetCoord( 0,0,0 );
|
|
if ( centerCurves[ iE ].FindNewNormal( center, newNorm ))
|
|
{
|
|
ledge->SetNormal( newNorm );
|
|
ledge->_cosin = avgCosin;
|
|
ledge->Set( _LayerEdge::NORMAL_UPDATED );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // not a quasi-spherical FACE
|
|
|
|
// Update _LayerEdge's data according to a new normal
|
|
|
|
dumpFunction(SMESH_Comment("updateNormalsOfConvexFaces")<<data._index
|
|
<<"_F"<<meshDS->ShapeToIndex( convFace._face ));
|
|
|
|
id2eos = convFace._subIdToEOS.begin();
|
|
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
|
|
{
|
|
_EdgesOnShape& eos = * ( id2eos->second );
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* & ledge = eos._edges[ i ];
|
|
double len = ledge->_len;
|
|
ledge->InvalidateStep( stepNb + 1, eos, /*restoreLength=*/true );
|
|
ledge->SetCosin( ledge->_cosin );
|
|
ledge->SetNewLength( len, eos, helper );
|
|
}
|
|
if ( eos.ShapeType() != TopAbs_FACE )
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge* ledge = eos._edges[ i ];
|
|
for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN )
|
|
{
|
|
_LayerEdge* neibor = ledge->_neibors[iN];
|
|
if ( neibor->_nodes[0]->GetPosition()->GetDim() == 2 )
|
|
{
|
|
neibor->Set( _LayerEdge::NEAR_BOUNDARY );
|
|
neibor->Set( _LayerEdge::MOVED );
|
|
neibor->SetSmooLen( neibor->_len );
|
|
}
|
|
}
|
|
}
|
|
} // loop on sub-shapes of convFace._face
|
|
|
|
// Find FACEs adjacent to convFace._face that got necessity to smooth
|
|
// as a result of normals modification
|
|
|
|
set< _EdgesOnShape* > adjFacesToSmooth;
|
|
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
|
|
{
|
|
if ( centerCurves[ iE ]._adjFace.IsNull() ||
|
|
centerCurves[ iE ]._adjFaceToSmooth )
|
|
continue;
|
|
for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE )
|
|
{
|
|
if ( centerCurves[ iE ]._ledges[ iLE ]->_cosin > theMinSmoothCosin )
|
|
{
|
|
adjFacesToSmooth.insert( data.GetShapeEdges( centerCurves[ iE ]._adjFace ));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
data.AddShapesToSmooth( adjFacesToSmooth );
|
|
|
|
dumpFunctionEnd();
|
|
|
|
|
|
} // loop on data._convexFaces
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return max curvature of a FACE
|
|
*/
|
|
//================================================================================
|
|
|
|
double _ConvexFace::GetMaxCurvature( _SolidData& data,
|
|
_EdgesOnShape& eof,
|
|
BRepLProp_SLProps& surfProp,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
double maxCurvature = 0;
|
|
|
|
TopoDS_Face F = TopoDS::Face( eof._shape );
|
|
|
|
const int nbTestPnt = 5;
|
|
const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. );
|
|
SMESH_subMeshIteratorPtr smIt = eof._subMesh->getDependsOnIterator(/*includeSelf=*/true);
|
|
while ( smIt->more() )
|
|
{
|
|
SMESH_subMesh* sm = smIt->next();
|
|
const TGeomID subID = sm->GetId();
|
|
|
|
// find _LayerEdge's of a sub-shape
|
|
_EdgesOnShape* eos;
|
|
if (( eos = data.GetShapeEdges( subID )))
|
|
this->_subIdToEOS.insert( make_pair( subID, eos ));
|
|
else
|
|
continue;
|
|
|
|
// check concavity and curvature and limit data._stepSize
|
|
const double minCurvature =
|
|
1. / ( eos->_hyp.GetTotalThickness() * ( 1 + theThickToIntersection ));
|
|
size_t iStep = Max( 1, eos->_edges.size() / nbTestPnt );
|
|
for ( size_t i = 0; i < eos->_edges.size(); i += iStep )
|
|
{
|
|
gp_XY uv = helper.GetNodeUV( F, eos->_edges[ i ]->_nodes[0] );
|
|
surfProp.SetParameters( uv.X(), uv.Y() );
|
|
if ( surfProp.IsCurvatureDefined() )
|
|
{
|
|
double curvature = Max( surfProp.MaxCurvature() * oriFactor,
|
|
surfProp.MinCurvature() * oriFactor );
|
|
maxCurvature = Max( maxCurvature, curvature );
|
|
|
|
if ( curvature > minCurvature )
|
|
this->_isTooCurved = true;
|
|
}
|
|
}
|
|
} // loop on sub-shapes of the FACE
|
|
|
|
return maxCurvature;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Finds a center of curvature of a surface at a _LayerEdge
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ConvexFace::GetCenterOfCurvature( _LayerEdge* ledge,
|
|
BRepLProp_SLProps& surfProp,
|
|
SMESH_MesherHelper& helper,
|
|
gp_Pnt & center ) const
|
|
{
|
|
gp_XY uv = helper.GetNodeUV( _face, ledge->_nodes[0] );
|
|
surfProp.SetParameters( uv.X(), uv.Y() );
|
|
if ( !surfProp.IsCurvatureDefined() )
|
|
return false;
|
|
|
|
const double oriFactor = ( _face.Orientation() == TopAbs_REVERSED ? +1. : -1. );
|
|
double surfCurvatureMax = surfProp.MaxCurvature() * oriFactor;
|
|
double surfCurvatureMin = surfProp.MinCurvature() * oriFactor;
|
|
if ( surfCurvatureMin > surfCurvatureMax )
|
|
center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMin * oriFactor );
|
|
else
|
|
center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMax * oriFactor );
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Check that prisms are not distorted
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ConvexFace::CheckPrisms() const
|
|
{
|
|
double vol = 0;
|
|
for ( size_t i = 0; i < _simplexTestEdges.size(); ++i )
|
|
{
|
|
const _LayerEdge* edge = _simplexTestEdges[i];
|
|
SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() );
|
|
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
|
|
if ( !edge->_simplices[j].IsForward( edge->_nodes[0], tgtXYZ, vol ))
|
|
{
|
|
debugMsg( "Bad simplex of _simplexTestEdges ("
|
|
<< " "<< edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID()
|
|
<< " "<< edge->_simplices[j]._nPrev->GetID()
|
|
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Try to compute a new normal by interpolating normals of _LayerEdge's
|
|
* stored in this _CentralCurveOnEdge.
|
|
* \param [in] center - curvature center of a point of another _CentralCurveOnEdge.
|
|
* \param [in,out] newNormal - current normal at this point, to be redefined
|
|
* \return bool - true if succeeded.
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _CentralCurveOnEdge::FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal )
|
|
{
|
|
if ( this->_isDegenerated )
|
|
return false;
|
|
|
|
// find two centers the given one lies between
|
|
|
|
for ( size_t i = 0, nb = _curvaCenters.size()-1; i < nb; ++i )
|
|
{
|
|
double sl2 = 1.001 * _segLength2[ i ];
|
|
|
|
double d1 = center.SquareDistance( _curvaCenters[ i ]);
|
|
if ( d1 > sl2 )
|
|
continue;
|
|
|
|
double d2 = center.SquareDistance( _curvaCenters[ i+1 ]);
|
|
if ( d2 > sl2 || d2 + d1 < 1e-100 )
|
|
continue;
|
|
|
|
d1 = Sqrt( d1 );
|
|
d2 = Sqrt( d2 );
|
|
double r = d1 / ( d1 + d2 );
|
|
gp_XYZ norm = (( 1. - r ) * _ledges[ i ]->_normal +
|
|
( r ) * _ledges[ i+1 ]->_normal );
|
|
norm.Normalize();
|
|
|
|
newNormal += norm;
|
|
double sz = newNormal.Modulus();
|
|
if ( sz < 1e-200 )
|
|
break;
|
|
newNormal /= sz;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set shape members
|
|
*/
|
|
//================================================================================
|
|
|
|
void _CentralCurveOnEdge::SetShapes( const TopoDS_Edge& edge,
|
|
const _ConvexFace& convFace,
|
|
_SolidData& data,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
_edge = edge;
|
|
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( edge, *helper.GetMesh(), TopAbs_FACE );
|
|
while ( const TopoDS_Shape* F = fIt->next())
|
|
if ( !convFace._face.IsSame( *F ))
|
|
{
|
|
_adjFace = TopoDS::Face( *F );
|
|
_adjFaceToSmooth = false;
|
|
// _adjFace already in a smoothing queue ?
|
|
if ( _EdgesOnShape* eos = data.GetShapeEdges( _adjFace ))
|
|
_adjFaceToSmooth = eos->_toSmooth;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Looks for intersection of it's last segment with faces
|
|
* \param distance - returns shortest distance from the last node to intersection
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher,
|
|
double & distance,
|
|
const double& epsilon,
|
|
_EdgesOnShape& eos,
|
|
const SMDS_MeshElement** intFace)
|
|
{
|
|
vector< const SMDS_MeshElement* > suspectFaces;
|
|
double segLen;
|
|
gp_Ax1 lastSegment = LastSegment( segLen, eos );
|
|
searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces );
|
|
|
|
bool segmentIntersected = false;
|
|
distance = Precision::Infinite();
|
|
int iFace = -1; // intersected face
|
|
for ( size_t j = 0 ; j < suspectFaces.size() /*&& !segmentIntersected*/; ++j )
|
|
{
|
|
const SMDS_MeshElement* face = suspectFaces[j];
|
|
if ( face->GetNodeIndex( _nodes.back() ) >= 0 ||
|
|
face->GetNodeIndex( _nodes[0] ) >= 0 )
|
|
continue; // face sharing _LayerEdge node
|
|
const int nbNodes = face->NbCornerNodes();
|
|
bool intFound = false;
|
|
double dist;
|
|
SMDS_MeshElement::iterator nIt = face->begin_nodes();
|
|
if ( nbNodes == 3 )
|
|
{
|
|
intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon );
|
|
}
|
|
else
|
|
{
|
|
const SMDS_MeshNode* tria[3];
|
|
tria[0] = *nIt++;
|
|
tria[1] = *nIt++;
|
|
for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 )
|
|
{
|
|
tria[2] = *nIt++;
|
|
intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon );
|
|
tria[1] = tria[2];
|
|
}
|
|
}
|
|
if ( intFound )
|
|
{
|
|
if ( dist < segLen*(1.01) && dist > -(_len*_lenFactor-segLen) )
|
|
segmentIntersected = true;
|
|
if ( distance > dist )
|
|
distance = dist, iFace = j;
|
|
}
|
|
}
|
|
if ( intFace ) *intFace = ( iFace != -1 ) ? suspectFaces[iFace] : 0;
|
|
|
|
distance -= segLen;
|
|
|
|
if ( segmentIntersected )
|
|
{
|
|
#ifdef __myDEBUG
|
|
SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes();
|
|
gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * ( distance+segLen ));
|
|
cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID()
|
|
<< ", intersection with face ("
|
|
<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()
|
|
<< ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z()
|
|
<< ") distance = " << distance << endl;
|
|
#endif
|
|
}
|
|
|
|
return segmentIntersected;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns a point used to check orientation of _simplices
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _LayerEdge::PrevCheckPos( _EdgesOnShape* eos ) const
|
|
{
|
|
size_t i = Is( NORMAL_UPDATED ) && IsOnFace() ? _pos.size()-2 : 0;
|
|
|
|
if ( !eos || eos->_sWOL.IsNull() )
|
|
return _pos[ i ];
|
|
|
|
if ( eos->SWOLType() == TopAbs_EDGE )
|
|
{
|
|
return BRepAdaptor_Curve( TopoDS::Edge( eos->_sWOL )).Value( _pos[i].X() ).XYZ();
|
|
}
|
|
//else // TopAbs_FACE
|
|
|
|
return BRepAdaptor_Surface( TopoDS::Face( eos->_sWOL )).Value(_pos[i].X(), _pos[i].Y() ).XYZ();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns size and direction of the last segment
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_Ax1 _LayerEdge::LastSegment(double& segLen, _EdgesOnShape& eos) const
|
|
{
|
|
// find two non-coincident positions
|
|
gp_XYZ orig = _pos.back();
|
|
gp_XYZ vec;
|
|
int iPrev = _pos.size() - 2;
|
|
//const double tol = ( _len > 0 ) ? 0.3*_len : 1e-100; // adjusted for IPAL52478 + PAL22576
|
|
const double tol = ( _len > 0 ) ? ( 1e-6 * _len ) : 1e-100;
|
|
while ( iPrev >= 0 )
|
|
{
|
|
vec = orig - _pos[iPrev];
|
|
if ( vec.SquareModulus() > tol*tol )
|
|
break;
|
|
else
|
|
iPrev--;
|
|
}
|
|
|
|
// make gp_Ax1
|
|
gp_Ax1 segDir;
|
|
if ( iPrev < 0 )
|
|
{
|
|
segDir.SetLocation( SMESH_TNodeXYZ( _nodes[0] ));
|
|
segDir.SetDirection( _normal );
|
|
segLen = 0;
|
|
}
|
|
else
|
|
{
|
|
gp_Pnt pPrev = _pos[ iPrev ];
|
|
if ( !eos._sWOL.IsNull() )
|
|
{
|
|
TopLoc_Location loc;
|
|
if ( eos.SWOLType() == TopAbs_EDGE )
|
|
{
|
|
double f,l;
|
|
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l);
|
|
pPrev = curve->Value( pPrev.X() ).Transformed( loc );
|
|
}
|
|
else
|
|
{
|
|
Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( eos._sWOL ), loc );
|
|
pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc );
|
|
}
|
|
vec = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ();
|
|
}
|
|
segDir.SetLocation( pPrev );
|
|
segDir.SetDirection( vec );
|
|
segLen = vec.Modulus();
|
|
}
|
|
|
|
return segDir;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return the last (or \a which) position of the target node on a FACE.
|
|
* \param [in] F - the FACE this _LayerEdge is inflated along
|
|
* \param [in] which - index of position
|
|
* \return gp_XY - result UV
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XY _LayerEdge::LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which ) const
|
|
{
|
|
if ( F.IsSame( eos._sWOL )) // F is my FACE
|
|
return gp_XY( _pos.back().X(), _pos.back().Y() );
|
|
|
|
if ( eos.SWOLType() != TopAbs_EDGE ) // wrong call
|
|
return gp_XY( 1e100, 1e100 );
|
|
|
|
// _sWOL is EDGE of F; _pos.back().X() is the last U on the EDGE
|
|
double f, l, u = _pos[ which < 0 ? _pos.size()-1 : which ].X();
|
|
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( TopoDS::Edge(eos._sWOL), F, f,l);
|
|
if ( !C2d.IsNull() && f <= u && u <= l )
|
|
return C2d->Value( u ).XY();
|
|
|
|
return gp_XY( 1e100, 1e100 );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Test intersection of the last segment with a given triangle
|
|
* using Moller-Trumbore algorithm
|
|
* Intersection is detected if distance to intersection is less than _LayerEdge._len
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment,
|
|
const gp_XYZ& vert0,
|
|
const gp_XYZ& vert1,
|
|
const gp_XYZ& vert2,
|
|
double& t,
|
|
const double& EPSILON) const
|
|
{
|
|
const gp_Pnt& orig = lastSegment.Location();
|
|
const gp_Dir& dir = lastSegment.Direction();
|
|
|
|
/* calculate distance from vert0 to ray origin */
|
|
//gp_XYZ tvec = orig.XYZ() - vert0;
|
|
|
|
//if ( tvec * dir > EPSILON )
|
|
// intersected face is at back side of the temporary face this _LayerEdge belongs to
|
|
//return false;
|
|
|
|
gp_XYZ edge1 = vert1 - vert0;
|
|
gp_XYZ edge2 = vert2 - vert0;
|
|
|
|
/* begin calculating determinant - also used to calculate U parameter */
|
|
gp_XYZ pvec = dir.XYZ() ^ edge2;
|
|
|
|
/* if determinant is near zero, ray lies in plane of triangle */
|
|
double det = edge1 * pvec;
|
|
|
|
const double ANGL_EPSILON = 1e-12;
|
|
if ( det > -ANGL_EPSILON && det < ANGL_EPSILON )
|
|
return false;
|
|
|
|
/* calculate distance from vert0 to ray origin */
|
|
gp_XYZ tvec = orig.XYZ() - vert0;
|
|
|
|
/* calculate U parameter and test bounds */
|
|
double u = ( tvec * pvec ) / det;
|
|
//if (u < 0.0 || u > 1.0)
|
|
if ( u < -EPSILON || u > 1.0 + EPSILON )
|
|
return false;
|
|
|
|
/* prepare to test V parameter */
|
|
gp_XYZ qvec = tvec ^ edge1;
|
|
|
|
/* calculate V parameter and test bounds */
|
|
double v = (dir.XYZ() * qvec) / det;
|
|
//if ( v < 0.0 || u + v > 1.0 )
|
|
if ( v < -EPSILON || u + v > 1.0 + EPSILON )
|
|
return false;
|
|
|
|
/* calculate t, ray intersects triangle */
|
|
t = (edge2 * qvec) / det;
|
|
|
|
//return true;
|
|
return t > 0.;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief _LayerEdge, located at a concave VERTEX of a FACE, moves target nodes of
|
|
* neighbor _LayerEdge's by it's own inflation vector.
|
|
* \param [in] eov - EOS of the VERTEX
|
|
* \param [in] eos - EOS of the FACE
|
|
* \param [in] step - inflation step
|
|
* \param [in,out] badSmooEdges - tangled _LayerEdge's
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::MoveNearConcaVer( const _EdgesOnShape* eov,
|
|
const _EdgesOnShape* eos,
|
|
const int step,
|
|
vector< _LayerEdge* > & badSmooEdges )
|
|
{
|
|
// check if any of _neibors is in badSmooEdges
|
|
if ( std::find_first_of( _neibors.begin(), _neibors.end(),
|
|
badSmooEdges.begin(), badSmooEdges.end() ) == _neibors.end() )
|
|
return;
|
|
|
|
// get all edges to move
|
|
|
|
set< _LayerEdge* > edges;
|
|
|
|
// find a distance between _LayerEdge on VERTEX and its neighbors
|
|
gp_XYZ curPosV = SMESH_TNodeXYZ( _nodes.back() );
|
|
double dist2 = 0;
|
|
for ( size_t i = 0; i < _neibors.size(); ++i )
|
|
{
|
|
_LayerEdge* nEdge = _neibors[i];
|
|
if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID )
|
|
{
|
|
edges.insert( nEdge );
|
|
dist2 = Max( dist2, ( curPosV - nEdge->_pos.back() ).SquareModulus() );
|
|
}
|
|
}
|
|
// add _LayerEdge's close to curPosV
|
|
size_t nbE;
|
|
do {
|
|
nbE = edges.size();
|
|
for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
|
|
{
|
|
_LayerEdge* edgeF = *e;
|
|
for ( size_t i = 0; i < edgeF->_neibors.size(); ++i )
|
|
{
|
|
_LayerEdge* nEdge = edgeF->_neibors[i];
|
|
if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID &&
|
|
dist2 > ( curPosV - nEdge->_pos.back() ).SquareModulus() )
|
|
edges.insert( nEdge );
|
|
}
|
|
}
|
|
}
|
|
while ( nbE < edges.size() );
|
|
|
|
// move the target node of the got edges
|
|
|
|
gp_XYZ prevPosV = PrevPos();
|
|
if ( eov->SWOLType() == TopAbs_EDGE )
|
|
{
|
|
BRepAdaptor_Curve curve ( TopoDS::Edge( eov->_sWOL ));
|
|
prevPosV = curve.Value( prevPosV.X() ).XYZ();
|
|
}
|
|
else if ( eov->SWOLType() == TopAbs_FACE )
|
|
{
|
|
BRepAdaptor_Surface surface( TopoDS::Face( eov->_sWOL ));
|
|
prevPosV = surface.Value( prevPosV.X(), prevPosV.Y() ).XYZ();
|
|
}
|
|
|
|
SMDS_FacePositionPtr fPos;
|
|
//double r = 1. - Min( 0.9, step / 10. );
|
|
for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
|
|
{
|
|
_LayerEdge* edgeF = *e;
|
|
const gp_XYZ prevVF = edgeF->PrevPos() - prevPosV;
|
|
const gp_XYZ newPosF = curPosV + prevVF;
|
|
SMDS_MeshNode* tgtNodeF = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
|
|
tgtNodeF->setXYZ( newPosF.X(), newPosF.Y(), newPosF.Z() );
|
|
edgeF->_pos.back() = newPosF;
|
|
dumpMoveComm( tgtNodeF, "MoveNearConcaVer" ); // debug
|
|
|
|
// set _curvature to make edgeF updated by putOnOffsetSurface()
|
|
if ( !edgeF->_curvature )
|
|
if (( fPos = edgeF->_nodes[0]->GetPosition() ))
|
|
{
|
|
edgeF->_curvature = _Factory::NewCurvature();
|
|
edgeF->_curvature->_r = 0;
|
|
edgeF->_curvature->_k = 0;
|
|
edgeF->_curvature->_h2lenRatio = 0;
|
|
edgeF->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() );
|
|
}
|
|
}
|
|
// gp_XYZ inflationVec( SMESH_TNodeXYZ( _nodes.back() ) -
|
|
// SMESH_TNodeXYZ( _nodes[0] ));
|
|
// for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
|
|
// {
|
|
// _LayerEdge* edgeF = *e;
|
|
// gp_XYZ newPos = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec;
|
|
// SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
|
|
// tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
// edgeF->_pos.back() = newPosF;
|
|
// dumpMoveComm( tgtNode, "MoveNearConcaVer" ); // debug
|
|
// }
|
|
|
|
// smooth _LayerEdge's around moved nodes
|
|
//size_t nbBadBefore = badSmooEdges.size();
|
|
for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
|
|
{
|
|
_LayerEdge* edgeF = *e;
|
|
for ( size_t j = 0; j < edgeF->_neibors.size(); ++j )
|
|
if ( edgeF->_neibors[j]->_nodes[0]->getshapeId() == eos->_shapeID )
|
|
//&& !edges.count( edgeF->_neibors[j] ))
|
|
{
|
|
_LayerEdge* edgeFN = edgeF->_neibors[j];
|
|
edgeFN->Unset( SMOOTHED );
|
|
int nbBad = edgeFN->Smooth( step, /*isConcaFace=*/true, /*findBest=*/true );
|
|
// if ( nbBad > 0 )
|
|
// {
|
|
// gp_XYZ newPos = SMESH_TNodeXYZ( edgeFN->_nodes[0] ) + inflationVec;
|
|
// const gp_XYZ& prevPos = edgeFN->_pos[ edgeFN->_pos.size()-2 ];
|
|
// int nbBadAfter = edgeFN->_simplices.size();
|
|
// double vol;
|
|
// for ( size_t iS = 0; iS < edgeFN->_simplices.size(); ++iS )
|
|
// {
|
|
// nbBadAfter -= edgeFN->_simplices[iS].IsForward( &prevPos, &newPos, vol );
|
|
// }
|
|
// if ( nbBadAfter <= nbBad )
|
|
// {
|
|
// SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeFN->_nodes.back() );
|
|
// tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
// edgeF->_pos.back() = newPosF;
|
|
// dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug
|
|
// nbBad = nbBadAfter;
|
|
// }
|
|
// }
|
|
if ( nbBad > 0 )
|
|
badSmooEdges.push_back( edgeFN );
|
|
}
|
|
}
|
|
// move a bit not smoothed around moved nodes
|
|
// for ( size_t i = nbBadBefore; i < badSmooEdges.size(); ++i )
|
|
// {
|
|
// _LayerEdge* edgeF = badSmooEdges[i];
|
|
// SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
|
|
// gp_XYZ newPos1 = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec;
|
|
// gp_XYZ newPos2 = 0.5 * ( newPos1 + SMESH_TNodeXYZ( tgtNode ));
|
|
// tgtNode->setXYZ( newPos2.X(), newPos2.Y(), newPos2.Z() );
|
|
// edgeF->_pos.back() = newPosF;
|
|
// dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug
|
|
// }
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Perform smooth of _LayerEdge's based on EDGE's
|
|
* \retval bool - true if node has been moved
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _LayerEdge::SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper)
|
|
{
|
|
ASSERT( IsOnEdge() );
|
|
|
|
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _nodes.back() );
|
|
SMESH_TNodeXYZ oldPos( tgtNode );
|
|
double dist01, distNewOld;
|
|
|
|
SMESH_TNodeXYZ p0( _2neibors->tgtNode(0));
|
|
SMESH_TNodeXYZ p1( _2neibors->tgtNode(1));
|
|
dist01 = p0.Distance( _2neibors->tgtNode(1) );
|
|
|
|
gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1];
|
|
double lenDelta = 0;
|
|
if ( _curvature )
|
|
{
|
|
//lenDelta = _curvature->lenDelta( _len );
|
|
lenDelta = _curvature->lenDeltaByDist( dist01 );
|
|
newPos.ChangeCoord() += _normal * lenDelta;
|
|
}
|
|
|
|
distNewOld = newPos.Distance( oldPos );
|
|
|
|
if ( F.IsNull() )
|
|
{
|
|
if ( _2neibors->_plnNorm )
|
|
{
|
|
// put newPos on the plane defined by source node and _plnNorm
|
|
gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ();
|
|
double new2srcProj = (*_2neibors->_plnNorm) * new2src;
|
|
newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj;
|
|
}
|
|
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
_pos.back() = newPos.XYZ();
|
|
}
|
|
else
|
|
{
|
|
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
gp_XY uv( Precision::Infinite(), 0 );
|
|
helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true );
|
|
_pos.back().SetCoord( uv.X(), uv.Y(), 0 );
|
|
|
|
newPos = surface->Value( uv );
|
|
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
|
|
}
|
|
|
|
// commented for IPAL0052478
|
|
// if ( _curvature && lenDelta < 0 )
|
|
// {
|
|
// gp_Pnt prevPos( _pos[ _pos.size()-2 ]);
|
|
// _len -= prevPos.Distance( oldPos );
|
|
// _len += prevPos.Distance( newPos );
|
|
// }
|
|
bool moved = distNewOld > dist01/50;
|
|
//if ( moved )
|
|
dumpMove( tgtNode ); // debug
|
|
|
|
return moved;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Perform 3D smooth of nodes inflated from FACE. No check of validity
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::SmoothWoCheck()
|
|
{
|
|
if ( Is( DIFFICULT ))
|
|
return;
|
|
|
|
bool moved = Is( SMOOTHED );
|
|
for ( size_t i = 0; i < _neibors.size() && !moved; ++i )
|
|
moved = _neibors[i]->Is( SMOOTHED );
|
|
if ( !moved )
|
|
return;
|
|
|
|
gp_XYZ newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
|
|
|
|
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
|
|
n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
|
|
_pos.back() = newPos;
|
|
|
|
dumpMoveComm( n, SMESH_Comment("No check - ") << _funNames[ smooFunID() ]);
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Checks validity of _neibors on EDGEs and VERTEXes
|
|
*/
|
|
//================================================================================
|
|
|
|
int _LayerEdge::CheckNeiborsOnBoundary( vector< _LayerEdge* >* badNeibors, bool * needSmooth )
|
|
{
|
|
if ( ! Is( NEAR_BOUNDARY ))
|
|
return 0;
|
|
|
|
int nbBad = 0;
|
|
double vol;
|
|
for ( size_t iN = 0; iN < _neibors.size(); ++iN )
|
|
{
|
|
_LayerEdge* eN = _neibors[iN];
|
|
if ( eN->_nodes[0]->getshapeId() == _nodes[0]->getshapeId() )
|
|
continue;
|
|
if ( needSmooth )
|
|
*needSmooth |= ( eN->Is( _LayerEdge::BLOCKED ) ||
|
|
eN->Is( _LayerEdge::NORMAL_UPDATED ) ||
|
|
eN->_pos.size() != _pos.size() );
|
|
|
|
SMESH_TNodeXYZ curPosN ( eN->_nodes.back() );
|
|
SMESH_TNodeXYZ prevPosN( eN->_nodes[0] );
|
|
for ( size_t i = 0; i < eN->_simplices.size(); ++i )
|
|
if ( eN->_nodes.size() > 1 &&
|
|
eN->_simplices[i].Includes( _nodes.back() ) &&
|
|
!eN->_simplices[i].IsForward( &prevPosN, &curPosN, vol ))
|
|
{
|
|
++nbBad;
|
|
if ( badNeibors )
|
|
{
|
|
badNeibors->push_back( eN );
|
|
debugMsg("Bad boundary simplex ( "
|
|
<< " "<< eN->_nodes[0]->GetID()
|
|
<< " "<< eN->_nodes.back()->GetID()
|
|
<< " "<< eN->_simplices[i]._nPrev->GetID()
|
|
<< " "<< eN->_simplices[i]._nNext->GetID() << " )" );
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return nbBad;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Perform 'smart' 3D smooth of nodes inflated from FACE
|
|
* \retval int - nb of bad simplices around this _LayerEdge
|
|
*/
|
|
//================================================================================
|
|
|
|
int _LayerEdge::Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth )
|
|
{
|
|
if ( !Is( MOVED ) || Is( SMOOTHED ) || Is( BLOCKED ))
|
|
return 0; // shape of simplices not changed
|
|
if ( _simplices.size() < 2 )
|
|
return 0; // _LayerEdge inflated along EDGE or FACE
|
|
|
|
if ( Is( DIFFICULT )) // || Is( ON_CONCAVE_FACE )
|
|
findBest = true;
|
|
|
|
const gp_XYZ& curPos = _pos.back();
|
|
const gp_XYZ& prevPos = _pos[0]; //PrevPos();
|
|
|
|
// quality metrics (orientation) of tetras around _tgtNode
|
|
int nbOkBefore = 0;
|
|
double vol, minVolBefore = 1e100;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol );
|
|
minVolBefore = Min( minVolBefore, vol );
|
|
}
|
|
int nbBad = _simplices.size() - nbOkBefore;
|
|
|
|
bool bndNeedSmooth = false;
|
|
if ( nbBad == 0 )
|
|
nbBad = CheckNeiborsOnBoundary( 0, & bndNeedSmooth );
|
|
if ( nbBad > 0 )
|
|
Set( DISTORTED );
|
|
|
|
// evaluate min angle
|
|
if ( nbBad == 0 && !findBest && !bndNeedSmooth )
|
|
{
|
|
size_t nbGoodAngles = _simplices.size();
|
|
double angle;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
if ( !_simplices[i].IsMinAngleOK( curPos, angle ) && angle > _minAngle )
|
|
--nbGoodAngles;
|
|
}
|
|
if ( nbGoodAngles == _simplices.size() )
|
|
{
|
|
Unset( MOVED );
|
|
return 0;
|
|
}
|
|
}
|
|
if ( Is( ON_CONCAVE_FACE ))
|
|
findBest = true;
|
|
|
|
if ( step % 2 == 0 )
|
|
findBest = false;
|
|
|
|
if ( Is( ON_CONCAVE_FACE ) && !findBest ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN
|
|
{
|
|
if ( _smooFunction == _funs[ FUN_LAPLACIAN ] )
|
|
_smooFunction = _funs[ FUN_CENTROIDAL ];
|
|
else
|
|
_smooFunction = _funs[ FUN_LAPLACIAN ];
|
|
}
|
|
|
|
// compute new position for the last _pos using different _funs
|
|
gp_XYZ newPos;
|
|
bool moved = false;
|
|
for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun )
|
|
{
|
|
if ( iFun < 0 )
|
|
newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
|
|
else if ( _funs[ iFun ] == _smooFunction )
|
|
continue; // _smooFunction again
|
|
else if ( step > 1 )
|
|
newPos = (this->*_funs[ iFun ])(); // try other smoothing fun
|
|
else
|
|
break; // let "easy" functions improve elements around distorted ones
|
|
|
|
if ( _curvature )
|
|
{
|
|
double delta = _curvature->lenDelta( _len );
|
|
if ( delta > 0 )
|
|
newPos += _normal * delta;
|
|
else
|
|
{
|
|
double segLen = _normal * ( newPos - prevPos );
|
|
if ( segLen + delta > 0 )
|
|
newPos += _normal * delta;
|
|
}
|
|
// double segLenChange = _normal * ( curPos - newPos );
|
|
// newPos += 0.5 * _normal * segLenChange;
|
|
}
|
|
|
|
int nbOkAfter = 0;
|
|
double minVolAfter = 1e100;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol );
|
|
minVolAfter = Min( minVolAfter, vol );
|
|
}
|
|
// get worse?
|
|
if ( nbOkAfter < nbOkBefore )
|
|
continue;
|
|
|
|
if (( findBest ) &&
|
|
( nbOkAfter == nbOkBefore ) &&
|
|
( minVolAfter <= minVolBefore ))
|
|
continue;
|
|
|
|
nbBad = _simplices.size() - nbOkAfter;
|
|
minVolBefore = minVolAfter;
|
|
nbOkBefore = nbOkAfter;
|
|
moved = true;
|
|
|
|
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
|
|
n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
|
|
_pos.back() = newPos;
|
|
|
|
dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] )
|
|
<< (nbBad ? " --BAD" : ""));
|
|
|
|
if ( iFun > -1 )
|
|
{
|
|
continue; // look for a better function
|
|
}
|
|
|
|
if ( !findBest )
|
|
break;
|
|
|
|
} // loop on smoothing functions
|
|
|
|
if ( moved ) // notify _neibors
|
|
{
|
|
Set( SMOOTHED );
|
|
for ( size_t i = 0; i < _neibors.size(); ++i )
|
|
if ( !_neibors[i]->Is( MOVED ))
|
|
{
|
|
_neibors[i]->Set( MOVED );
|
|
toSmooth.push_back( _neibors[i] );
|
|
}
|
|
}
|
|
|
|
return nbBad;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Perform 'smart' 3D smooth of nodes inflated from FACE
|
|
* \retval int - nb of bad simplices around this _LayerEdge
|
|
*/
|
|
//================================================================================
|
|
|
|
int _LayerEdge::Smooth(const int step, const bool isConcaveFace, bool findBest )
|
|
{
|
|
if ( !_smooFunction )
|
|
return 0; // _LayerEdge inflated along EDGE or FACE
|
|
if ( Is( BLOCKED ))
|
|
return 0; // not inflated
|
|
|
|
const gp_XYZ& curPos = _pos.back();
|
|
const gp_XYZ& prevPos = _pos[0]; //PrevCheckPos();
|
|
|
|
// quality metrics (orientation) of tetras around _tgtNode
|
|
int nbOkBefore = 0;
|
|
double vol, minVolBefore = 1e100;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol );
|
|
minVolBefore = Min( minVolBefore, vol );
|
|
}
|
|
int nbBad = _simplices.size() - nbOkBefore;
|
|
|
|
if ( isConcaveFace ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN
|
|
{
|
|
if ( _smooFunction == _funs[ FUN_CENTROIDAL ] && step % 2 )
|
|
_smooFunction = _funs[ FUN_LAPLACIAN ];
|
|
else if ( _smooFunction == _funs[ FUN_LAPLACIAN ] && !( step % 2 ))
|
|
_smooFunction = _funs[ FUN_CENTROIDAL ];
|
|
}
|
|
|
|
// compute new position for the last _pos using different _funs
|
|
gp_XYZ newPos;
|
|
for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun )
|
|
{
|
|
if ( iFun < 0 )
|
|
newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
|
|
else if ( _funs[ iFun ] == _smooFunction )
|
|
continue; // _smooFunction again
|
|
else if ( step > 1 )
|
|
newPos = (this->*_funs[ iFun ])(); // try other smoothing fun
|
|
else
|
|
break; // let "easy" functions improve elements around distorted ones
|
|
|
|
if ( _curvature )
|
|
{
|
|
double delta = _curvature->lenDelta( _len );
|
|
if ( delta > 0 )
|
|
newPos += _normal * delta;
|
|
else
|
|
{
|
|
double segLen = _normal * ( newPos - prevPos );
|
|
if ( segLen + delta > 0 )
|
|
newPos += _normal * delta;
|
|
}
|
|
// double segLenChange = _normal * ( curPos - newPos );
|
|
// newPos += 0.5 * _normal * segLenChange;
|
|
}
|
|
|
|
int nbOkAfter = 0;
|
|
double minVolAfter = 1e100;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol );
|
|
minVolAfter = Min( minVolAfter, vol );
|
|
}
|
|
// get worse?
|
|
if ( nbOkAfter < nbOkBefore )
|
|
continue;
|
|
if (( isConcaveFace || findBest ) &&
|
|
( nbOkAfter == nbOkBefore ) &&
|
|
( minVolAfter <= minVolBefore )
|
|
)
|
|
continue;
|
|
|
|
nbBad = _simplices.size() - nbOkAfter;
|
|
minVolBefore = minVolAfter;
|
|
nbOkBefore = nbOkAfter;
|
|
|
|
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
|
|
n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
|
|
_pos.back() = newPos;
|
|
|
|
dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] )
|
|
<< ( nbBad ? "--BAD" : ""));
|
|
|
|
// commented for IPAL0052478
|
|
// _len -= prevPos.Distance(SMESH_TNodeXYZ( n ));
|
|
// _len += prevPos.Distance(newPos);
|
|
|
|
if ( iFun > -1 ) // findBest || the chosen _fun makes worse
|
|
{
|
|
//_smooFunction = _funs[ iFun ];
|
|
// cout << "# " << _funNames[ iFun ] << "\t N:" << _nodes.back()->GetID()
|
|
// << "\t nbBad: " << _simplices.size() - nbOkAfter
|
|
// << " minVol: " << minVolAfter
|
|
// << " " << newPos.X() << " " << newPos.Y() << " " << newPos.Z()
|
|
// << endl;
|
|
continue; // look for a better function
|
|
}
|
|
|
|
if ( !findBest )
|
|
break;
|
|
|
|
} // loop on smoothing functions
|
|
|
|
return nbBad;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Chooses a smoothing technique giving a position most close to an initial one.
|
|
* For a correct result, _simplices must contain nodes lying on geometry.
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::ChooseSmooFunction( const set< TGeomID >& concaveVertices,
|
|
const TNode2Edge& n2eMap)
|
|
{
|
|
if ( _smooFunction ) return;
|
|
|
|
// use smoothNefPolygon() near concaveVertices
|
|
if ( !concaveVertices.empty() )
|
|
{
|
|
_smooFunction = _funs[ FUN_CENTROIDAL ];
|
|
|
|
Set( ON_CONCAVE_FACE );
|
|
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
if ( concaveVertices.count( _simplices[i]._nPrev->getshapeId() ))
|
|
{
|
|
_smooFunction = _funs[ FUN_NEFPOLY ];
|
|
|
|
// set FUN_CENTROIDAL to neighbor edges
|
|
for ( i = 0; i < _neibors.size(); ++i )
|
|
{
|
|
if ( _neibors[i]->_nodes[0]->GetPosition()->GetDim() == 2 )
|
|
{
|
|
_neibors[i]->_smooFunction = _funs[ FUN_CENTROIDAL ];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// // this choice is done only if ( !concaveVertices.empty() ) for Grids/smesh/bugs_19/X1
|
|
// // where the nodes are smoothed too far along a sphere thus creating
|
|
// // inverted _simplices
|
|
// double dist[theNbSmooFuns];
|
|
// //double coef[theNbSmooFuns] = { 1., 1.2, 1.4, 1.4 };
|
|
// double coef[theNbSmooFuns] = { 1., 1., 1., 1. };
|
|
|
|
// double minDist = Precision::Infinite();
|
|
// gp_Pnt p = SMESH_TNodeXYZ( _nodes[0] );
|
|
// for ( int i = 0; i < FUN_NEFPOLY; ++i )
|
|
// {
|
|
// gp_Pnt newP = (this->*_funs[i])();
|
|
// dist[i] = p.SquareDistance( newP );
|
|
// if ( dist[i]*coef[i] < minDist )
|
|
// {
|
|
// _smooFunction = _funs[i];
|
|
// minDist = dist[i]*coef[i];
|
|
// }
|
|
// }
|
|
}
|
|
else
|
|
{
|
|
_smooFunction = _funs[ FUN_LAPLACIAN ];
|
|
}
|
|
// int minDim = 3;
|
|
// for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
// minDim = Min( minDim, _simplices[i]._nPrev->GetPosition()->GetDim() );
|
|
// if ( minDim == 0 )
|
|
// _smooFunction = _funs[ FUN_CENTROIDAL ];
|
|
// else if ( minDim == 1 )
|
|
// _smooFunction = _funs[ FUN_CENTROIDAL ];
|
|
|
|
|
|
// int iMin;
|
|
// for ( int i = 0; i < FUN_NB; ++i )
|
|
// {
|
|
// //cout << dist[i] << " ";
|
|
// if ( _smooFunction == _funs[i] ) {
|
|
// iMin = i;
|
|
// //debugMsg( fNames[i] );
|
|
// break;
|
|
// }
|
|
// }
|
|
// cout << _funNames[ iMin ] << "\t N:" << _nodes.back()->GetID() << endl;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns a name of _SmooFunction
|
|
*/
|
|
//================================================================================
|
|
|
|
int _LayerEdge::smooFunID( _LayerEdge::PSmooFun fun) const
|
|
{
|
|
if ( !fun )
|
|
fun = _smooFunction;
|
|
for ( int i = 0; i < theNbSmooFuns; ++i )
|
|
if ( fun == _funs[i] )
|
|
return i;
|
|
|
|
return theNbSmooFuns;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes a new node position using Laplacian smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _LayerEdge::smoothLaplacian()
|
|
{
|
|
gp_XYZ newPos (0,0,0);
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
newPos += SMESH_TNodeXYZ( _simplices[i]._nPrev );
|
|
newPos /= _simplices.size();
|
|
|
|
return newPos;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes a new node position using angular-based smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _LayerEdge::smoothAngular()
|
|
{
|
|
vector< gp_Vec > edgeDir; edgeDir. reserve( _simplices.size() + 1 );
|
|
vector< double > edgeSize; edgeSize.reserve( _simplices.size() );
|
|
vector< gp_XYZ > points; points. reserve( _simplices.size() + 1 );
|
|
|
|
gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev );
|
|
gp_XYZ pN( 0,0,0 );
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev );
|
|
edgeDir.push_back( p - pPrev );
|
|
edgeSize.push_back( edgeDir.back().Magnitude() );
|
|
if ( edgeSize.back() < numeric_limits<double>::min() )
|
|
{
|
|
edgeDir.pop_back();
|
|
edgeSize.pop_back();
|
|
}
|
|
else
|
|
{
|
|
edgeDir.back() /= edgeSize.back();
|
|
points.push_back( p );
|
|
pN += p;
|
|
}
|
|
pPrev = p;
|
|
}
|
|
edgeDir.push_back ( edgeDir[0] );
|
|
edgeSize.push_back( edgeSize[0] );
|
|
pN /= points.size();
|
|
|
|
gp_XYZ newPos(0,0,0);
|
|
double sumSize = 0;
|
|
for ( size_t i = 0; i < points.size(); ++i )
|
|
{
|
|
gp_Vec toN = pN - points[i];
|
|
double toNLen = toN.Magnitude();
|
|
if ( toNLen < numeric_limits<double>::min() )
|
|
{
|
|
newPos += pN;
|
|
continue;
|
|
}
|
|
gp_Vec bisec = edgeDir[i] + edgeDir[i+1];
|
|
double bisecLen = bisec.SquareMagnitude();
|
|
if ( bisecLen < numeric_limits<double>::min() )
|
|
{
|
|
gp_Vec norm = edgeDir[i] ^ toN;
|
|
bisec = norm ^ edgeDir[i];
|
|
bisecLen = bisec.SquareMagnitude();
|
|
}
|
|
bisecLen = Sqrt( bisecLen );
|
|
bisec /= bisecLen;
|
|
|
|
#if 1
|
|
gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * bisecLen;
|
|
sumSize += bisecLen;
|
|
#else
|
|
gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * ( edgeSize[i] + edgeSize[i+1] );
|
|
sumSize += ( edgeSize[i] + edgeSize[i+1] );
|
|
#endif
|
|
newPos += pNew;
|
|
}
|
|
newPos /= sumSize;
|
|
|
|
// project newPos to an average plane
|
|
|
|
gp_XYZ norm(0,0,0); // plane normal
|
|
points.push_back( points[0] );
|
|
for ( size_t i = 1; i < points.size(); ++i )
|
|
{
|
|
gp_XYZ vec1 = points[ i-1 ] - pN;
|
|
gp_XYZ vec2 = points[ i ] - pN;
|
|
gp_XYZ cross = vec1 ^ vec2;
|
|
try {
|
|
cross.Normalize();
|
|
if ( cross * norm < numeric_limits<double>::min() )
|
|
norm += cross.Reversed();
|
|
else
|
|
norm += cross;
|
|
}
|
|
catch (Standard_Failure) { // if |cross| == 0.
|
|
}
|
|
}
|
|
gp_XYZ vec = newPos - pN;
|
|
double r = ( norm * vec ) / norm.SquareModulus(); // param [0,1] on norm
|
|
newPos = newPos - r * norm;
|
|
|
|
return newPos;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes a new node position using weighted node positions
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _LayerEdge::smoothLengthWeighted()
|
|
{
|
|
vector< double > edgeSize; edgeSize.reserve( _simplices.size() + 1);
|
|
vector< gp_XYZ > points; points. reserve( _simplices.size() );
|
|
|
|
gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev );
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev );
|
|
edgeSize.push_back( ( p - pPrev ).Modulus() );
|
|
if ( edgeSize.back() < numeric_limits<double>::min() )
|
|
{
|
|
edgeSize.pop_back();
|
|
}
|
|
else
|
|
{
|
|
points.push_back( p );
|
|
}
|
|
pPrev = p;
|
|
}
|
|
edgeSize.push_back( edgeSize[0] );
|
|
|
|
gp_XYZ newPos(0,0,0);
|
|
double sumSize = 0;
|
|
for ( size_t i = 0; i < points.size(); ++i )
|
|
{
|
|
newPos += points[i] * ( edgeSize[i] + edgeSize[i+1] );
|
|
sumSize += edgeSize[i] + edgeSize[i+1];
|
|
}
|
|
newPos /= sumSize;
|
|
return newPos;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes a new node position using angular-based smoothing
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _LayerEdge::smoothCentroidal()
|
|
{
|
|
gp_XYZ newPos(0,0,0);
|
|
gp_XYZ pN = SMESH_TNodeXYZ( _nodes.back() );
|
|
double sumSize = 0;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
gp_XYZ p1 = SMESH_TNodeXYZ( _simplices[i]._nPrev );
|
|
gp_XYZ p2 = SMESH_TNodeXYZ( _simplices[i]._nNext );
|
|
gp_XYZ gc = ( pN + p1 + p2 ) / 3.;
|
|
double size = (( p1 - pN ) ^ ( p2 - pN )).Modulus();
|
|
|
|
sumSize += size;
|
|
newPos += gc * size;
|
|
}
|
|
newPos /= sumSize;
|
|
|
|
return newPos;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes a new node position located inside a Nef polygon
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XYZ _LayerEdge::smoothNefPolygon()
|
|
#ifdef OLD_NEF_POLYGON
|
|
{
|
|
gp_XYZ newPos(0,0,0);
|
|
|
|
// get a plane to search a solution on
|
|
|
|
vector< gp_XYZ > vecs( _simplices.size() + 1 );
|
|
size_t i;
|
|
const double tol = numeric_limits<double>::min();
|
|
gp_XYZ center(0,0,0);
|
|
for ( i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
vecs[i] = ( SMESH_TNodeXYZ( _simplices[i]._nNext ) -
|
|
SMESH_TNodeXYZ( _simplices[i]._nPrev ));
|
|
center += SMESH_TNodeXYZ( _simplices[i]._nPrev );
|
|
}
|
|
vecs.back() = vecs[0];
|
|
center /= _simplices.size();
|
|
|
|
gp_XYZ zAxis(0,0,0);
|
|
for ( i = 0; i < _simplices.size(); ++i )
|
|
zAxis += vecs[i] ^ vecs[i+1];
|
|
|
|
gp_XYZ yAxis;
|
|
for ( i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
yAxis = vecs[i];
|
|
if ( yAxis.SquareModulus() > tol )
|
|
break;
|
|
}
|
|
gp_XYZ xAxis = yAxis ^ zAxis;
|
|
// SMESH_TNodeXYZ p0( _simplices[0]._nPrev );
|
|
// const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) +
|
|
// p0.Distance( _simplices[2]._nPrev ));
|
|
// gp_XYZ center = smoothLaplacian();
|
|
// gp_XYZ xAxis, yAxis, zAxis;
|
|
// for ( i = 0; i < _simplices.size(); ++i )
|
|
// {
|
|
// xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
|
|
// if ( xAxis.SquareModulus() > tol*tol )
|
|
// break;
|
|
// }
|
|
// for ( i = 1; i < _simplices.size(); ++i )
|
|
// {
|
|
// yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
|
|
// zAxis = xAxis ^ yAxis;
|
|
// if ( zAxis.SquareModulus() > tol*tol )
|
|
// break;
|
|
// }
|
|
// if ( i == _simplices.size() ) return newPos;
|
|
|
|
yAxis = zAxis ^ xAxis;
|
|
xAxis /= xAxis.Modulus();
|
|
yAxis /= yAxis.Modulus();
|
|
|
|
// get half-planes of _simplices
|
|
|
|
vector< _halfPlane > halfPlns( _simplices.size() );
|
|
int nbHP = 0;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
gp_XYZ OP1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
|
|
gp_XYZ OP2 = SMESH_TNodeXYZ( _simplices[i]._nNext ) - center;
|
|
gp_XY p1( OP1 * xAxis, OP1 * yAxis );
|
|
gp_XY p2( OP2 * xAxis, OP2 * yAxis );
|
|
gp_XY vec12 = p2 - p1;
|
|
double dist12 = vec12.Modulus();
|
|
if ( dist12 < tol )
|
|
continue;
|
|
vec12 /= dist12;
|
|
halfPlns[ nbHP ]._pos = p1;
|
|
halfPlns[ nbHP ]._dir = vec12;
|
|
halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() );
|
|
++nbHP;
|
|
}
|
|
|
|
// intersect boundaries of half-planes, define state of intersection points
|
|
// in relation to all half-planes and calculate internal point of a 2D polygon
|
|
|
|
double sumLen = 0;
|
|
gp_XY newPos2D (0,0);
|
|
|
|
enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT };
|
|
typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state
|
|
TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF );
|
|
|
|
vector< vector< TIntPntState > > allIntPnts( nbHP );
|
|
for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 )
|
|
{
|
|
vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ];
|
|
if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS );
|
|
|
|
int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP );
|
|
int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP );
|
|
|
|
int nbNotOut = 0;
|
|
const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points
|
|
|
|
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
|
|
{
|
|
if ( iHP1 == iHP2 ) continue;
|
|
|
|
TIntPntState & ips1 = intPnts1[ iHP2 ];
|
|
if ( ips1.second == UNDEF )
|
|
{
|
|
// find an intersection point of boundaries of iHP1 and iHP2
|
|
|
|
if ( iHP2 == iPrev ) // intersection with neighbors is known
|
|
ips1.first = halfPlns[ iHP1 ]._pos;
|
|
else if ( iHP2 == iNext )
|
|
ips1.first = halfPlns[ iHP2 ]._pos;
|
|
else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first ))
|
|
ips1.second = NO_INT;
|
|
|
|
// classify the found intersection point
|
|
if ( ips1.second != NO_INT )
|
|
{
|
|
ips1.second = NOT_OUT;
|
|
for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i )
|
|
if ( i != iHP1 && i != iHP2 &&
|
|
halfPlns[ i ].IsOut( ips1.first, tol ))
|
|
ips1.second = IS_OUT;
|
|
}
|
|
vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ];
|
|
if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS );
|
|
TIntPntState & ips2 = intPnts2[ iHP1 ];
|
|
ips2 = ips1;
|
|
}
|
|
if ( ips1.second == NOT_OUT )
|
|
{
|
|
++nbNotOut;
|
|
segEnds[ bool(segEnds[0]) ] = & ips1.first;
|
|
}
|
|
}
|
|
|
|
// find a NOT_OUT segment of boundary which is located between
|
|
// two NOT_OUT int points
|
|
|
|
if ( nbNotOut < 2 )
|
|
continue; // no such a segment
|
|
|
|
if ( nbNotOut > 2 )
|
|
{
|
|
// sort points along the boundary
|
|
map< double, TIntPntState* > ipsByParam;
|
|
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
|
|
{
|
|
TIntPntState & ips1 = intPnts1[ iHP2 ];
|
|
if ( ips1.second != NO_INT )
|
|
{
|
|
gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos;
|
|
double param = op * halfPlns[ iHP1 ]._dir;
|
|
ipsByParam.insert( make_pair( param, & ips1 ));
|
|
}
|
|
}
|
|
// look for two neighboring NOT_OUT points
|
|
nbNotOut = 0;
|
|
map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin();
|
|
for ( ; u2ips != ipsByParam.end(); ++u2ips )
|
|
{
|
|
TIntPntState & ips1 = *(u2ips->second);
|
|
if ( ips1.second == NOT_OUT )
|
|
segEnds[ bool( nbNotOut++ ) ] = & ips1.first;
|
|
else if ( nbNotOut >= 2 )
|
|
break;
|
|
else
|
|
nbNotOut = 0;
|
|
}
|
|
}
|
|
|
|
if ( nbNotOut >= 2 )
|
|
{
|
|
double len = ( *segEnds[0] - *segEnds[1] ).Modulus();
|
|
sumLen += len;
|
|
|
|
newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] );
|
|
}
|
|
}
|
|
|
|
if ( sumLen > 0 )
|
|
{
|
|
newPos2D /= sumLen;
|
|
newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y();
|
|
}
|
|
else
|
|
{
|
|
newPos = center;
|
|
}
|
|
|
|
return newPos;
|
|
}
|
|
#else // OLD_NEF_POLYGON
|
|
{ ////////////////////////////////// NEW
|
|
gp_XYZ newPos(0,0,0);
|
|
|
|
// get a plane to search a solution on
|
|
|
|
size_t i;
|
|
gp_XYZ center(0,0,0);
|
|
for ( i = 0; i < _simplices.size(); ++i )
|
|
center += SMESH_TNodeXYZ( _simplices[i]._nPrev );
|
|
center /= _simplices.size();
|
|
|
|
vector< gp_XYZ > vecs( _simplices.size() + 1 );
|
|
for ( i = 0; i < _simplices.size(); ++i )
|
|
vecs[i] = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
|
|
vecs.back() = vecs[0];
|
|
|
|
const double tol = numeric_limits<double>::min();
|
|
gp_XYZ zAxis(0,0,0);
|
|
for ( i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
gp_XYZ cross = vecs[i] ^ vecs[i+1];
|
|
try {
|
|
cross.Normalize();
|
|
if ( cross * zAxis < tol )
|
|
zAxis += cross.Reversed();
|
|
else
|
|
zAxis += cross;
|
|
}
|
|
catch (Standard_Failure) { // if |cross| == 0.
|
|
}
|
|
}
|
|
|
|
gp_XYZ yAxis;
|
|
for ( i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
yAxis = vecs[i];
|
|
if ( yAxis.SquareModulus() > tol )
|
|
break;
|
|
}
|
|
gp_XYZ xAxis = yAxis ^ zAxis;
|
|
// SMESH_TNodeXYZ p0( _simplices[0]._nPrev );
|
|
// const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) +
|
|
// p0.Distance( _simplices[2]._nPrev ));
|
|
// gp_XYZ center = smoothLaplacian();
|
|
// gp_XYZ xAxis, yAxis, zAxis;
|
|
// for ( i = 0; i < _simplices.size(); ++i )
|
|
// {
|
|
// xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
|
|
// if ( xAxis.SquareModulus() > tol*tol )
|
|
// break;
|
|
// }
|
|
// for ( i = 1; i < _simplices.size(); ++i )
|
|
// {
|
|
// yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
|
|
// zAxis = xAxis ^ yAxis;
|
|
// if ( zAxis.SquareModulus() > tol*tol )
|
|
// break;
|
|
// }
|
|
// if ( i == _simplices.size() ) return newPos;
|
|
|
|
yAxis = zAxis ^ xAxis;
|
|
xAxis /= xAxis.Modulus();
|
|
yAxis /= yAxis.Modulus();
|
|
|
|
// get half-planes of _simplices
|
|
|
|
vector< _halfPlane > halfPlns( _simplices.size() );
|
|
int nbHP = 0;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
const gp_XYZ& OP1 = vecs[ i ];
|
|
const gp_XYZ& OP2 = vecs[ i+1 ];
|
|
gp_XY p1( OP1 * xAxis, OP1 * yAxis );
|
|
gp_XY p2( OP2 * xAxis, OP2 * yAxis );
|
|
gp_XY vec12 = p2 - p1;
|
|
double dist12 = vec12.Modulus();
|
|
if ( dist12 < tol )
|
|
continue;
|
|
vec12 /= dist12;
|
|
halfPlns[ nbHP ]._pos = p1;
|
|
halfPlns[ nbHP ]._dir = vec12;
|
|
halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() );
|
|
++nbHP;
|
|
}
|
|
|
|
// intersect boundaries of half-planes, define state of intersection points
|
|
// in relation to all half-planes and calculate internal point of a 2D polygon
|
|
|
|
double sumLen = 0;
|
|
gp_XY newPos2D (0,0);
|
|
|
|
enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT };
|
|
typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state
|
|
TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF );
|
|
|
|
vector< vector< TIntPntState > > allIntPnts( nbHP );
|
|
for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 )
|
|
{
|
|
vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ];
|
|
if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS );
|
|
|
|
int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP );
|
|
int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP );
|
|
|
|
int nbNotOut = 0;
|
|
const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points
|
|
|
|
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
|
|
{
|
|
if ( iHP1 == iHP2 ) continue;
|
|
|
|
TIntPntState & ips1 = intPnts1[ iHP2 ];
|
|
if ( ips1.second == UNDEF )
|
|
{
|
|
// find an intersection point of boundaries of iHP1 and iHP2
|
|
|
|
if ( iHP2 == iPrev ) // intersection with neighbors is known
|
|
ips1.first = halfPlns[ iHP1 ]._pos;
|
|
else if ( iHP2 == iNext )
|
|
ips1.first = halfPlns[ iHP2 ]._pos;
|
|
else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first ))
|
|
ips1.second = NO_INT;
|
|
|
|
// classify the found intersection point
|
|
if ( ips1.second != NO_INT )
|
|
{
|
|
ips1.second = NOT_OUT;
|
|
for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i )
|
|
if ( i != iHP1 && i != iHP2 &&
|
|
halfPlns[ i ].IsOut( ips1.first, tol ))
|
|
ips1.second = IS_OUT;
|
|
}
|
|
vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ];
|
|
if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS );
|
|
TIntPntState & ips2 = intPnts2[ iHP1 ];
|
|
ips2 = ips1;
|
|
}
|
|
if ( ips1.second == NOT_OUT )
|
|
{
|
|
++nbNotOut;
|
|
segEnds[ bool(segEnds[0]) ] = & ips1.first;
|
|
}
|
|
}
|
|
|
|
// find a NOT_OUT segment of boundary which is located between
|
|
// two NOT_OUT int points
|
|
|
|
if ( nbNotOut < 2 )
|
|
continue; // no such a segment
|
|
|
|
if ( nbNotOut > 2 )
|
|
{
|
|
// sort points along the boundary
|
|
map< double, TIntPntState* > ipsByParam;
|
|
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
|
|
{
|
|
TIntPntState & ips1 = intPnts1[ iHP2 ];
|
|
if ( ips1.second != NO_INT )
|
|
{
|
|
gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos;
|
|
double param = op * halfPlns[ iHP1 ]._dir;
|
|
ipsByParam.insert( make_pair( param, & ips1 ));
|
|
}
|
|
}
|
|
// look for two neighboring NOT_OUT points
|
|
nbNotOut = 0;
|
|
map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin();
|
|
for ( ; u2ips != ipsByParam.end(); ++u2ips )
|
|
{
|
|
TIntPntState & ips1 = *(u2ips->second);
|
|
if ( ips1.second == NOT_OUT )
|
|
segEnds[ bool( nbNotOut++ ) ] = & ips1.first;
|
|
else if ( nbNotOut >= 2 )
|
|
break;
|
|
else
|
|
nbNotOut = 0;
|
|
}
|
|
}
|
|
|
|
if ( nbNotOut >= 2 )
|
|
{
|
|
double len = ( *segEnds[0] - *segEnds[1] ).Modulus();
|
|
sumLen += len;
|
|
|
|
newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] );
|
|
}
|
|
}
|
|
|
|
if ( sumLen > 0 )
|
|
{
|
|
newPos2D /= sumLen;
|
|
newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y();
|
|
}
|
|
else
|
|
{
|
|
newPos = center;
|
|
}
|
|
|
|
return newPos;
|
|
}
|
|
#endif // OLD_NEF_POLYGON
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Add a new segment to _LayerEdge during inflation
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper )
|
|
{
|
|
if ( Is( BLOCKED ))
|
|
return;
|
|
|
|
if ( len > _maxLen )
|
|
{
|
|
len = _maxLen;
|
|
Block( eos.GetData() );
|
|
}
|
|
const double lenDelta = len - _len;
|
|
if ( lenDelta < len * 1e-3 )
|
|
{
|
|
Block( eos.GetData() );
|
|
return;
|
|
}
|
|
|
|
SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() );
|
|
gp_XYZ oldXYZ = SMESH_TNodeXYZ( n );
|
|
gp_XYZ newXYZ;
|
|
if ( eos._hyp.IsOffsetMethod() )
|
|
{
|
|
newXYZ = oldXYZ;
|
|
gp_Vec faceNorm;
|
|
SMDS_ElemIteratorPtr faceIt = _nodes[0]->GetInverseElementIterator( SMDSAbs_Face );
|
|
while ( faceIt->more() )
|
|
{
|
|
const SMDS_MeshElement* face = faceIt->next();
|
|
if ( !eos.GetNormal( face, faceNorm ))
|
|
continue;
|
|
|
|
// translate plane of a face
|
|
gp_XYZ baryCenter = oldXYZ + faceNorm.XYZ() * lenDelta;
|
|
|
|
// find point of intersection of the face plane located at baryCenter
|
|
// and _normal located at newXYZ
|
|
double d = -( faceNorm.XYZ() * baryCenter ); // d of plane equation ax+by+cz+d=0
|
|
double dot = ( faceNorm.XYZ() * _normal );
|
|
if ( dot < std::numeric_limits<double>::min() )
|
|
dot = lenDelta * 1e-3;
|
|
double step = -( faceNorm.XYZ() * newXYZ + d ) / dot;
|
|
newXYZ += step * _normal;
|
|
}
|
|
_lenFactor = _normal * ( newXYZ - oldXYZ ) / lenDelta; // _lenFactor is used in InvalidateStep()
|
|
}
|
|
else
|
|
{
|
|
newXYZ = oldXYZ + _normal * lenDelta * _lenFactor;
|
|
}
|
|
|
|
n->setXYZ( newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
|
|
_pos.push_back( newXYZ );
|
|
|
|
if ( !eos._sWOL.IsNull() )
|
|
{
|
|
double distXYZ[4];
|
|
bool uvOK = false;
|
|
if ( eos.SWOLType() == TopAbs_EDGE )
|
|
{
|
|
double u = Precision::Infinite(); // to force projection w/o distance check
|
|
uvOK = helper.CheckNodeU( TopoDS::Edge( eos._sWOL ), n, u,
|
|
/*tol=*/2*lenDelta, /*force=*/true, distXYZ );
|
|
_pos.back().SetCoord( u, 0, 0 );
|
|
if ( _nodes.size() > 1 && uvOK )
|
|
{
|
|
SMDS_EdgePositionPtr pos = n->GetPosition();
|
|
pos->SetUParameter( u );
|
|
}
|
|
}
|
|
else // TopAbs_FACE
|
|
{
|
|
gp_XY uv( Precision::Infinite(), 0 );
|
|
uvOK = helper.CheckNodeUV( TopoDS::Face( eos._sWOL ), n, uv,
|
|
/*tol=*/2*lenDelta, /*force=*/true, distXYZ );
|
|
_pos.back().SetCoord( uv.X(), uv.Y(), 0 );
|
|
if ( _nodes.size() > 1 && uvOK )
|
|
{
|
|
SMDS_FacePositionPtr pos = n->GetPosition();
|
|
pos->SetUParameter( uv.X() );
|
|
pos->SetVParameter( uv.Y() );
|
|
}
|
|
}
|
|
if ( uvOK )
|
|
{
|
|
n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]);
|
|
}
|
|
else
|
|
{
|
|
n->setXYZ( oldXYZ.X(), oldXYZ.Y(), oldXYZ.Z() );
|
|
_pos.pop_back();
|
|
Block( eos.GetData() );
|
|
return;
|
|
}
|
|
}
|
|
|
|
_len = len;
|
|
|
|
// notify _neibors
|
|
if ( eos.ShapeType() != TopAbs_FACE )
|
|
{
|
|
for ( size_t i = 0; i < _neibors.size(); ++i )
|
|
//if ( _len > _neibors[i]->GetSmooLen() )
|
|
_neibors[i]->Set( MOVED );
|
|
|
|
Set( MOVED );
|
|
}
|
|
dumpMove( n ); //debug
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Set BLOCKED flag and propagate limited _maxLen to _neibors
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::Block( _SolidData& data )
|
|
{
|
|
//if ( Is( BLOCKED )) return;
|
|
Set( BLOCKED );
|
|
|
|
SMESH_Comment msg( "#BLOCK shape=");
|
|
msg << data.GetShapeEdges( this )->_shapeID
|
|
<< ", nodes " << _nodes[0]->GetID() << ", " << _nodes.back()->GetID();
|
|
dumpCmd( msg + " -- BEGIN");
|
|
|
|
SetMaxLen( _len );
|
|
std::queue<_LayerEdge*> queue;
|
|
queue.push( this );
|
|
|
|
gp_Pnt pSrc, pTgt, pSrcN, pTgtN;
|
|
while ( !queue.empty() )
|
|
{
|
|
_LayerEdge* edge = queue.front(); queue.pop();
|
|
pSrc = SMESH_TNodeXYZ( edge->_nodes[0] );
|
|
pTgt = SMESH_TNodeXYZ( edge->_nodes.back() );
|
|
for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN )
|
|
{
|
|
_LayerEdge* neibor = edge->_neibors[iN];
|
|
if ( neibor->_maxLen < edge->_maxLen * 1.01 )
|
|
continue;
|
|
pSrcN = SMESH_TNodeXYZ( neibor->_nodes[0] );
|
|
pTgtN = SMESH_TNodeXYZ( neibor->_nodes.back() );
|
|
double minDist = pSrc.SquareDistance( pSrcN );
|
|
minDist = Min( pTgt.SquareDistance( pTgtN ), minDist );
|
|
minDist = Min( pSrc.SquareDistance( pTgtN ), minDist );
|
|
minDist = Min( pTgt.SquareDistance( pSrcN ), minDist );
|
|
double newMaxLen = edge->_maxLen + 0.5 * Sqrt( minDist );
|
|
//if ( edge->_nodes[0]->getshapeId() == neibor->_nodes[0]->getshapeId() ) viscous_layers_00/A3
|
|
{
|
|
//newMaxLen *= edge->_lenFactor / neibor->_lenFactor;
|
|
// newMaxLen *= Min( edge->_lenFactor / neibor->_lenFactor,
|
|
// neibor->_lenFactor / edge->_lenFactor );
|
|
}
|
|
if ( neibor->_maxLen > newMaxLen )
|
|
{
|
|
neibor->SetMaxLen( newMaxLen );
|
|
if ( neibor->_maxLen < neibor->_len )
|
|
{
|
|
_EdgesOnShape* eos = data.GetShapeEdges( neibor );
|
|
int lastStep = neibor->Is( BLOCKED ) ? 1 : 0;
|
|
while ( neibor->_len > neibor->_maxLen &&
|
|
neibor->NbSteps() > lastStep )
|
|
neibor->InvalidateStep( neibor->NbSteps(), *eos, /*restoreLength=*/true );
|
|
neibor->SetNewLength( neibor->_maxLen, *eos, data.GetHelper() );
|
|
//neibor->Block( data );
|
|
}
|
|
queue.push( neibor );
|
|
}
|
|
}
|
|
}
|
|
dumpCmd( msg + " -- END");
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Remove last inflation step
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength )
|
|
{
|
|
if ( _pos.size() > curStep && _nodes.size() > 1 )
|
|
{
|
|
_pos.resize( curStep );
|
|
|
|
gp_Pnt nXYZ = _pos.back();
|
|
SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() );
|
|
SMESH_TNodeXYZ curXYZ( n );
|
|
if ( !eos._sWOL.IsNull() )
|
|
{
|
|
TopLoc_Location loc;
|
|
if ( eos.SWOLType() == TopAbs_EDGE )
|
|
{
|
|
SMDS_EdgePositionPtr pos = n->GetPosition();
|
|
pos->SetUParameter( nXYZ.X() );
|
|
double f,l;
|
|
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l);
|
|
nXYZ = curve->Value( nXYZ.X() ).Transformed( loc );
|
|
}
|
|
else
|
|
{
|
|
SMDS_FacePositionPtr pos = n->GetPosition();
|
|
pos->SetUParameter( nXYZ.X() );
|
|
pos->SetVParameter( nXYZ.Y() );
|
|
Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(eos._sWOL), loc );
|
|
nXYZ = surface->Value( nXYZ.X(), nXYZ.Y() ).Transformed( loc );
|
|
}
|
|
}
|
|
n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() );
|
|
dumpMove( n );
|
|
|
|
if ( restoreLength )
|
|
{
|
|
if ( NbSteps() == 0 )
|
|
_len = 0.;
|
|
else if ( IsOnFace() && Is( MOVED ))
|
|
_len = ( nXYZ.XYZ() - SMESH_NodeXYZ( _nodes[0] )) * _normal;
|
|
else
|
|
_len -= ( nXYZ.XYZ() - curXYZ ).Modulus() / _lenFactor;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return index of a _pos distant from _normal
|
|
*/
|
|
//================================================================================
|
|
|
|
int _LayerEdge::GetSmoothedPos( const double tol )
|
|
{
|
|
int iSmoothed = 0;
|
|
for ( size_t i = 1; i < _pos.size() && !iSmoothed; ++i )
|
|
{
|
|
double normDist = ( _pos[i] - _pos[0] ).Crossed( _normal ).SquareModulus();
|
|
if ( normDist > tol * tol )
|
|
iSmoothed = i;
|
|
}
|
|
return iSmoothed;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Smooth a path formed by _pos of a _LayerEdge smoothed on FACE
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::SmoothPos( const vector< double >& segLen, const double tol )
|
|
{
|
|
if ( /*Is( NORMAL_UPDATED ) ||*/ _pos.size() <= 2 )
|
|
return;
|
|
|
|
// find the 1st smoothed _pos
|
|
int iSmoothed = GetSmoothedPos( tol );
|
|
if ( !iSmoothed ) return;
|
|
|
|
gp_XYZ normal = _normal;
|
|
if ( Is( NORMAL_UPDATED ))
|
|
{
|
|
double minDot = 1;
|
|
for ( size_t i = 0; i < _neibors.size(); ++i )
|
|
{
|
|
if ( _neibors[i]->IsOnFace() )
|
|
{
|
|
double dot = _normal * _neibors[i]->_normal;
|
|
if ( dot < minDot )
|
|
{
|
|
normal = _neibors[i]->_normal;
|
|
minDot = dot;
|
|
}
|
|
}
|
|
}
|
|
if ( minDot == 1. )
|
|
for ( size_t i = 1; i < _pos.size(); ++i )
|
|
{
|
|
normal = _pos[i] - _pos[0];
|
|
double size = normal.Modulus();
|
|
if ( size > RealSmall() )
|
|
{
|
|
normal /= size;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
const double r = 0.2;
|
|
for ( int iter = 0; iter < 50; ++iter )
|
|
{
|
|
double minDot = 1;
|
|
for ( size_t i = Max( 1, iSmoothed-1-iter ); i < _pos.size()-1; ++i )
|
|
{
|
|
gp_XYZ midPos = 0.5 * ( _pos[i-1] + _pos[i+1] );
|
|
gp_XYZ newPos = ( 1-r ) * midPos + r * _pos[i];
|
|
_pos[i] = newPos;
|
|
double midLen = 0.5 * ( segLen[i-1] + segLen[i+1] );
|
|
double newLen = ( 1-r ) * midLen + r * segLen[i];
|
|
const_cast< double& >( segLen[i] ) = newLen;
|
|
// check angle between normal and (_pos[i+1], _pos[i] )
|
|
gp_XYZ posDir = _pos[i+1] - _pos[i];
|
|
double size = posDir.SquareModulus();
|
|
if ( size > RealSmall() )
|
|
minDot = Min( minDot, ( normal * posDir ) * ( normal * posDir ) / size );
|
|
}
|
|
if ( minDot > 0.5 * 0.5 )
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Print flags
|
|
*/
|
|
//================================================================================
|
|
|
|
std::string _LayerEdge::DumpFlags() const
|
|
{
|
|
SMESH_Comment dump;
|
|
for ( int flag = 1; flag < 0x1000000; flag *= 2 )
|
|
if ( _flags & flag )
|
|
{
|
|
EFlags f = (EFlags) flag;
|
|
switch ( f ) {
|
|
case TO_SMOOTH: dump << "TO_SMOOTH"; break;
|
|
case MOVED: dump << "MOVED"; break;
|
|
case SMOOTHED: dump << "SMOOTHED"; break;
|
|
case DIFFICULT: dump << "DIFFICULT"; break;
|
|
case ON_CONCAVE_FACE: dump << "ON_CONCAVE_FACE"; break;
|
|
case BLOCKED: dump << "BLOCKED"; break;
|
|
case INTERSECTED: dump << "INTERSECTED"; break;
|
|
case NORMAL_UPDATED: dump << "NORMAL_UPDATED"; break;
|
|
case UPD_NORMAL_CONV: dump << "UPD_NORMAL_CONV"; break;
|
|
case MARKED: dump << "MARKED"; break;
|
|
case MULTI_NORMAL: dump << "MULTI_NORMAL"; break;
|
|
case NEAR_BOUNDARY: dump << "NEAR_BOUNDARY"; break;
|
|
case SMOOTHED_C1: dump << "SMOOTHED_C1"; break;
|
|
case DISTORTED: dump << "DISTORTED"; break;
|
|
case RISKY_SWOL: dump << "RISKY_SWOL"; break;
|
|
case SHRUNK: dump << "SHRUNK"; break;
|
|
case UNUSED_FLAG: dump << "UNUSED_FLAG"; break;
|
|
}
|
|
dump << " ";
|
|
}
|
|
cout << dump << endl;
|
|
return dump;
|
|
}
|
|
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create layers of prisms
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::refine(_SolidData& data)
|
|
{
|
|
SMESH_MesherHelper& helper = data.GetHelper();
|
|
helper.SetElementsOnShape(false);
|
|
|
|
Handle(Geom_Curve) curve;
|
|
Handle(ShapeAnalysis_Surface) surface;
|
|
TopoDS_Edge geomEdge;
|
|
TopoDS_Face geomFace;
|
|
TopLoc_Location loc;
|
|
double f,l, u = 0;
|
|
gp_XY uv;
|
|
vector< gp_XYZ > pos3D;
|
|
bool isOnEdge, isTooConvexFace = false;
|
|
TGeomID prevBaseId = -1;
|
|
TNode2Edge* n2eMap = 0;
|
|
TNode2Edge::iterator n2e;
|
|
|
|
// Create intermediate nodes on each _LayerEdge
|
|
|
|
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = data._edgesOnShape[iS];
|
|
if ( eos._edges.empty() ) continue;
|
|
|
|
if ( eos._edges[0]->_nodes.size() < 2 )
|
|
continue; // on _noShrinkShapes
|
|
|
|
// get data of a shrink shape
|
|
isOnEdge = false;
|
|
geomEdge.Nullify(); geomFace.Nullify();
|
|
curve.Nullify(); surface.Nullify();
|
|
if ( !eos._sWOL.IsNull() )
|
|
{
|
|
isOnEdge = ( eos.SWOLType() == TopAbs_EDGE );
|
|
if ( isOnEdge )
|
|
{
|
|
geomEdge = TopoDS::Edge( eos._sWOL );
|
|
curve = BRep_Tool::Curve( geomEdge, loc, f,l);
|
|
}
|
|
else
|
|
{
|
|
geomFace = TopoDS::Face( eos._sWOL );
|
|
surface = helper.GetSurface( geomFace );
|
|
}
|
|
}
|
|
else if ( eos.ShapeType() == TopAbs_FACE && eos._toSmooth )
|
|
{
|
|
geomFace = TopoDS::Face( eos._shape );
|
|
surface = helper.GetSurface( geomFace );
|
|
// propagate _toSmooth back to _eosC1, which was unset in findShapesToSmooth()
|
|
for ( size_t i = 0; i < eos._eosC1.size(); ++i )
|
|
eos._eosC1[ i ]->_toSmooth = true;
|
|
|
|
isTooConvexFace = false;
|
|
if ( _ConvexFace* cf = data.GetConvexFace( eos._shapeID ))
|
|
isTooConvexFace = cf->_isTooCurved;
|
|
}
|
|
|
|
vector< double > segLen;
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge& edge = *eos._edges[i];
|
|
if ( edge._pos.size() < 2 )
|
|
continue;
|
|
|
|
// get accumulated length of segments
|
|
segLen.resize( edge._pos.size() );
|
|
segLen[0] = 0.0;
|
|
if ( eos._sWOL.IsNull() )
|
|
{
|
|
bool useNormal = true;
|
|
bool usePos = false;
|
|
bool smoothed = false;
|
|
double preci = 0.1 * edge._len;
|
|
if ( eos._toSmooth && edge._pos.size() > 2 )
|
|
{
|
|
smoothed = edge.GetSmoothedPos( preci );
|
|
}
|
|
if ( smoothed )
|
|
{
|
|
if ( !surface.IsNull() && !isTooConvexFace ) // edge smoothed on FACE
|
|
{
|
|
useNormal = usePos = false;
|
|
gp_Pnt2d uv = helper.GetNodeUV( geomFace, edge._nodes[0] );
|
|
for ( size_t j = 1; j < edge._pos.size() && !useNormal; ++j )
|
|
{
|
|
uv = surface->NextValueOfUV( uv, edge._pos[j], preci );
|
|
if ( surface->Gap() < 2. * edge._len )
|
|
segLen[j] = surface->Gap();
|
|
else
|
|
useNormal = true;
|
|
}
|
|
}
|
|
}
|
|
else if ( !edge.Is( _LayerEdge::NORMAL_UPDATED ))
|
|
{
|
|
#ifndef __NODES_AT_POS
|
|
useNormal = usePos = false;
|
|
edge._pos[1] = edge._pos.back();
|
|
edge._pos.resize( 2 );
|
|
segLen.resize( 2 );
|
|
segLen[ 1 ] = edge._len;
|
|
#endif
|
|
}
|
|
if ( useNormal && edge.Is( _LayerEdge::NORMAL_UPDATED ))
|
|
{
|
|
useNormal = usePos = false;
|
|
_LayerEdge tmpEdge; // get original _normal
|
|
tmpEdge._nodes.push_back( edge._nodes[0] );
|
|
if ( !setEdgeData( tmpEdge, eos, helper, data ))
|
|
usePos = true;
|
|
else
|
|
for ( size_t j = 1; j < edge._pos.size(); ++j )
|
|
segLen[j] = ( edge._pos[j] - edge._pos[0] ) * tmpEdge._normal;
|
|
}
|
|
if ( useNormal )
|
|
{
|
|
for ( size_t j = 1; j < edge._pos.size(); ++j )
|
|
segLen[j] = ( edge._pos[j] - edge._pos[0] ) * edge._normal;
|
|
}
|
|
if ( usePos )
|
|
{
|
|
for ( size_t j = 1; j < edge._pos.size(); ++j )
|
|
segLen[j] = segLen[j-1] + ( edge._pos[j-1] - edge._pos[j] ).Modulus();
|
|
}
|
|
else
|
|
{
|
|
bool swapped = ( edge._pos.size() > 2 );
|
|
while ( swapped )
|
|
{
|
|
swapped = false;
|
|
for ( size_t j = 1; j < edge._pos.size()-1; ++j )
|
|
if ( segLen[j] > segLen.back() )
|
|
{
|
|
segLen.erase( segLen.begin() + j );
|
|
edge._pos.erase( edge._pos.begin() + j );
|
|
--j;
|
|
}
|
|
else if ( segLen[j] < segLen[j-1] )
|
|
{
|
|
std::swap( segLen[j], segLen[j-1] );
|
|
std::swap( edge._pos[j], edge._pos[j-1] );
|
|
swapped = true;
|
|
}
|
|
}
|
|
}
|
|
// smooth a path formed by edge._pos
|
|
#ifndef __NODES_AT_POS
|
|
if (( smoothed ) /*&&
|
|
( eos.ShapeType() == TopAbs_FACE || edge.Is( _LayerEdge::SMOOTHED_C1 ))*/)
|
|
edge.SmoothPos( segLen, preci );
|
|
#endif
|
|
}
|
|
else if ( eos._isRegularSWOL ) // usual SWOL
|
|
{
|
|
if ( edge.Is( _LayerEdge::SMOOTHED ))
|
|
{
|
|
SMESH_NodeXYZ p0( edge._nodes[0] );
|
|
for ( size_t j = 1; j < edge._pos.size(); ++j )
|
|
{
|
|
gp_XYZ pj = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ();
|
|
segLen[j] = ( pj - p0 ) * edge._normal;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for ( size_t j = 1; j < edge._pos.size(); ++j )
|
|
segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus();
|
|
}
|
|
}
|
|
else if ( !surface.IsNull() ) // SWOL surface with singularities
|
|
{
|
|
pos3D.resize( edge._pos.size() );
|
|
for ( size_t j = 0; j < edge._pos.size(); ++j )
|
|
pos3D[j] = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ();
|
|
|
|
for ( size_t j = 1; j < edge._pos.size(); ++j )
|
|
segLen[j] = segLen[j-1] + ( pos3D[j-1] - pos3D[j] ).Modulus();
|
|
}
|
|
|
|
// allocate memory for new nodes if it is not yet refined
|
|
const SMDS_MeshNode* tgtNode = edge._nodes.back();
|
|
if ( edge._nodes.size() == 2 )
|
|
{
|
|
#ifdef __NODES_AT_POS
|
|
int nbNodes = edge._pos.size();
|
|
#else
|
|
int nbNodes = eos._hyp.GetNumberLayers() + 1;
|
|
#endif
|
|
edge._nodes.resize( nbNodes, 0 );
|
|
edge._nodes[1] = 0;
|
|
edge._nodes.back() = tgtNode;
|
|
}
|
|
// restore shapePos of the last node by already treated _LayerEdge of another _SolidData
|
|
const TGeomID baseShapeId = edge._nodes[0]->getshapeId();
|
|
if ( baseShapeId != prevBaseId )
|
|
{
|
|
map< TGeomID, TNode2Edge* >::iterator s2ne = data._s2neMap.find( baseShapeId );
|
|
n2eMap = ( s2ne == data._s2neMap.end() ) ? 0 : s2ne->second;
|
|
prevBaseId = baseShapeId;
|
|
}
|
|
_LayerEdge* edgeOnSameNode = 0;
|
|
bool useExistingPos = false;
|
|
if ( n2eMap && (( n2e = n2eMap->find( edge._nodes[0] )) != n2eMap->end() ))
|
|
{
|
|
edgeOnSameNode = n2e->second;
|
|
useExistingPos = ( edgeOnSameNode->_len < edge._len );
|
|
const gp_XYZ& otherTgtPos = edgeOnSameNode->_pos.back();
|
|
SMDS_PositionPtr lastPos = tgtNode->GetPosition();
|
|
if ( isOnEdge )
|
|
{
|
|
SMDS_EdgePositionPtr epos = lastPos;
|
|
epos->SetUParameter( otherTgtPos.X() );
|
|
}
|
|
else
|
|
{
|
|
SMDS_FacePositionPtr fpos = lastPos;
|
|
fpos->SetUParameter( otherTgtPos.X() );
|
|
fpos->SetVParameter( otherTgtPos.Y() );
|
|
}
|
|
}
|
|
// calculate height of the first layer
|
|
double h0;
|
|
const double T = segLen.back(); //data._hyp.GetTotalThickness();
|
|
const double f = eos._hyp.GetStretchFactor();
|
|
const int N = eos._hyp.GetNumberLayers();
|
|
const double fPowN = pow( f, N );
|
|
if ( fPowN - 1 <= numeric_limits<double>::min() )
|
|
h0 = T / N;
|
|
else
|
|
h0 = T * ( f - 1 )/( fPowN - 1 );
|
|
|
|
const double zeroLen = std::numeric_limits<double>::min();
|
|
|
|
// create intermediate nodes
|
|
double hSum = 0, hi = h0/f;
|
|
size_t iSeg = 1;
|
|
for ( size_t iStep = 1; iStep < edge._nodes.size(); ++iStep )
|
|
{
|
|
// compute an intermediate position
|
|
hi *= f;
|
|
hSum += hi;
|
|
while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1 )
|
|
++iSeg;
|
|
int iPrevSeg = iSeg-1;
|
|
while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 )
|
|
--iPrevSeg;
|
|
double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] );
|
|
gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg];
|
|
#ifdef __NODES_AT_POS
|
|
pos = edge._pos[ iStep ];
|
|
#endif
|
|
SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >( edge._nodes[ iStep ]);
|
|
if ( !eos._sWOL.IsNull() )
|
|
{
|
|
// compute XYZ by parameters <pos>
|
|
if ( isOnEdge )
|
|
{
|
|
u = pos.X();
|
|
if ( !node )
|
|
pos = curve->Value( u ).Transformed(loc);
|
|
}
|
|
else if ( eos._isRegularSWOL )
|
|
{
|
|
uv.SetCoord( pos.X(), pos.Y() );
|
|
if ( !node )
|
|
pos = surface->Value( pos.X(), pos.Y() );
|
|
}
|
|
else
|
|
{
|
|
uv.SetCoord( pos.X(), pos.Y() );
|
|
gp_Pnt p = r * pos3D[ iPrevSeg ] + (1-r) * pos3D[ iSeg ];
|
|
uv = surface->NextValueOfUV( uv, p, BRep_Tool::Tolerance( geomFace )).XY();
|
|
if ( !node )
|
|
pos = surface->Value( uv );
|
|
}
|
|
}
|
|
// create or update the node
|
|
if ( !node )
|
|
{
|
|
node = helper.AddNode( pos.X(), pos.Y(), pos.Z());
|
|
if ( !eos._sWOL.IsNull() )
|
|
{
|
|
if ( isOnEdge )
|
|
getMeshDS()->SetNodeOnEdge( node, geomEdge, u );
|
|
else
|
|
getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() );
|
|
}
|
|
else
|
|
{
|
|
getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( !eos._sWOL.IsNull() )
|
|
{
|
|
// make average pos from new and current parameters
|
|
if ( isOnEdge )
|
|
{
|
|
//u = 0.5 * ( u + helper.GetNodeU( geomEdge, node ));
|
|
if ( useExistingPos )
|
|
u = helper.GetNodeU( geomEdge, node );
|
|
pos = curve->Value( u ).Transformed(loc);
|
|
|
|
SMDS_EdgePositionPtr epos = node->GetPosition();
|
|
epos->SetUParameter( u );
|
|
}
|
|
else
|
|
{
|
|
//uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node ));
|
|
if ( useExistingPos )
|
|
uv = helper.GetNodeUV( geomFace, node );
|
|
pos = surface->Value( uv );
|
|
|
|
SMDS_FacePositionPtr fpos = node->GetPosition();
|
|
fpos->SetUParameter( uv.X() );
|
|
fpos->SetVParameter( uv.Y() );
|
|
}
|
|
}
|
|
node->setXYZ( pos.X(), pos.Y(), pos.Z() );
|
|
}
|
|
} // loop on edge._nodes
|
|
|
|
if ( !eos._sWOL.IsNull() ) // prepare for shrink()
|
|
{
|
|
if ( isOnEdge )
|
|
edge._pos.back().SetCoord( u, 0,0);
|
|
else
|
|
edge._pos.back().SetCoord( uv.X(), uv.Y() ,0);
|
|
|
|
if ( edgeOnSameNode )
|
|
edgeOnSameNode->_pos.back() = edge._pos.back();
|
|
}
|
|
|
|
} // loop on eos._edges to create nodes
|
|
|
|
|
|
if ( !getMeshDS()->IsEmbeddedMode() )
|
|
// Log node movement
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
SMESH_TNodeXYZ p ( eos._edges[i]->_nodes.back() );
|
|
getMeshDS()->MoveNode( p._node, p.X(), p.Y(), p.Z() );
|
|
}
|
|
}
|
|
|
|
|
|
// Create volumes
|
|
|
|
helper.SetElementsOnShape(true);
|
|
|
|
vector< vector<const SMDS_MeshNode*>* > nnVec;
|
|
set< vector<const SMDS_MeshNode*>* > nnSet;
|
|
set< int > degenEdgeInd;
|
|
vector<const SMDS_MeshElement*> degenVols;
|
|
|
|
TopExp_Explorer exp( data._solid, TopAbs_FACE );
|
|
for ( ; exp.More(); exp.Next() )
|
|
{
|
|
const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() );
|
|
if ( data._ignoreFaceIds.count( faceID ))
|
|
continue;
|
|
_EdgesOnShape* eos = data.GetShapeEdges( faceID );
|
|
SMDS_MeshGroup* group = StdMeshers_ViscousLayers::CreateGroup( eos->_hyp.GetGroupName(),
|
|
*helper.GetMesh(),
|
|
SMDSAbs_Volume );
|
|
std::vector< const SMDS_MeshElement* > vols;
|
|
const bool isReversedFace = data._reversedFaceIds.count( faceID );
|
|
SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() );
|
|
SMDS_ElemIteratorPtr fIt = fSubM->GetElements();
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement* face = fIt->next();
|
|
const int nbNodes = face->NbCornerNodes();
|
|
nnVec.resize( nbNodes );
|
|
nnSet.clear();
|
|
degenEdgeInd.clear();
|
|
size_t maxZ = 0, minZ = std::numeric_limits<size_t>::max();
|
|
SMDS_NodeIteratorPtr nIt = face->nodeIterator();
|
|
for ( int iN = 0; iN < nbNodes; ++iN )
|
|
{
|
|
const SMDS_MeshNode* n = nIt->next();
|
|
_LayerEdge* edge = data._n2eMap[ n ];
|
|
const int i = isReversedFace ? nbNodes-1-iN : iN;
|
|
nnVec[ i ] = & edge->_nodes;
|
|
maxZ = std::max( maxZ, nnVec[ i ]->size() );
|
|
minZ = std::min( minZ, nnVec[ i ]->size() );
|
|
|
|
if ( helper.HasDegeneratedEdges() )
|
|
nnSet.insert( nnVec[ i ]);
|
|
}
|
|
|
|
if ( maxZ == 0 )
|
|
continue;
|
|
if ( 0 < nnSet.size() && nnSet.size() < 3 )
|
|
continue;
|
|
|
|
vols.clear();
|
|
const SMDS_MeshElement* vol;
|
|
|
|
switch ( nbNodes )
|
|
{
|
|
case 3: // TRIA
|
|
{
|
|
// PENTA
|
|
for ( size_t iZ = 1; iZ < minZ; ++iZ )
|
|
{
|
|
vol = helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1],
|
|
(*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]);
|
|
vols.push_back( vol );
|
|
}
|
|
|
|
for ( size_t iZ = minZ; iZ < maxZ; ++iZ )
|
|
{
|
|
for ( int iN = 0; iN < nbNodes; ++iN )
|
|
if ( nnVec[ iN ]->size() < iZ+1 )
|
|
degenEdgeInd.insert( iN );
|
|
|
|
if ( degenEdgeInd.size() == 1 ) // PYRAM
|
|
{
|
|
int i2 = *degenEdgeInd.begin();
|
|
int i0 = helper.WrapIndex( i2 - 1, nbNodes );
|
|
int i1 = helper.WrapIndex( i2 + 1, nbNodes );
|
|
vol = helper.AddVolume( (*nnVec[i0])[iZ-1], (*nnVec[i1])[iZ-1],
|
|
(*nnVec[i1])[iZ ], (*nnVec[i0])[iZ ], (*nnVec[i2]).back());
|
|
vols.push_back( vol );
|
|
}
|
|
else // TETRA
|
|
{
|
|
int i3 = !degenEdgeInd.count(0) ? 0 : !degenEdgeInd.count(1) ? 1 : 2;
|
|
vol = helper.AddVolume( (*nnVec[ 0 ])[ i3 == 0 ? iZ-1 : nnVec[0]->size()-1 ],
|
|
(*nnVec[ 1 ])[ i3 == 1 ? iZ-1 : nnVec[1]->size()-1 ],
|
|
(*nnVec[ 2 ])[ i3 == 2 ? iZ-1 : nnVec[2]->size()-1 ],
|
|
(*nnVec[ i3 ])[ iZ ]);
|
|
vols.push_back( vol );
|
|
}
|
|
}
|
|
break; // TRIA
|
|
}
|
|
case 4: // QUAD
|
|
{
|
|
// HEX
|
|
for ( size_t iZ = 1; iZ < minZ; ++iZ )
|
|
{
|
|
vol = helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1],
|
|
(*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1],
|
|
(*nnVec[0])[iZ], (*nnVec[1])[iZ],
|
|
(*nnVec[2])[iZ], (*nnVec[3])[iZ]);
|
|
vols.push_back( vol );
|
|
}
|
|
|
|
for ( size_t iZ = minZ; iZ < maxZ; ++iZ )
|
|
{
|
|
for ( int iN = 0; iN < nbNodes; ++iN )
|
|
if ( nnVec[ iN ]->size() < iZ+1 )
|
|
degenEdgeInd.insert( iN );
|
|
|
|
switch ( degenEdgeInd.size() )
|
|
{
|
|
case 2: // PENTA
|
|
{
|
|
int i2 = *degenEdgeInd.begin();
|
|
int i3 = *degenEdgeInd.rbegin();
|
|
bool ok = ( i3 - i2 == 1 );
|
|
if ( i2 == 0 && i3 == 3 ) { i2 = 3; i3 = 0; ok = true; }
|
|
int i0 = helper.WrapIndex( i3 + 1, nbNodes );
|
|
int i1 = helper.WrapIndex( i0 + 1, nbNodes );
|
|
|
|
vol = helper.AddVolume( nnVec[i3]->back(), (*nnVec[i0])[iZ], (*nnVec[i0])[iZ-1],
|
|
nnVec[i2]->back(), (*nnVec[i1])[iZ], (*nnVec[i1])[iZ-1]);
|
|
vols.push_back( vol );
|
|
if ( !ok && vol )
|
|
degenVols.push_back( vol );
|
|
}
|
|
break;
|
|
|
|
default: // degen HEX
|
|
{
|
|
vol = helper.AddVolume( nnVec[0]->size() > iZ-1 ? (*nnVec[0])[iZ-1] : nnVec[0]->back(),
|
|
nnVec[1]->size() > iZ-1 ? (*nnVec[1])[iZ-1] : nnVec[1]->back(),
|
|
nnVec[2]->size() > iZ-1 ? (*nnVec[2])[iZ-1] : nnVec[2]->back(),
|
|
nnVec[3]->size() > iZ-1 ? (*nnVec[3])[iZ-1] : nnVec[3]->back(),
|
|
nnVec[0]->size() > iZ ? (*nnVec[0])[iZ] : nnVec[0]->back(),
|
|
nnVec[1]->size() > iZ ? (*nnVec[1])[iZ] : nnVec[1]->back(),
|
|
nnVec[2]->size() > iZ ? (*nnVec[2])[iZ] : nnVec[2]->back(),
|
|
nnVec[3]->size() > iZ ? (*nnVec[3])[iZ] : nnVec[3]->back());
|
|
vols.push_back( vol );
|
|
degenVols.push_back( vol );
|
|
}
|
|
}
|
|
}
|
|
break; // HEX
|
|
}
|
|
default:
|
|
return error("Not supported type of element", data._index);
|
|
|
|
} // switch ( nbNodes )
|
|
|
|
if ( group )
|
|
for ( size_t i = 0; i < vols.size(); ++i )
|
|
group->Add( vols[ i ]);
|
|
|
|
} // while ( fIt->more() )
|
|
} // loop on FACEs
|
|
|
|
if ( !degenVols.empty() )
|
|
{
|
|
SMESH_ComputeErrorPtr& err = _mesh->GetSubMesh( data._solid )->GetComputeError();
|
|
if ( !err || err->IsOK() )
|
|
{
|
|
SMESH_BadInputElements* badElems =
|
|
new SMESH_BadInputElements( getMeshDS(), COMPERR_WARNING, "Bad quality volumes created" );
|
|
badElems->myBadElements.insert( badElems->myBadElements.end(),
|
|
degenVols.begin(),degenVols.end() );
|
|
err.reset( badElems );
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace VISCOUS_3D
|
|
{
|
|
struct ShrinkFace;
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Pair of periodic FACEs
|
|
*/
|
|
struct PeriodicFaces
|
|
{
|
|
typedef StdMeshers_ProjectionUtils::TrsfFinder3D Trsf;
|
|
|
|
ShrinkFace* _shriFace[2];
|
|
TNodeNodeMap _nnMap;
|
|
Trsf _trsf;
|
|
|
|
PeriodicFaces( ShrinkFace* sf1, ShrinkFace* sf2 ): _shriFace{ sf1, sf2 } {}
|
|
bool IncludeShrunk( const TopoDS_Face& face, const TopTools_MapOfShape& shrunkFaces ) const;
|
|
bool MoveNodes( const TopoDS_Face& tgtFace );
|
|
void Clear() { _nnMap.clear(); }
|
|
bool IsEmpty() const { return _nnMap.empty(); }
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Shrink FACE data used to find periodic FACEs
|
|
*/
|
|
struct ShrinkFace
|
|
{
|
|
// ................................................................................
|
|
struct BndPart //!< part of FACE boundary, either shrink or no-shrink
|
|
{
|
|
bool _isShrink, _isReverse;
|
|
int _nbSegments;
|
|
AverageHyp* _hyp;
|
|
std::vector< SMESH_NodeXYZ > _nodes;
|
|
TopAbs_ShapeEnum _vertSWOLType[2]; // shrink part includes VERTEXes
|
|
AverageHyp* _vertHyp[2];
|
|
|
|
BndPart():
|
|
_isShrink(0), _isReverse(0), _nbSegments(0), _hyp(0),
|
|
_vertSWOLType{ TopAbs_WIRE, TopAbs_WIRE }, _vertHyp{ 0, 0 }
|
|
{}
|
|
|
|
bool operator==( const BndPart& other ) const
|
|
{
|
|
return ( _isShrink == other._isShrink &&
|
|
_nbSegments == other._nbSegments &&
|
|
_nodes.size() == other._nodes.size() &&
|
|
vertSWOLType1() == other.vertSWOLType1() &&
|
|
vertSWOLType2() == other.vertSWOLType2() &&
|
|
(( !_isShrink ) ||
|
|
( *_hyp == *other._hyp &&
|
|
vertHyp1() == other.vertHyp1() &&
|
|
vertHyp2() == other.vertHyp2() ))
|
|
);
|
|
}
|
|
bool CanAppend( const BndPart& other )
|
|
{
|
|
return ( _isShrink == other._isShrink &&
|
|
(( !_isShrink ) ||
|
|
( *_hyp == *other._hyp &&
|
|
*_hyp == vertHyp2() &&
|
|
vertHyp2() == other.vertHyp1() ))
|
|
);
|
|
}
|
|
void Append( const BndPart& other )
|
|
{
|
|
_nbSegments += other._nbSegments;
|
|
bool hasCommonNode = ( _nodes.back()->GetID() == other._nodes.front()->GetID() );
|
|
_nodes.insert( _nodes.end(), other._nodes.begin() + hasCommonNode, other._nodes.end() );
|
|
_vertSWOLType[1] = other._vertSWOLType[1];
|
|
if ( _isShrink )
|
|
_vertHyp[1] = other._vertHyp[1];
|
|
}
|
|
const SMDS_MeshNode* Node(size_t i) const
|
|
{
|
|
return _nodes[ _isReverse ? ( _nodes.size() - 1 - i ) : i ]._node;
|
|
}
|
|
void Reverse() { _isReverse = !_isReverse; }
|
|
const TopAbs_ShapeEnum& vertSWOLType1() const { return _vertSWOLType[ _isReverse ]; }
|
|
const TopAbs_ShapeEnum& vertSWOLType2() const { return _vertSWOLType[ !_isReverse ]; }
|
|
const AverageHyp& vertHyp1() const { return *(_vertHyp[ _isReverse ]); }
|
|
const AverageHyp& vertHyp2() const { return *(_vertHyp[ !_isReverse ]); }
|
|
};
|
|
// ................................................................................
|
|
|
|
SMESH_subMesh* _subMesh;
|
|
_SolidData* _data1;
|
|
_SolidData* _data2;
|
|
//bool _isPeriodic;
|
|
|
|
std::list< BndPart > _boundary;
|
|
int _boundarySize, _nbBoundaryParts;
|
|
|
|
void Init( SMESH_subMesh* sm, _SolidData* sd1, _SolidData* sd2 )
|
|
{
|
|
_subMesh = sm; _data1 = sd1; _data2 = sd2; //_isPeriodic = false;
|
|
}
|
|
bool IsSame( const TopoDS_Face& face ) const
|
|
{
|
|
return _subMesh->GetSubShape().IsSame( face );
|
|
}
|
|
bool IsShrunk( const TopTools_MapOfShape& shrunkFaces ) const
|
|
{
|
|
return shrunkFaces.Contains( _subMesh->GetSubShape() );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* Check if meshes on two FACEs are equal
|
|
*/
|
|
bool IsPeriodic( ShrinkFace& other, PeriodicFaces& periodic )
|
|
{
|
|
if ( !IsSameNbElements( other ))
|
|
return false;
|
|
|
|
this->SetBoundary();
|
|
other.SetBoundary();
|
|
if ( this->_boundarySize != other._boundarySize ||
|
|
this->_nbBoundaryParts != other._nbBoundaryParts )
|
|
return false;
|
|
|
|
for ( int isReverse = 0; isReverse < 2; ++isReverse )
|
|
{
|
|
if ( isReverse )
|
|
Reverse( _boundary );
|
|
|
|
// check boundaries
|
|
bool equalBoundary = false;
|
|
for ( int iP = 0; iP < _nbBoundaryParts && !equalBoundary; ++iP )
|
|
{
|
|
if ( ! ( equalBoundary = ( this->_boundary == other._boundary )))
|
|
// set first part at end
|
|
_boundary.splice( _boundary.end(), _boundary, _boundary.begin() );
|
|
}
|
|
if ( !equalBoundary )
|
|
continue;
|
|
|
|
// check connectivity
|
|
std::set<const SMDS_MeshElement*> elemsThis, elemsOther;
|
|
this->GetElements( elemsThis );
|
|
other.GetElements( elemsOther );
|
|
SMESH_MeshEditor::Sew_Error err =
|
|
SMESH_MeshEditor::FindMatchingNodes( elemsThis, elemsOther,
|
|
this->_boundary.front().Node(0),
|
|
other._boundary.front().Node(0),
|
|
this->_boundary.front().Node(1),
|
|
other._boundary.front().Node(1),
|
|
periodic._nnMap );
|
|
if ( err != SMESH_MeshEditor::SEW_OK )
|
|
continue;
|
|
|
|
// check node positions
|
|
std::vector< gp_XYZ > srcPnts, tgtPnts;
|
|
this->GetBoundaryPoints( srcPnts );
|
|
other.GetBoundaryPoints( tgtPnts );
|
|
if ( !periodic._trsf.Solve( srcPnts, tgtPnts )) {
|
|
continue;
|
|
}
|
|
double tol = std::numeric_limits<double>::max();
|
|
for ( size_t i = 1; i < srcPnts.size(); ++i ) {
|
|
tol = Min( tol, ( srcPnts[i-1] - srcPnts[i] ).SquareModulus() );
|
|
}
|
|
tol = 0.01 * Sqrt( tol );
|
|
bool nodeCoincide = true;
|
|
TNodeNodeMap::iterator n2n = periodic._nnMap.begin();
|
|
for ( ; n2n != periodic._nnMap.end() && nodeCoincide; ++n2n )
|
|
{
|
|
SMESH_NodeXYZ nSrc = n2n->first;
|
|
SMESH_NodeXYZ nTgt = n2n->second;
|
|
gp_XYZ pTgt = periodic._trsf.Transform( nSrc );
|
|
nodeCoincide = (( pTgt - nTgt ).SquareModulus() < tol );
|
|
}
|
|
if ( nodeCoincide )
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IsSameNbElements( ShrinkFace& other ) // check number of mesh faces
|
|
{
|
|
SMESHDS_SubMesh* sm1 = this->_subMesh->GetSubMeshDS();
|
|
SMESHDS_SubMesh* sm2 = other._subMesh->GetSubMeshDS();
|
|
return ( sm1->NbElements() == sm2->NbElements() &&
|
|
sm1->NbNodes() == sm2->NbNodes() );
|
|
}
|
|
|
|
void Reverse( std::list< BndPart >& boundary )
|
|
{
|
|
boundary.reverse();
|
|
for ( std::list< BndPart >::iterator part = boundary.begin(); part != boundary.end(); ++part )
|
|
part->Reverse();
|
|
}
|
|
|
|
void SetBoundary()
|
|
{
|
|
if ( !_boundary.empty() )
|
|
return;
|
|
|
|
TopoDS_Face F = TopoDS::Face( _subMesh->GetSubShape() );
|
|
if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
|
|
std::list< TopoDS_Edge > edges;
|
|
std::list< int > nbEdgesInWire;
|
|
/*int nbWires =*/ SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
|
|
|
|
// std::list< TopoDS_Edge >::iterator edgesEnd = edges.end();
|
|
// if ( nbWires > 1 ) {
|
|
// edgesEnd = edges.begin();
|
|
// std::advance( edgesEnd, nbEdgesInWire.front() );
|
|
// }
|
|
StdMeshers_FaceSide fSide( F, edges, _subMesh->GetFather(),
|
|
/*fwd=*/true, /*skipMedium=*/true );
|
|
_boundarySize = fSide.NbSegments();
|
|
|
|
//TopoDS_Vertex vv[2];
|
|
//std::list< TopoDS_Edge >::iterator edgeIt = edges.begin();
|
|
for ( int iE = 0; iE < nbEdgesInWire.front(); ++iE )
|
|
{
|
|
BndPart bndPart;
|
|
_EdgesOnShape* eos = _data1->GetShapeEdges( fSide.EdgeID( iE ));
|
|
|
|
bndPart._isShrink = ( eos->SWOLType() == TopAbs_FACE );
|
|
if ( bndPart._isShrink )
|
|
if (( _data1->_noShrinkShapes.count( eos->_shapeID )) ||
|
|
( _data2 && _data2->_noShrinkShapes.count( eos->_shapeID )))
|
|
bndPart._isShrink = false;
|
|
|
|
if ( bndPart._isShrink )
|
|
{
|
|
bndPart._hyp = & eos->_hyp;
|
|
_EdgesOnShape* eov[2] = { _data1->GetShapeEdges( fSide.FirstVertex( iE )),
|
|
_data1->GetShapeEdges( fSide.LastVertex ( iE )) };
|
|
for ( int iV = 0; iV < 2; ++iV )
|
|
{
|
|
bndPart._vertHyp [iV] = & eov[iV]->_hyp;
|
|
bndPart._vertSWOLType[iV] = eov[iV]->SWOLType();
|
|
if ( _data1->_noShrinkShapes.count( eov[iV]->_shapeID ))
|
|
bndPart._vertSWOLType[iV] = TopAbs_SHAPE;
|
|
if ( _data2 && bndPart._vertSWOLType[iV] != TopAbs_SHAPE )
|
|
{
|
|
eov[iV] = _data2->GetShapeEdges( iV ? fSide.LastVertex(iE) : fSide.FirstVertex(iE ));
|
|
if ( _data2->_noShrinkShapes.count( eov[iV]->_shapeID ))
|
|
bndPart._vertSWOLType[iV] = TopAbs_SHAPE;
|
|
else if ( eov[iV]->SWOLType() > bndPart._vertSWOLType[iV] )
|
|
bndPart._vertSWOLType[iV] = eov[iV]->SWOLType();
|
|
}
|
|
}
|
|
}
|
|
std::vector<const SMDS_MeshNode*> nodes = fSide.GetOrderedNodes( iE );
|
|
bndPart._nodes.assign( nodes.begin(), nodes.end() );
|
|
bndPart._nbSegments = bndPart._nodes.size() - 1;
|
|
|
|
if ( _boundary.empty() || ! _boundary.back().CanAppend( bndPart ))
|
|
_boundary.push_back( bndPart );
|
|
else
|
|
_boundary.back().Append( bndPart );
|
|
}
|
|
|
|
_nbBoundaryParts = _boundary.size();
|
|
if ( _nbBoundaryParts > 1 && _boundary.front()._isShrink == _boundary.back()._isShrink )
|
|
{
|
|
_boundary.back().Append( _boundary.front() );
|
|
_boundary.pop_front();
|
|
--_nbBoundaryParts;
|
|
}
|
|
}
|
|
|
|
void GetElements( std::set<const SMDS_MeshElement*>& theElems)
|
|
{
|
|
if ( SMESHDS_SubMesh* sm = _subMesh->GetSubMeshDS() )
|
|
for ( SMDS_ElemIteratorPtr fIt = sm->GetElements(); fIt->more(); )
|
|
theElems.insert( theElems.end(), fIt->next() );
|
|
|
|
return ;
|
|
}
|
|
|
|
void GetBoundaryPoints( std::vector< gp_XYZ >& points )
|
|
{
|
|
points.reserve( _boundarySize );
|
|
size_t nb = _boundary.rbegin()->_nodes.size();
|
|
int lastID = _boundary.rbegin()->Node( nb - 1 )->GetID();
|
|
std::list< BndPart >::const_iterator part = _boundary.begin();
|
|
for ( ; part != _boundary.end(); ++part )
|
|
{
|
|
size_t nb = part->_nodes.size();
|
|
size_t iF = 0;
|
|
size_t iR = nb - 1;
|
|
size_t* i = part->_isReverse ? &iR : &iF;
|
|
if ( part->_nodes[ *i ]->GetID() == lastID )
|
|
++iF, --iR;
|
|
for ( ; iF < nb; ++iF, --iR )
|
|
points.push_back( part->_nodes[ *i ]);
|
|
--iF, ++iR;
|
|
lastID = part->_nodes[ *i ]->GetID();
|
|
}
|
|
}
|
|
}; // struct ShrinkFace
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Periodic FACEs
|
|
*/
|
|
struct Periodicity
|
|
{
|
|
std::vector< ShrinkFace > _shrinkFaces;
|
|
std::vector< PeriodicFaces > _periodicFaces;
|
|
|
|
PeriodicFaces* GetPeriodic( const TopoDS_Face& face, const TopTools_MapOfShape& shrunkFaces )
|
|
{
|
|
for ( size_t i = 0; i < _periodicFaces.size(); ++i )
|
|
if ( _periodicFaces[ i ].IncludeShrunk( face, shrunkFaces ))
|
|
return & _periodicFaces[ i ];
|
|
return 0;
|
|
}
|
|
void ClearPeriodic( const TopoDS_Face& face )
|
|
{
|
|
for ( size_t i = 0; i < _periodicFaces.size(); ++i )
|
|
if ( _periodicFaces[ i ]._shriFace[0]->IsSame( face ) ||
|
|
_periodicFaces[ i ]._shriFace[1]->IsSame( face ))
|
|
_periodicFaces[ i ].Clear();
|
|
}
|
|
};
|
|
|
|
//================================================================================
|
|
/*!
|
|
* Check if a pair includes the given FACE and the other FACE is already shrunk
|
|
*/
|
|
bool PeriodicFaces::IncludeShrunk( const TopoDS_Face& face,
|
|
const TopTools_MapOfShape& shrunkFaces ) const
|
|
{
|
|
if ( IsEmpty() ) return false;
|
|
return (( _shriFace[0]->IsSame( face ) && _shriFace[1]->IsShrunk( shrunkFaces )) ||
|
|
( _shriFace[1]->IsSame( face ) && _shriFace[0]->IsShrunk( shrunkFaces )));
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* Make equal meshes on periodic faces by moving corresponding nodes
|
|
*/
|
|
bool PeriodicFaces::MoveNodes( const TopoDS_Face& tgtFace )
|
|
{
|
|
int iTgt = _shriFace[1]->IsSame( tgtFace );
|
|
int iSrc = 1 - iTgt;
|
|
|
|
_SolidData* dataSrc = _shriFace[iSrc]->_data1;
|
|
_SolidData* dataTgt = _shriFace[iTgt]->_data1;
|
|
|
|
Trsf * trsf = & _trsf, trsfInverse;
|
|
if ( iSrc != 0 )
|
|
{
|
|
trsfInverse = _trsf;
|
|
if ( !trsfInverse.Invert())
|
|
return false;
|
|
trsf = &trsfInverse;
|
|
}
|
|
SMESHDS_Mesh* meshDS = dataSrc->GetHelper().GetMeshDS();
|
|
|
|
TNode2Edge::iterator n2e;
|
|
TNodeNodeMap::iterator n2n = _nnMap.begin();
|
|
for ( ; n2n != _nnMap.end(); ++n2n )
|
|
{
|
|
const SMDS_MeshNode* const* nn = & n2n->first;
|
|
const SMDS_MeshNode* nSrc = nn[ iSrc ];
|
|
const SMDS_MeshNode* nTgt = nn[ iTgt ];
|
|
|
|
if (( nSrc->GetPosition()->GetDim() == 2 ) ||
|
|
(( n2e = dataSrc->_n2eMap.find( nSrc )) == dataSrc->_n2eMap.end() ))
|
|
{
|
|
SMESH_NodeXYZ pSrc = nSrc;
|
|
gp_XYZ pTgt = trsf->Transform( pSrc );
|
|
meshDS->MoveNode( nTgt, pTgt.X(), pTgt.Y(), pTgt.Z() );
|
|
}
|
|
else
|
|
{
|
|
_LayerEdge* leSrc = n2e->second;
|
|
n2e = dataTgt->_n2eMap.find( nTgt );
|
|
if ( n2e == dataTgt->_n2eMap.end() )
|
|
break;
|
|
_LayerEdge* leTgt = n2e->second;
|
|
if ( leSrc->_nodes.size() != leTgt->_nodes.size() )
|
|
break;
|
|
for ( size_t iN = 1; iN < leSrc->_nodes.size(); ++iN )
|
|
{
|
|
SMESH_NodeXYZ pSrc = leSrc->_nodes[ iN ];
|
|
gp_XYZ pTgt = trsf->Transform( pSrc );
|
|
meshDS->MoveNode( leTgt->_nodes[ iN ], pTgt.X(), pTgt.Y(), pTgt.Z() );
|
|
}
|
|
}
|
|
}
|
|
bool done = ( n2n == _nnMap.end() );
|
|
debugMsg( "PeriodicFaces::MoveNodes "
|
|
<< _shriFace[iSrc]->_subMesh->GetId() << " -> "
|
|
<< _shriFace[iTgt]->_subMesh->GetId() << " -- "
|
|
<< ( done ? "DONE" : "FAIL"));
|
|
|
|
return done;
|
|
}
|
|
} // namespace VISCOUS_3D; Periodicity part
|
|
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Find FACEs to shrink, that are equally meshed before shrink (i.e. periodic)
|
|
* and should remain equal after shrink
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::findPeriodicFaces()
|
|
{
|
|
// make map of (ids of FACEs to shrink mesh on) to (list of _SolidData containing
|
|
// _LayerEdge's inflated along FACE or EDGE)
|
|
std::map< TGeomID, std::list< _SolidData* > > id2sdMap;
|
|
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
|
|
{
|
|
_SolidData& data = _sdVec[i];
|
|
std::map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
|
|
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
|
|
if ( s2s->second.ShapeType() == TopAbs_FACE )
|
|
id2sdMap[ getMeshDS()->ShapeToIndex( s2s->second )].push_back( &data );
|
|
}
|
|
|
|
_periodicity.reset( new Periodicity );
|
|
_periodicity->_shrinkFaces.resize( id2sdMap.size() );
|
|
|
|
std::map< TGeomID, std::list< _SolidData* > >::iterator id2sdIt = id2sdMap.begin();
|
|
for ( size_t i = 0; i < id2sdMap.size(); ++i, ++id2sdIt )
|
|
{
|
|
_SolidData* sd1 = id2sdIt->second.front();
|
|
_SolidData* sd2 = id2sdIt->second.back();
|
|
_periodicity->_shrinkFaces[ i ].Init( _mesh->GetSubMeshContaining( id2sdIt->first ), sd1, sd2 );
|
|
}
|
|
|
|
for ( size_t i1 = 0; i1 < _periodicity->_shrinkFaces.size(); ++i1 )
|
|
for ( size_t i2 = i1 + 1; i2 < _periodicity->_shrinkFaces.size(); ++i2 )
|
|
{
|
|
PeriodicFaces pf( & _periodicity->_shrinkFaces[ i1 ],
|
|
& _periodicity->_shrinkFaces[ i2 ]);
|
|
if ( pf._shriFace[0]->IsPeriodic( *pf._shriFace[1], pf ))
|
|
{
|
|
_periodicity->_periodicFaces.push_back( pf );
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Shrink 2D mesh on faces to let space for inflated layers
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::shrink(_SolidData& theData)
|
|
{
|
|
// make map of (ids of FACEs to shrink mesh on) to (list of _SolidData containing
|
|
// _LayerEdge's inflated along FACE or EDGE)
|
|
map< TGeomID, list< _SolidData* > > f2sdMap;
|
|
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
|
|
{
|
|
_SolidData& data = _sdVec[i];
|
|
map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
|
|
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
|
|
if ( s2s->second.ShapeType() == TopAbs_FACE && !_shrunkFaces.Contains( s2s->second ))
|
|
{
|
|
f2sdMap[ getMeshDS()->ShapeToIndex( s2s->second )].push_back( &data );
|
|
|
|
// Put mesh faces on the shrunk FACE to the proxy sub-mesh to avoid
|
|
// usage of mesh faces made in addBoundaryElements() by the 3D algo or
|
|
// by StdMeshers_QuadToTriaAdaptor
|
|
if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second ))
|
|
{
|
|
SMESH_ProxyMesh::SubMesh* proxySub =
|
|
data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true);
|
|
if ( proxySub->NbElements() == 0 )
|
|
{
|
|
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement* f = fIt->next();
|
|
// as a result 3D algo will use elements from proxySub and not from smDS
|
|
proxySub->AddElement( f );
|
|
f->setIsMarked( true );
|
|
|
|
// Mark nodes on the FACE to discriminate them from nodes
|
|
// added by addBoundaryElements(); marked nodes are to be smoothed while shrink()
|
|
for ( int iN = 0, nbN = f->NbNodes(); iN < nbN; ++iN )
|
|
{
|
|
const SMDS_MeshNode* n = f->GetNode( iN );
|
|
if ( n->GetPosition()->GetDim() == 2 )
|
|
n->setIsMarked( true );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
helper.ToFixNodeParameters( true );
|
|
|
|
// EDGEs to shrink
|
|
map< TGeomID, _Shrinker1D > e2shrMap;
|
|
vector< _EdgesOnShape* > subEOS;
|
|
vector< _LayerEdge* > lEdges;
|
|
|
|
// loop on FACEs to shrink mesh on
|
|
map< TGeomID, list< _SolidData* > >::iterator f2sd = f2sdMap.begin();
|
|
for ( ; f2sd != f2sdMap.end(); ++f2sd )
|
|
{
|
|
list< _SolidData* > & dataList = f2sd->second;
|
|
if ( dataList.front()->_n2eMap.empty() ||
|
|
dataList.back() ->_n2eMap.empty() )
|
|
continue; // not yet computed
|
|
if ( dataList.front() != &theData &&
|
|
dataList.back() != &theData )
|
|
continue;
|
|
|
|
_SolidData& data = *dataList.front();
|
|
_SolidData* data2 = dataList.size() > 1 ? dataList.back() : 0;
|
|
const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first ));
|
|
SMESH_subMesh* sm = _mesh->GetSubMesh( F );
|
|
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
|
|
|
|
Handle(Geom_Surface) surface = BRep_Tool::Surface( F );
|
|
|
|
_shrunkFaces.Add( F );
|
|
helper.SetSubShape( F );
|
|
|
|
// ==============================
|
|
// Use periodicity to move nodes
|
|
// ==============================
|
|
|
|
PeriodicFaces* periodic = _periodicity->GetPeriodic( F, _shrunkFaces );
|
|
bool movedByPeriod = ( periodic && periodic->MoveNodes( F ));
|
|
|
|
// ===========================
|
|
// Prepare data for shrinking
|
|
// ===========================
|
|
|
|
// Collect nodes to smooth (they are marked at the beginning of this method)
|
|
vector < const SMDS_MeshNode* > smoothNodes;
|
|
|
|
if ( !movedByPeriod )
|
|
{
|
|
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshNode* n = nIt->next();
|
|
if ( n->isMarked() )
|
|
smoothNodes.push_back( n );
|
|
}
|
|
}
|
|
// Find out face orientation
|
|
double refSign = 1;
|
|
const set<TGeomID> ignoreShapes;
|
|
bool isOkUV;
|
|
if ( !smoothNodes.empty() )
|
|
{
|
|
vector<_Simplex> simplices;
|
|
_Simplex::GetSimplices( smoothNodes[0], simplices, ignoreShapes );
|
|
helper.GetNodeUV( F, simplices[0]._nPrev, 0, &isOkUV ); // fix UV of simplex nodes
|
|
helper.GetNodeUV( F, simplices[0]._nNext, 0, &isOkUV );
|
|
gp_XY uv = helper.GetNodeUV( F, smoothNodes[0], 0, &isOkUV );
|
|
if ( !simplices[0].IsForward(uv, smoothNodes[0], F, helper, refSign ))
|
|
refSign = -1;
|
|
}
|
|
|
|
// Find _LayerEdge's inflated along F
|
|
subEOS.clear();
|
|
lEdges.clear();
|
|
{
|
|
SMESH_subMeshIteratorPtr subIt = sm->getDependsOnIterator(/*includeSelf=*/false,
|
|
/*complexFirst=*/true); //!!!
|
|
while ( subIt->more() )
|
|
{
|
|
const TGeomID subID = subIt->next()->GetId();
|
|
if ( data._noShrinkShapes.count( subID ))
|
|
continue;
|
|
_EdgesOnShape* eos = data.GetShapeEdges( subID );
|
|
if ( !eos || eos->_sWOL.IsNull() )
|
|
if ( data2 ) // check in adjacent SOLID
|
|
{
|
|
eos = data2->GetShapeEdges( subID );
|
|
if ( !eos || eos->_sWOL.IsNull() )
|
|
continue;
|
|
}
|
|
subEOS.push_back( eos );
|
|
|
|
if ( !movedByPeriod )
|
|
for ( size_t i = 0; i < eos->_edges.size(); ++i )
|
|
{
|
|
lEdges.push_back( eos->_edges[ i ] );
|
|
prepareEdgeToShrink( *eos->_edges[ i ], *eos, helper, smDS );
|
|
}
|
|
}
|
|
}
|
|
|
|
dumpFunction(SMESH_Comment("beforeShrinkFace")<<f2sd->first); // debug
|
|
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
|
|
while ( fIt->more() )
|
|
if ( const SMDS_MeshElement* f = fIt->next() )
|
|
dumpChangeNodes( f );
|
|
dumpFunctionEnd();
|
|
|
|
// Replace source nodes by target nodes in mesh faces to shrink
|
|
dumpFunction(SMESH_Comment("replNodesOnFace")<<f2sd->first); // debug
|
|
const SMDS_MeshNode* nodes[20];
|
|
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = * subEOS[ iS ];
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge& edge = *eos._edges[i];
|
|
const SMDS_MeshNode* srcNode = edge._nodes[0];
|
|
const SMDS_MeshNode* tgtNode = edge._nodes.back();
|
|
SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement* f = fIt->next();
|
|
if ( !smDS->Contains( f ) || !f->isMarked() )
|
|
continue;
|
|
SMDS_NodeIteratorPtr nIt = f->nodeIterator();
|
|
for ( int iN = 0; nIt->more(); ++iN )
|
|
{
|
|
const SMDS_MeshNode* n = nIt->next();
|
|
nodes[iN] = ( n == srcNode ? tgtNode : n );
|
|
}
|
|
helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() );
|
|
dumpChangeNodes( f );
|
|
}
|
|
}
|
|
}
|
|
dumpFunctionEnd();
|
|
|
|
// find out if a FACE is concave
|
|
const bool isConcaveFace = isConcave( F, helper );
|
|
|
|
// Create _SmoothNode's on face F
|
|
vector< _SmoothNode > nodesToSmooth( smoothNodes.size() );
|
|
{
|
|
dumpFunction(SMESH_Comment("fixUVOnFace")<<f2sd->first); // debug
|
|
const bool sortSimplices = isConcaveFace;
|
|
for ( size_t i = 0; i < smoothNodes.size(); ++i )
|
|
{
|
|
const SMDS_MeshNode* n = smoothNodes[i];
|
|
nodesToSmooth[ i ]._node = n;
|
|
// src nodes must be already replaced by tgt nodes to have tgt nodes in _simplices
|
|
_Simplex::GetSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes, 0, sortSimplices);
|
|
// fix up incorrect uv of nodes on the FACE
|
|
helper.GetNodeUV( F, n, 0, &isOkUV);
|
|
dumpMove( n );
|
|
}
|
|
dumpFunctionEnd();
|
|
}
|
|
//if ( nodesToSmooth.empty() ) continue;
|
|
|
|
// Find EDGE's to shrink and set simpices to LayerEdge's
|
|
set< _Shrinker1D* > eShri1D;
|
|
{
|
|
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = * subEOS[ iS ];
|
|
if ( eos.SWOLType() == TopAbs_EDGE )
|
|
{
|
|
SMESH_subMesh* edgeSM = _mesh->GetSubMesh( eos._sWOL );
|
|
VISCOUS_3D::ToClearSubWithMain( edgeSM, data._solid );
|
|
if ( !movedByPeriod )
|
|
{
|
|
_Shrinker1D& shrinker = e2shrMap[ edgeSM->GetId() ];
|
|
eShri1D.insert( & shrinker );
|
|
shrinker.AddEdge( eos._edges[0], eos, helper );
|
|
// restore params of nodes on EDGE if the EDGE has been already
|
|
// shrunk while shrinking other FACE
|
|
shrinker.RestoreParams();
|
|
}
|
|
}
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
_LayerEdge& edge = * eos._edges[i];
|
|
_Simplex::GetSimplices( /*tgtNode=*/edge._nodes.back(), edge._simplices, ignoreShapes );
|
|
|
|
// additionally mark tgt node; only marked nodes will be used in SetNewLength2d()
|
|
// not-marked nodes are those added by refine()
|
|
edge._nodes.back()->setIsMarked( true );
|
|
}
|
|
}
|
|
}
|
|
|
|
bool toFixTria = false; // to improve quality of trias by diagonal swap
|
|
if ( isConcaveFace && !movedByPeriod )
|
|
{
|
|
const bool hasTria = _mesh->NbTriangles(), hasQuad = _mesh->NbQuadrangles();
|
|
if ( hasTria != hasQuad ) {
|
|
toFixTria = hasTria;
|
|
}
|
|
else {
|
|
set<int> nbNodesSet;
|
|
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
|
|
while ( fIt->more() && nbNodesSet.size() < 2 )
|
|
nbNodesSet.insert( fIt->next()->NbCornerNodes() );
|
|
toFixTria = ( *nbNodesSet.begin() == 3 );
|
|
}
|
|
}
|
|
|
|
// ==================
|
|
// Perform shrinking
|
|
// ==================
|
|
|
|
bool shrunk = !movedByPeriod;
|
|
int nbBad, shriStep=0, smooStep=0;
|
|
_SmoothNode::SmoothType smoothType
|
|
= isConcaveFace ? _SmoothNode::ANGULAR : _SmoothNode::LAPLACIAN;
|
|
SMESH_Comment errMsg;
|
|
while ( shrunk )
|
|
{
|
|
shriStep++;
|
|
// Move boundary nodes (actually just set new UV)
|
|
// -----------------------------------------------
|
|
dumpFunction(SMESH_Comment("moveBoundaryOnF")<<f2sd->first<<"_st"<<shriStep ); // debug
|
|
shrunk = false;
|
|
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = * subEOS[ iS ];
|
|
for ( size_t i = 0; i < eos._edges.size(); ++i )
|
|
{
|
|
shrunk |= eos._edges[i]->SetNewLength2d( surface, F, eos, helper );
|
|
}
|
|
}
|
|
dumpFunctionEnd();
|
|
|
|
// Move nodes on EDGE's
|
|
// (XYZ is set as soon as a needed length reached in SetNewLength2d())
|
|
set< _Shrinker1D* >::iterator shr = eShri1D.begin();
|
|
for ( ; shr != eShri1D.end(); ++shr )
|
|
(*shr)->Compute( /*set3D=*/false, helper );
|
|
|
|
// Smoothing in 2D
|
|
// -----------------
|
|
int nbNoImpSteps = 0;
|
|
bool moved = true;
|
|
nbBad = 1;
|
|
while (( nbNoImpSteps < 5 && nbBad > 0) && moved)
|
|
{
|
|
dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
|
|
|
|
int oldBadNb = nbBad;
|
|
nbBad = 0;
|
|
moved = false;
|
|
// '% 5' minimizes NB FUNCTIONS on viscous_layers_00/B2 case
|
|
_SmoothNode::SmoothType smooTy = ( smooStep % 5 ) ? smoothType : _SmoothNode::LAPLACIAN;
|
|
for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
|
|
{
|
|
moved |= nodesToSmooth[i].Smooth( nbBad, surface, helper, refSign,
|
|
smooTy, /*set3D=*/isConcaveFace);
|
|
}
|
|
if ( nbBad < oldBadNb )
|
|
nbNoImpSteps = 0;
|
|
else
|
|
nbNoImpSteps++;
|
|
|
|
dumpFunctionEnd();
|
|
}
|
|
|
|
errMsg.clear();
|
|
if ( nbBad > 0 )
|
|
errMsg << "Can't shrink 2D mesh on face " << f2sd->first;
|
|
if ( shriStep > 200 )
|
|
errMsg << "Infinite loop at shrinking 2D mesh on face " << f2sd->first;
|
|
if ( !errMsg.empty() )
|
|
break;
|
|
|
|
// Fix narrow triangles by swapping diagonals
|
|
// ---------------------------------------
|
|
if ( toFixTria )
|
|
{
|
|
set<const SMDS_MeshNode*> usedNodes;
|
|
fixBadFaces( F, helper, /*is2D=*/true, shriStep, & usedNodes); // swap diagonals
|
|
|
|
// update working data
|
|
set<const SMDS_MeshNode*>::iterator n;
|
|
for ( size_t i = 0; i < nodesToSmooth.size() && !usedNodes.empty(); ++i )
|
|
{
|
|
n = usedNodes.find( nodesToSmooth[ i ]._node );
|
|
if ( n != usedNodes.end())
|
|
{
|
|
_Simplex::GetSimplices( nodesToSmooth[ i ]._node,
|
|
nodesToSmooth[ i ]._simplices,
|
|
ignoreShapes, NULL,
|
|
/*sortSimplices=*/ smoothType == _SmoothNode::ANGULAR );
|
|
usedNodes.erase( n );
|
|
}
|
|
}
|
|
for ( size_t i = 0; i < lEdges.size() && !usedNodes.empty(); ++i )
|
|
{
|
|
n = usedNodes.find( /*tgtNode=*/ lEdges[i]->_nodes.back() );
|
|
if ( n != usedNodes.end())
|
|
{
|
|
_Simplex::GetSimplices( lEdges[i]->_nodes.back(),
|
|
lEdges[i]->_simplices,
|
|
ignoreShapes );
|
|
usedNodes.erase( n );
|
|
}
|
|
}
|
|
}
|
|
// TODO: check effect of this additional smooth
|
|
// additional laplacian smooth to increase allowed shrink step
|
|
// for ( int st = 1; st; --st )
|
|
// {
|
|
// dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
|
|
// for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
|
|
// {
|
|
// nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign,
|
|
// _SmoothNode::LAPLACIAN,/*set3D=*/false);
|
|
// }
|
|
// }
|
|
|
|
} // while ( shrunk )
|
|
|
|
if ( !errMsg.empty() ) // Try to re-compute the shrink FACE
|
|
{
|
|
debugMsg( "Re-compute FACE " << f2sd->first << " because " << errMsg );
|
|
|
|
// remove faces
|
|
SMESHDS_SubMesh* psm = data._proxyMesh->getFaceSubM( F );
|
|
{
|
|
vector< const SMDS_MeshElement* > facesToRm;
|
|
if ( psm )
|
|
{
|
|
facesToRm.reserve( psm->NbElements() );
|
|
for ( SMDS_ElemIteratorPtr ite = psm->GetElements(); ite->more(); )
|
|
facesToRm.push_back( ite->next() );
|
|
|
|
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
|
|
if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F )))
|
|
psm->Clear();
|
|
}
|
|
for ( size_t i = 0; i < facesToRm.size(); ++i )
|
|
getMeshDS()->RemoveFreeElement( facesToRm[i], smDS, /*fromGroups=*/false );
|
|
}
|
|
// remove nodes
|
|
{
|
|
TIDSortedNodeSet nodesToKeep; // nodes of _LayerEdge to keep
|
|
for ( size_t iS = 0; iS < subEOS.size(); ++iS ) {
|
|
for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i )
|
|
nodesToKeep.insert( ++( subEOS[iS]->_edges[i]->_nodes.begin() ),
|
|
subEOS[iS]->_edges[i]->_nodes.end() );
|
|
}
|
|
SMDS_NodeIteratorPtr itn = smDS->GetNodes();
|
|
while ( itn->more() ) {
|
|
const SMDS_MeshNode* n = itn->next();
|
|
if ( !nodesToKeep.count( n ))
|
|
getMeshDS()->RemoveFreeNode( n, smDS, /*fromGroups=*/false );
|
|
}
|
|
}
|
|
_periodicity->ClearPeriodic( F );
|
|
|
|
// restore position and UV of target nodes
|
|
gp_Pnt p;
|
|
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
|
|
for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i )
|
|
{
|
|
_LayerEdge* edge = subEOS[iS]->_edges[i];
|
|
SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( edge->_nodes.back() );
|
|
if ( edge->_pos.empty() ||
|
|
edge->Is( _LayerEdge::SHRUNK )) continue;
|
|
if ( subEOS[iS]->SWOLType() == TopAbs_FACE )
|
|
{
|
|
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
|
|
pos->SetUParameter( edge->_pos[0].X() );
|
|
pos->SetVParameter( edge->_pos[0].Y() );
|
|
p = surface->Value( edge->_pos[0].X(), edge->_pos[0].Y() );
|
|
}
|
|
else
|
|
{
|
|
SMDS_EdgePositionPtr pos = tgtNode->GetPosition();
|
|
pos->SetUParameter( edge->_pos[0].Coord( U_TGT ));
|
|
p = BRepAdaptor_Curve( TopoDS::Edge( subEOS[iS]->_sWOL )).Value( pos->GetUParameter() );
|
|
}
|
|
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
|
|
dumpMove( tgtNode );
|
|
}
|
|
// shrink EDGE sub-meshes and set proxy sub-meshes
|
|
UVPtStructVec uvPtVec;
|
|
set< _Shrinker1D* >::iterator shrIt = eShri1D.begin();
|
|
for ( shrIt = eShri1D.begin(); shrIt != eShri1D.end(); ++shrIt )
|
|
{
|
|
_Shrinker1D* shr = (*shrIt);
|
|
shr->Compute( /*set3D=*/true, helper );
|
|
|
|
// set proxy mesh of EDGEs w/o layers
|
|
map< double, const SMDS_MeshNode* > nodes;
|
|
SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), shr->GeomEdge(),/*skipMedium=*/true, nodes);
|
|
// remove refinement nodes
|
|
const SMDS_MeshNode* sn0 = shr->SrcNode(0), *sn1 = shr->SrcNode(1);
|
|
const SMDS_MeshNode* tn0 = shr->TgtNode(0), *tn1 = shr->TgtNode(1);
|
|
map< double, const SMDS_MeshNode* >::iterator u2n = nodes.begin();
|
|
if ( u2n->second == sn0 || u2n->second == sn1 )
|
|
{
|
|
while ( u2n->second != tn0 && u2n->second != tn1 )
|
|
++u2n;
|
|
nodes.erase( nodes.begin(), u2n );
|
|
}
|
|
u2n = --nodes.end();
|
|
if ( u2n->second == sn0 || u2n->second == sn1 )
|
|
{
|
|
while ( u2n->second != tn0 && u2n->second != tn1 )
|
|
--u2n;
|
|
nodes.erase( ++u2n, nodes.end() );
|
|
}
|
|
// set proxy sub-mesh
|
|
uvPtVec.resize( nodes.size() );
|
|
u2n = nodes.begin();
|
|
BRepAdaptor_Curve2d curve( shr->GeomEdge(), F );
|
|
for ( size_t i = 0; i < nodes.size(); ++i, ++u2n )
|
|
{
|
|
uvPtVec[ i ].node = u2n->second;
|
|
uvPtVec[ i ].param = u2n->first;
|
|
uvPtVec[ i ].SetUV( curve.Value( u2n->first ).XY() );
|
|
}
|
|
StdMeshers_FaceSide fSide( uvPtVec, F, shr->GeomEdge(), _mesh );
|
|
StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide );
|
|
}
|
|
|
|
// set proxy mesh of EDGEs with layers
|
|
vector< _LayerEdge* > edges;
|
|
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
|
|
{
|
|
_EdgesOnShape& eos = * subEOS[ iS ];
|
|
if ( eos.ShapeType() != TopAbs_EDGE ) continue;
|
|
|
|
const TopoDS_Edge& E = TopoDS::Edge( eos._shape );
|
|
data.SortOnEdge( E, eos._edges );
|
|
|
|
edges.clear();
|
|
if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 0, E, /*CumOri=*/false )))
|
|
if ( !eov->_edges.empty() )
|
|
edges.push_back( eov->_edges[0] ); // on 1st VERTEX
|
|
|
|
edges.insert( edges.end(), eos._edges.begin(), eos._edges.end() );
|
|
|
|
if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 1, E, /*CumOri=*/false )))
|
|
if ( !eov->_edges.empty() )
|
|
edges.push_back( eov->_edges[0] ); // on last VERTEX
|
|
|
|
uvPtVec.resize( edges.size() );
|
|
for ( size_t i = 0; i < edges.size(); ++i )
|
|
{
|
|
uvPtVec[ i ].node = edges[i]->_nodes.back();
|
|
uvPtVec[ i ].param = helper.GetNodeU( E, edges[i]->_nodes[0] );
|
|
uvPtVec[ i ].SetUV( helper.GetNodeUV( F, edges[i]->_nodes.back() ));
|
|
}
|
|
BRep_Tool::Range( E, uvPtVec[0].param, uvPtVec.back().param );
|
|
StdMeshers_FaceSide fSide( uvPtVec, F, E, _mesh );
|
|
StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide );
|
|
}
|
|
// temporary clear the FACE sub-mesh from faces made by refine()
|
|
vector< const SMDS_MeshElement* > elems;
|
|
elems.reserve( smDS->NbElements() + smDS->NbNodes() );
|
|
for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); )
|
|
elems.push_back( ite->next() );
|
|
for ( SMDS_NodeIteratorPtr ite = smDS->GetNodes(); ite->more(); )
|
|
elems.push_back( ite->next() );
|
|
smDS->Clear();
|
|
|
|
// compute the mesh on the FACE
|
|
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
|
|
sm->ComputeStateEngine( SMESH_subMesh::COMPUTE_SUBMESH );
|
|
|
|
// re-fill proxy sub-meshes of the FACE
|
|
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
|
|
if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F )))
|
|
for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); )
|
|
psm->AddElement( ite->next() );
|
|
|
|
// re-fill smDS
|
|
for ( size_t i = 0; i < elems.size(); ++i )
|
|
smDS->AddElement( elems[i] );
|
|
|
|
if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK )
|
|
return error( errMsg );
|
|
|
|
} // end of re-meshing in case of failed smoothing
|
|
else if ( !movedByPeriod )
|
|
{
|
|
// No wrongly shaped faces remain; final smooth. Set node XYZ.
|
|
bool isStructuredFixed = false;
|
|
if ( SMESH_2D_Algo* algo = dynamic_cast<SMESH_2D_Algo*>( sm->GetAlgo() ))
|
|
isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F );
|
|
if ( !isStructuredFixed )
|
|
{
|
|
if ( isConcaveFace ) // fix narrow faces by swapping diagonals
|
|
fixBadFaces( F, helper, /*is2D=*/false, ++shriStep );
|
|
|
|
for ( int st = 3; st; --st )
|
|
{
|
|
switch( st ) {
|
|
case 1: smoothType = _SmoothNode::LAPLACIAN; break;
|
|
case 2: smoothType = _SmoothNode::LAPLACIAN; break;
|
|
case 3: smoothType = _SmoothNode::ANGULAR; break;
|
|
}
|
|
dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
|
|
for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
|
|
{
|
|
nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign,
|
|
smoothType,/*set3D=*/st==1 );
|
|
}
|
|
dumpFunctionEnd();
|
|
}
|
|
}
|
|
if ( !getMeshDS()->IsEmbeddedMode() )
|
|
// Log node movement
|
|
for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
|
|
{
|
|
SMESH_TNodeXYZ p ( nodesToSmooth[i]._node );
|
|
getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() );
|
|
}
|
|
}
|
|
|
|
// Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh
|
|
VISCOUS_3D::ToClearSubWithMain( sm, data._solid );
|
|
if ( data2 )
|
|
VISCOUS_3D::ToClearSubWithMain( sm, data2->_solid );
|
|
|
|
} // loop on FACES to shrink mesh on
|
|
|
|
|
|
// Replace source nodes by target nodes in shrunk mesh edges
|
|
|
|
map< int, _Shrinker1D >::iterator e2shr = e2shrMap.begin();
|
|
for ( ; e2shr != e2shrMap.end(); ++e2shr )
|
|
e2shr->second.SwapSrcTgtNodes( getMeshDS() );
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes 2d shrink direction and finds nodes limiting shrinking
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper,
|
|
const SMESHDS_SubMesh* faceSubMesh)
|
|
{
|
|
const SMDS_MeshNode* srcNode = edge._nodes[0];
|
|
const SMDS_MeshNode* tgtNode = edge._nodes.back();
|
|
|
|
if ( eos.SWOLType() == TopAbs_FACE )
|
|
{
|
|
if ( tgtNode->GetPosition()->GetDim() != 2 ) // not inflated edge
|
|
{
|
|
edge._pos.clear();
|
|
edge.Set( _LayerEdge::SHRUNK );
|
|
return srcNode == tgtNode;
|
|
}
|
|
gp_XY srcUV ( edge._pos[0].X(), edge._pos[0].Y() ); //helper.GetNodeUV( F, srcNode );
|
|
gp_XY tgtUV = edge.LastUV( TopoDS::Face( eos._sWOL ), eos ); //helper.GetNodeUV( F, tgtNode );
|
|
gp_Vec2d uvDir( srcUV, tgtUV );
|
|
double uvLen = uvDir.Magnitude();
|
|
uvDir /= uvLen;
|
|
edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0 );
|
|
edge._len = uvLen;
|
|
|
|
//edge._pos.resize(1);
|
|
edge._pos[0].SetCoord( tgtUV.X(), tgtUV.Y(), 0 );
|
|
|
|
// set UV of source node to target node
|
|
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
|
|
pos->SetUParameter( srcUV.X() );
|
|
pos->SetVParameter( srcUV.Y() );
|
|
}
|
|
else // _sWOL is TopAbs_EDGE
|
|
{
|
|
if ( tgtNode->GetPosition()->GetDim() != 1 ) // not inflated edge
|
|
{
|
|
edge._pos.clear();
|
|
edge.Set( _LayerEdge::SHRUNK );
|
|
return srcNode == tgtNode;
|
|
}
|
|
const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL );
|
|
SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E );
|
|
if ( !edgeSM || edgeSM->NbElements() == 0 )
|
|
return error(SMESH_Comment("Not meshed EDGE ") << getMeshDS()->ShapeToIndex( E ));
|
|
|
|
const SMDS_MeshNode* n2 = 0;
|
|
SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge);
|
|
while ( eIt->more() && !n2 )
|
|
{
|
|
const SMDS_MeshElement* e = eIt->next();
|
|
if ( !edgeSM->Contains(e)) continue;
|
|
n2 = e->GetNode( 0 );
|
|
if ( n2 == srcNode ) n2 = e->GetNode( 1 );
|
|
}
|
|
if ( !n2 )
|
|
return error(SMESH_Comment("Wrongly meshed EDGE ") << getMeshDS()->ShapeToIndex( E ));
|
|
|
|
if ( n2 == tgtNode ) // for 3D_mesh_GHS3D_01/B1
|
|
{
|
|
// shrunk by other SOLID
|
|
edge.Set( _LayerEdge::SHRUNK ); // ???
|
|
return true;
|
|
}
|
|
|
|
double uSrc = helper.GetNodeU( E, srcNode, n2 );
|
|
double uTgt = helper.GetNodeU( E, tgtNode, srcNode );
|
|
double u2 = helper.GetNodeU( E, n2, srcNode );
|
|
|
|
//edge._pos.clear();
|
|
|
|
if ( fabs( uSrc-uTgt ) < 0.99 * fabs( uSrc-u2 ))
|
|
{
|
|
// tgtNode is located so that it does not make faces with wrong orientation
|
|
edge.Set( _LayerEdge::SHRUNK );
|
|
return true;
|
|
}
|
|
//edge._pos.resize(1);
|
|
edge._pos[0].SetCoord( U_TGT, uTgt );
|
|
edge._pos[0].SetCoord( U_SRC, uSrc );
|
|
edge._pos[0].SetCoord( LEN_TGT, fabs( uSrc-uTgt ));
|
|
|
|
edge._simplices.resize( 1 );
|
|
edge._simplices[0]._nPrev = n2;
|
|
|
|
// set U of source node to the target node
|
|
SMDS_EdgePositionPtr pos = tgtNode->GetPosition();
|
|
pos->SetUParameter( uSrc );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Restore position of a sole node of a _LayerEdge based on _noShrinkShapes
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::restoreNoShrink( _LayerEdge& edge ) const
|
|
{
|
|
if ( edge._nodes.size() == 1 )
|
|
{
|
|
edge._pos.clear();
|
|
edge._len = 0;
|
|
|
|
const SMDS_MeshNode* srcNode = edge._nodes[0];
|
|
TopoDS_Shape S = SMESH_MesherHelper::GetSubShapeByNode( srcNode, getMeshDS() );
|
|
if ( S.IsNull() ) return;
|
|
|
|
gp_Pnt p;
|
|
|
|
switch ( S.ShapeType() )
|
|
{
|
|
case TopAbs_EDGE:
|
|
{
|
|
double f,l;
|
|
TopLoc_Location loc;
|
|
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( S ), loc, f, l );
|
|
if ( curve.IsNull() ) return;
|
|
SMDS_EdgePositionPtr ePos = srcNode->GetPosition();
|
|
p = curve->Value( ePos->GetUParameter() );
|
|
break;
|
|
}
|
|
case TopAbs_VERTEX:
|
|
{
|
|
p = BRep_Tool::Pnt( TopoDS::Vertex( S ));
|
|
break;
|
|
}
|
|
default: return;
|
|
}
|
|
getMeshDS()->MoveNode( srcNode, p.X(), p.Y(), p.Z() );
|
|
dumpMove( srcNode );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Try to fix triangles with high aspect ratio by swapping diagonals
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F,
|
|
SMESH_MesherHelper& helper,
|
|
const bool is2D,
|
|
const int step,
|
|
set<const SMDS_MeshNode*> * involvedNodes)
|
|
{
|
|
SMESH::Controls::AspectRatio qualifier;
|
|
SMESH::Controls::TSequenceOfXYZ points(3), points1(3), points2(3);
|
|
const double maxAspectRatio = is2D ? 4. : 2;
|
|
_NodeCoordHelper xyz( F, helper, is2D );
|
|
|
|
// find bad triangles
|
|
|
|
vector< const SMDS_MeshElement* > badTrias;
|
|
vector< double > badAspects;
|
|
SMESHDS_SubMesh* sm = helper.GetMeshDS()->MeshElements( F );
|
|
SMDS_ElemIteratorPtr fIt = sm->GetElements();
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement * f = fIt->next();
|
|
if ( f->NbCornerNodes() != 3 ) continue;
|
|
for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = xyz( f->GetNode(iP));
|
|
double aspect = qualifier.GetValue( points );
|
|
if ( aspect > maxAspectRatio )
|
|
{
|
|
badTrias.push_back( f );
|
|
badAspects.push_back( aspect );
|
|
}
|
|
}
|
|
if ( step == 1 )
|
|
{
|
|
dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<<helper.GetSubShapeID());
|
|
SMDS_ElemIteratorPtr fIt = sm->GetElements();
|
|
while ( fIt->more() )
|
|
{
|
|
const SMDS_MeshElement * f = fIt->next();
|
|
if ( f->NbCornerNodes() == 3 )
|
|
dumpChangeNodes( f );
|
|
}
|
|
dumpFunctionEnd();
|
|
}
|
|
if ( badTrias.empty() )
|
|
return;
|
|
|
|
// find couples of faces to swap diagonal
|
|
|
|
typedef pair < const SMDS_MeshElement* , const SMDS_MeshElement* > T2Trias;
|
|
vector< T2Trias > triaCouples;
|
|
|
|
TIDSortedElemSet involvedFaces, emptySet;
|
|
for ( size_t iTia = 0; iTia < badTrias.size(); ++iTia )
|
|
{
|
|
T2Trias trias [3];
|
|
double aspRatio [3];
|
|
int i1, i2, i3;
|
|
|
|
if ( !involvedFaces.insert( badTrias[iTia] ).second )
|
|
continue;
|
|
for ( int iP = 0; iP < 3; ++iP )
|
|
points(iP+1) = xyz( badTrias[iTia]->GetNode(iP));
|
|
|
|
// find triangles adjacent to badTrias[iTia] with better aspect ratio after diag-swaping
|
|
int bestCouple = -1;
|
|
for ( int iSide = 0; iSide < 3; ++iSide )
|
|
{
|
|
const SMDS_MeshNode* n1 = badTrias[iTia]->GetNode( iSide );
|
|
const SMDS_MeshNode* n2 = badTrias[iTia]->GetNode(( iSide+1 ) % 3 );
|
|
trias [iSide].first = badTrias[iTia];
|
|
trias [iSide].second = SMESH_MeshAlgos::FindFaceInSet( n1, n2, emptySet, involvedFaces,
|
|
& i1, & i2 );
|
|
if (( ! trias[iSide].second ) ||
|
|
( trias[iSide].second->NbCornerNodes() != 3 ) ||
|
|
( ! sm->Contains( trias[iSide].second )))
|
|
continue;
|
|
|
|
// aspect ratio of an adjacent tria
|
|
for ( int iP = 0; iP < 3; ++iP )
|
|
points2(iP+1) = xyz( trias[iSide].second->GetNode(iP));
|
|
double aspectInit = qualifier.GetValue( points2 );
|
|
|
|
// arrange nodes as after diag-swaping
|
|
if ( helper.WrapIndex( i1+1, 3 ) == i2 )
|
|
i3 = helper.WrapIndex( i1-1, 3 );
|
|
else
|
|
i3 = helper.WrapIndex( i1+1, 3 );
|
|
points1 = points;
|
|
points1( 1+ iSide ) = points2( 1+ i3 );
|
|
points2( 1+ i2 ) = points1( 1+ ( iSide+2 ) % 3 );
|
|
|
|
// aspect ratio after diag-swaping
|
|
aspRatio[ iSide ] = qualifier.GetValue( points1 ) + qualifier.GetValue( points2 );
|
|
if ( aspRatio[ iSide ] > aspectInit + badAspects[ iTia ] )
|
|
continue;
|
|
|
|
// prevent inversion of a triangle
|
|
gp_Vec norm1 = gp_Vec( points1(1), points1(3) ) ^ gp_Vec( points1(1), points1(2) );
|
|
gp_Vec norm2 = gp_Vec( points2(1), points2(3) ) ^ gp_Vec( points2(1), points2(2) );
|
|
if ( norm1 * norm2 < 0. && norm1.Angle( norm2 ) > 70./180.*M_PI )
|
|
continue;
|
|
|
|
if ( bestCouple < 0 || aspRatio[ bestCouple ] > aspRatio[ iSide ] )
|
|
bestCouple = iSide;
|
|
}
|
|
|
|
if ( bestCouple >= 0 )
|
|
{
|
|
triaCouples.push_back( trias[bestCouple] );
|
|
involvedFaces.insert ( trias[bestCouple].second );
|
|
}
|
|
else
|
|
{
|
|
involvedFaces.erase( badTrias[iTia] );
|
|
}
|
|
}
|
|
if ( triaCouples.empty() )
|
|
return;
|
|
|
|
// swap diagonals
|
|
|
|
SMESH_MeshEditor editor( helper.GetMesh() );
|
|
dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<<helper.GetSubShapeID()<<"_"<<step);
|
|
for ( size_t i = 0; i < triaCouples.size(); ++i )
|
|
{
|
|
dumpChangeNodes( triaCouples[i].first );
|
|
dumpChangeNodes( triaCouples[i].second );
|
|
editor.InverseDiag( triaCouples[i].first, triaCouples[i].second );
|
|
}
|
|
|
|
if ( involvedNodes )
|
|
for ( size_t i = 0; i < triaCouples.size(); ++i )
|
|
{
|
|
involvedNodes->insert( triaCouples[i].first->begin_nodes(),
|
|
triaCouples[i].first->end_nodes() );
|
|
involvedNodes->insert( triaCouples[i].second->begin_nodes(),
|
|
triaCouples[i].second->end_nodes() );
|
|
}
|
|
|
|
// just for debug dump resulting triangles
|
|
dumpFunction(SMESH_Comment("swapDiagonals_F")<<helper.GetSubShapeID()<<"_"<<step);
|
|
for ( size_t i = 0; i < triaCouples.size(); ++i )
|
|
{
|
|
dumpChangeNodes( triaCouples[i].first );
|
|
dumpChangeNodes( triaCouples[i].second );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Move target node to it's final position on the FACE during shrinking
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _LayerEdge::SetNewLength2d( Handle(Geom_Surface)& surface,
|
|
const TopoDS_Face& F,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper )
|
|
{
|
|
if ( Is( SHRUNK ))
|
|
return false; // already at the target position
|
|
|
|
SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( _nodes.back() );
|
|
|
|
if ( eos.SWOLType() == TopAbs_FACE )
|
|
{
|
|
gp_XY curUV = helper.GetNodeUV( F, tgtNode );
|
|
gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y() );
|
|
gp_Vec2d uvDir( _normal.X(), _normal.Y() );
|
|
const double uvLen = tgtUV.Distance( curUV );
|
|
const double kSafe = Max( 0.5, 1. - 0.1 * _simplices.size() );
|
|
|
|
// Select shrinking step such that not to make faces with wrong orientation.
|
|
double stepSize = 1e100;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
{
|
|
if ( !_simplices[i]._nPrev->isMarked() ||
|
|
!_simplices[i]._nNext->isMarked() )
|
|
continue; // simplex of quadrangle created by addBoundaryElements()
|
|
|
|
// find intersection of 2 lines: curUV-tgtUV and that connecting simplex nodes
|
|
gp_XY uvN1 = helper.GetNodeUV( F, _simplices[i]._nPrev );
|
|
gp_XY uvN2 = helper.GetNodeUV( F, _simplices[i]._nNext );
|
|
gp_XY dirN = uvN2 - uvN1;
|
|
double det = uvDir.Crossed( dirN );
|
|
if ( Abs( det ) < std::numeric_limits<double>::min() ) continue;
|
|
gp_XY dirN2Cur = curUV - uvN1;
|
|
double step = dirN.Crossed( dirN2Cur ) / det;
|
|
if ( step > 0 )
|
|
stepSize = Min( step, stepSize );
|
|
}
|
|
gp_Pnt2d newUV;
|
|
if ( uvLen <= stepSize )
|
|
{
|
|
newUV = tgtUV;
|
|
Set( SHRUNK );
|
|
//_pos.clear();
|
|
}
|
|
else if ( stepSize > 0 )
|
|
{
|
|
newUV = curUV + uvDir.XY() * stepSize * kSafe;
|
|
}
|
|
else
|
|
{
|
|
return true;
|
|
}
|
|
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
|
|
pos->SetUParameter( newUV.X() );
|
|
pos->SetVParameter( newUV.Y() );
|
|
|
|
#ifdef __myDEBUG
|
|
gp_Pnt p = surface->Value( newUV.X(), newUV.Y() );
|
|
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
|
|
dumpMove( tgtNode );
|
|
#endif
|
|
}
|
|
else // _sWOL is TopAbs_EDGE
|
|
{
|
|
const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL );
|
|
const SMDS_MeshNode* n2 = _simplices[0]._nPrev;
|
|
SMDS_EdgePositionPtr tgtPos = tgtNode->GetPosition();
|
|
|
|
const double u2 = helper.GetNodeU( E, n2, tgtNode );
|
|
const double uSrc = _pos[0].Coord( U_SRC );
|
|
const double lenTgt = _pos[0].Coord( LEN_TGT );
|
|
|
|
double newU = _pos[0].Coord( U_TGT );
|
|
if ( lenTgt < 0.99 * fabs( uSrc-u2 )) // n2 got out of src-tgt range
|
|
{
|
|
Set( _LayerEdge::SHRUNK );
|
|
//_pos.clear();
|
|
}
|
|
else
|
|
{
|
|
newU = 0.1 * tgtPos->GetUParameter() + 0.9 * u2;
|
|
}
|
|
tgtPos->SetUParameter( newU );
|
|
#ifdef __myDEBUG
|
|
gp_XY newUV = helper.GetNodeUV( F, tgtNode, _nodes[0]);
|
|
gp_Pnt p = surface->Value( newUV.X(), newUV.Y() );
|
|
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
|
|
dumpMove( tgtNode );
|
|
#endif
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Perform smooth on the FACE
|
|
* \retval bool - true if the node has been moved
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _SmoothNode::Smooth(int& nbBad,
|
|
Handle(Geom_Surface)& surface,
|
|
SMESH_MesherHelper& helper,
|
|
const double refSign,
|
|
SmoothType how,
|
|
bool set3D)
|
|
{
|
|
const TopoDS_Face& face = TopoDS::Face( helper.GetSubShape() );
|
|
|
|
// get uv of surrounding nodes
|
|
vector<gp_XY> uv( _simplices.size() );
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
uv[i] = helper.GetNodeUV( face, _simplices[i]._nPrev, _node );
|
|
|
|
// compute new UV for the node
|
|
gp_XY newPos (0,0);
|
|
if ( how == TFI && _simplices.size() == 4 )
|
|
{
|
|
gp_XY corners[4];
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
if ( _simplices[i]._nOpp )
|
|
corners[i] = helper.GetNodeUV( face, _simplices[i]._nOpp, _node );
|
|
else
|
|
throw SALOME_Exception(LOCALIZED("TFI smoothing: _Simplex::_nOpp not set!"));
|
|
|
|
newPos = helper.calcTFI ( 0.5, 0.5,
|
|
corners[0], corners[1], corners[2], corners[3],
|
|
uv[1], uv[2], uv[3], uv[0] );
|
|
}
|
|
else if ( how == ANGULAR )
|
|
{
|
|
newPos = computeAngularPos( uv, helper.GetNodeUV( face, _node ), refSign );
|
|
}
|
|
else if ( how == CENTROIDAL && _simplices.size() > 3 )
|
|
{
|
|
// average centers of diagonals wieghted with their reciprocal lengths
|
|
if ( _simplices.size() == 4 )
|
|
{
|
|
double w1 = 1. / ( uv[2]-uv[0] ).SquareModulus();
|
|
double w2 = 1. / ( uv[3]-uv[1] ).SquareModulus();
|
|
newPos = ( w1 * ( uv[2]+uv[0] ) + w2 * ( uv[3]+uv[1] )) / ( w1+w2 ) / 2;
|
|
}
|
|
else
|
|
{
|
|
double sumWeight = 0;
|
|
int nb = _simplices.size() == 4 ? 2 : _simplices.size();
|
|
for ( int i = 0; i < nb; ++i )
|
|
{
|
|
int iFrom = i + 2;
|
|
int iTo = i + _simplices.size() - 1;
|
|
for ( int j = iFrom; j < iTo; ++j )
|
|
{
|
|
int i2 = SMESH_MesherHelper::WrapIndex( j, _simplices.size() );
|
|
double w = 1. / ( uv[i]-uv[i2] ).SquareModulus();
|
|
sumWeight += w;
|
|
newPos += w * ( uv[i]+uv[i2] );
|
|
}
|
|
}
|
|
newPos /= 2 * sumWeight; // 2 is to get a middle between uv's
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Laplacian smooth
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
newPos += uv[i];
|
|
newPos /= _simplices.size();
|
|
}
|
|
|
|
// count quality metrics (orientation) of triangles around the node
|
|
int nbOkBefore = 0;
|
|
gp_XY tgtUV = helper.GetNodeUV( face, _node );
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
nbOkBefore += _simplices[i].IsForward( tgtUV, _node, face, helper, refSign );
|
|
|
|
int nbOkAfter = 0;
|
|
for ( size_t i = 0; i < _simplices.size(); ++i )
|
|
nbOkAfter += _simplices[i].IsForward( newPos, _node, face, helper, refSign );
|
|
|
|
if ( nbOkAfter < nbOkBefore )
|
|
{
|
|
nbBad += _simplices.size() - nbOkBefore;
|
|
return false;
|
|
}
|
|
|
|
SMDS_FacePositionPtr pos = _node->GetPosition();
|
|
pos->SetUParameter( newPos.X() );
|
|
pos->SetVParameter( newPos.Y() );
|
|
|
|
#ifdef __myDEBUG
|
|
set3D = true;
|
|
#endif
|
|
if ( set3D )
|
|
{
|
|
gp_Pnt p = surface->Value( newPos.X(), newPos.Y() );
|
|
const_cast< SMDS_MeshNode* >( _node )->setXYZ( p.X(), p.Y(), p.Z() );
|
|
dumpMove( _node );
|
|
}
|
|
|
|
nbBad += _simplices.size() - nbOkAfter;
|
|
return ( (tgtUV-newPos).SquareModulus() > 1e-10 );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes new UV using angle based smoothing technique
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_XY _SmoothNode::computeAngularPos(vector<gp_XY>& uv,
|
|
const gp_XY& uvToFix,
|
|
const double refSign)
|
|
{
|
|
uv.push_back( uv.front() );
|
|
|
|
vector< gp_XY > edgeDir ( uv.size() );
|
|
vector< double > edgeSize( uv.size() );
|
|
for ( size_t i = 1; i < edgeDir.size(); ++i )
|
|
{
|
|
edgeDir [i-1] = uv[i] - uv[i-1];
|
|
edgeSize[i-1] = edgeDir[i-1].Modulus();
|
|
if ( edgeSize[i-1] < numeric_limits<double>::min() )
|
|
edgeDir[i-1].SetX( 100 );
|
|
else
|
|
edgeDir[i-1] /= edgeSize[i-1] * refSign;
|
|
}
|
|
edgeDir.back() = edgeDir.front();
|
|
edgeSize.back() = edgeSize.front();
|
|
|
|
gp_XY newPos(0,0);
|
|
//int nbEdges = 0;
|
|
double sumSize = 0;
|
|
for ( size_t i = 1; i < edgeDir.size(); ++i )
|
|
{
|
|
if ( edgeDir[i-1].X() > 1. ) continue;
|
|
int i1 = i-1;
|
|
while ( edgeDir[i].X() > 1. && ++i < edgeDir.size() );
|
|
if ( i == edgeDir.size() ) break;
|
|
gp_XY p = uv[i];
|
|
gp_XY norm1( -edgeDir[i1].Y(), edgeDir[i1].X() );
|
|
gp_XY norm2( -edgeDir[i].Y(), edgeDir[i].X() );
|
|
gp_XY bisec = norm1 + norm2;
|
|
double bisecSize = bisec.Modulus();
|
|
if ( bisecSize < numeric_limits<double>::min() )
|
|
{
|
|
bisec = -edgeDir[i1] + edgeDir[i];
|
|
bisecSize = bisec.Modulus();
|
|
}
|
|
bisec /= bisecSize;
|
|
|
|
gp_XY dirToN = uvToFix - p;
|
|
double distToN = dirToN.Modulus();
|
|
if ( bisec * dirToN < 0 )
|
|
distToN = -distToN;
|
|
|
|
newPos += ( p + bisec * distToN ) * ( edgeSize[i1] + edgeSize[i] );
|
|
//++nbEdges;
|
|
sumSize += edgeSize[i1] + edgeSize[i];
|
|
}
|
|
newPos /= /*nbEdges * */sumSize;
|
|
return newPos;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Keep a _LayerEdge inflated along the EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Shrinker1D::AddEdge( const _LayerEdge* e,
|
|
_EdgesOnShape& eos,
|
|
SMESH_MesherHelper& helper )
|
|
{
|
|
// init
|
|
if ( _nodes.empty() )
|
|
{
|
|
_edges[0] = _edges[1] = 0;
|
|
_done = false;
|
|
}
|
|
// check _LayerEdge
|
|
if ( e == _edges[0] || e == _edges[1] || e->_nodes.size() < 2 )
|
|
return;
|
|
if ( eos.SWOLType() != TopAbs_EDGE )
|
|
throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added"));
|
|
if ( _edges[0] && !_geomEdge.IsSame( eos._sWOL ))
|
|
throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added"));
|
|
|
|
// store _LayerEdge
|
|
_geomEdge = TopoDS::Edge( eos._sWOL );
|
|
double f,l;
|
|
BRep_Tool::Range( _geomEdge, f,l );
|
|
double u = helper.GetNodeU( _geomEdge, e->_nodes[0], e->_nodes.back());
|
|
_edges[ u < 0.5*(f+l) ? 0 : 1 ] = e;
|
|
|
|
// Update _nodes
|
|
|
|
const SMDS_MeshNode* tgtNode0 = TgtNode( 0 );
|
|
const SMDS_MeshNode* tgtNode1 = TgtNode( 1 );
|
|
|
|
if ( _nodes.empty() )
|
|
{
|
|
SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( _geomEdge );
|
|
if ( !eSubMesh || eSubMesh->NbNodes() < 1 )
|
|
return;
|
|
TopLoc_Location loc;
|
|
Handle(Geom_Curve) C = BRep_Tool::Curve( _geomEdge, loc, f,l );
|
|
GeomAdaptor_Curve aCurve(C, f,l);
|
|
const double totLen = GCPnts_AbscissaPoint::Length(aCurve, f, l);
|
|
|
|
int nbExpectNodes = eSubMesh->NbNodes();
|
|
_initU .reserve( nbExpectNodes );
|
|
_normPar.reserve( nbExpectNodes );
|
|
_nodes .reserve( nbExpectNodes );
|
|
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshNode* node = nIt->next();
|
|
|
|
// skip refinement nodes
|
|
if ( node->NbInverseElements(SMDSAbs_Edge) == 0 ||
|
|
node == tgtNode0 || node == tgtNode1 )
|
|
continue;
|
|
bool hasMarkedFace = false;
|
|
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
|
|
while ( fIt->more() && !hasMarkedFace )
|
|
hasMarkedFace = fIt->next()->isMarked();
|
|
if ( !hasMarkedFace )
|
|
continue;
|
|
|
|
_nodes.push_back( node );
|
|
_initU.push_back( helper.GetNodeU( _geomEdge, node ));
|
|
double len = GCPnts_AbscissaPoint::Length(aCurve, f, _initU.back());
|
|
_normPar.push_back( len / totLen );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// remove target node of the _LayerEdge from _nodes
|
|
size_t nbFound = 0;
|
|
for ( size_t i = 0; i < _nodes.size(); ++i )
|
|
if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 )
|
|
_nodes[i] = 0, nbFound++;
|
|
if ( nbFound == _nodes.size() )
|
|
_nodes.clear();
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Move nodes on EDGE from ends where _LayerEdge's are inflated
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper)
|
|
{
|
|
if ( _done || _nodes.empty())
|
|
return;
|
|
const _LayerEdge* e = _edges[0];
|
|
if ( !e ) e = _edges[1];
|
|
if ( !e ) return;
|
|
|
|
_done = (( !_edges[0] || _edges[0]->Is( _LayerEdge::SHRUNK )) &&
|
|
( !_edges[1] || _edges[1]->Is( _LayerEdge::SHRUNK )));
|
|
|
|
double f,l;
|
|
if ( set3D || _done )
|
|
{
|
|
Handle(Geom_Curve) C = BRep_Tool::Curve(_geomEdge, f,l);
|
|
GeomAdaptor_Curve aCurve(C, f,l);
|
|
|
|
if ( _edges[0] )
|
|
f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] );
|
|
if ( _edges[1] )
|
|
l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() );
|
|
double totLen = GCPnts_AbscissaPoint::Length( aCurve, f, l );
|
|
|
|
for ( size_t i = 0; i < _nodes.size(); ++i )
|
|
{
|
|
if ( !_nodes[i] ) continue;
|
|
double len = totLen * _normPar[i];
|
|
GCPnts_AbscissaPoint discret( aCurve, len, f );
|
|
if ( !discret.IsDone() )
|
|
return throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
|
|
double u = discret.Parameter();
|
|
SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition();
|
|
pos->SetUParameter( u );
|
|
gp_Pnt p = C->Value( u );
|
|
const_cast< SMDS_MeshNode*>( _nodes[i] )->setXYZ( p.X(), p.Y(), p.Z() );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
BRep_Tool::Range( _geomEdge, f,l );
|
|
if ( _edges[0] )
|
|
f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] );
|
|
if ( _edges[1] )
|
|
l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() );
|
|
|
|
for ( size_t i = 0; i < _nodes.size(); ++i )
|
|
{
|
|
if ( !_nodes[i] ) continue;
|
|
double u = f * ( 1-_normPar[i] ) + l * _normPar[i];
|
|
SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition();
|
|
pos->SetUParameter( u );
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Restore initial parameters of nodes on EDGE
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Shrinker1D::RestoreParams()
|
|
{
|
|
if ( _done )
|
|
for ( size_t i = 0; i < _nodes.size(); ++i )
|
|
{
|
|
if ( !_nodes[i] ) continue;
|
|
SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition();
|
|
pos->SetUParameter( _initU[i] );
|
|
}
|
|
_done = false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Replace source nodes by target nodes in shrunk mesh edges
|
|
*/
|
|
//================================================================================
|
|
|
|
void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh )
|
|
{
|
|
const SMDS_MeshNode* nodes[3];
|
|
for ( int i = 0; i < 2; ++i )
|
|
{
|
|
if ( !_edges[i] ) continue;
|
|
|
|
SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _geomEdge );
|
|
if ( !eSubMesh ) return;
|
|
const SMDS_MeshNode* srcNode = _edges[i]->_nodes[0];
|
|
const SMDS_MeshNode* tgtNode = _edges[i]->_nodes.back();
|
|
const SMDS_MeshNode* scdNode = _edges[i]->_nodes[1];
|
|
SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge);
|
|
while ( eIt->more() )
|
|
{
|
|
const SMDS_MeshElement* e = eIt->next();
|
|
if ( !eSubMesh->Contains( e ) || e->GetNodeIndex( scdNode ) >= 0 )
|
|
continue;
|
|
SMDS_ElemIteratorPtr nIt = e->nodesIterator();
|
|
for ( int iN = 0; iN < e->NbNodes(); ++iN )
|
|
{
|
|
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nIt->next() );
|
|
nodes[iN] = ( n == srcNode ? tgtNode : n );
|
|
}
|
|
mesh->ChangeElementNodes( e, nodes, e->NbNodes() );
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Creates 2D and 1D elements on boundaries of new prisms
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder::addBoundaryElements(_SolidData& data)
|
|
{
|
|
SMESH_MesherHelper helper( *_mesh );
|
|
|
|
vector< const SMDS_MeshNode* > faceNodes;
|
|
|
|
//for ( size_t i = 0; i < _sdVec.size(); ++i )
|
|
{
|
|
//_SolidData& data = _sdVec[i];
|
|
TopTools_IndexedMapOfShape geomEdges;
|
|
TopExp::MapShapes( data._solid, TopAbs_EDGE, geomEdges );
|
|
for ( int iE = 1; iE <= geomEdges.Extent(); ++iE )
|
|
{
|
|
const TopoDS_Edge& E = TopoDS::Edge( geomEdges(iE));
|
|
const TGeomID edgeID = getMeshDS()->ShapeToIndex( E );
|
|
if ( data._noShrinkShapes.count( edgeID ))
|
|
continue;
|
|
|
|
// Get _LayerEdge's based on E
|
|
|
|
map< double, const SMDS_MeshNode* > u2nodes;
|
|
if ( !SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), E, /*ignoreMedium=*/false, u2nodes))
|
|
continue;
|
|
|
|
vector< _LayerEdge* > ledges; ledges.reserve( u2nodes.size() );
|
|
TNode2Edge & n2eMap = data._n2eMap;
|
|
map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin();
|
|
{
|
|
//check if 2D elements are needed on E
|
|
TNode2Edge::iterator n2e = n2eMap.find( u2n->second );
|
|
if ( n2e == n2eMap.end() ) continue; // no layers on vertex
|
|
ledges.push_back( n2e->second );
|
|
u2n++;
|
|
if (( n2e = n2eMap.find( u2n->second )) == n2eMap.end() )
|
|
continue; // no layers on E
|
|
ledges.push_back( n2eMap[ u2n->second ]);
|
|
|
|
const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back();
|
|
const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back();
|
|
int nbSharedPyram = 0;
|
|
SMDS_ElemIteratorPtr vIt = tgtN1->GetInverseElementIterator(SMDSAbs_Volume);
|
|
while ( vIt->more() )
|
|
{
|
|
const SMDS_MeshElement* v = vIt->next();
|
|
nbSharedPyram += int( v->GetNodeIndex( tgtN0 ) >= 0 );
|
|
}
|
|
if ( nbSharedPyram > 1 )
|
|
continue; // not free border of the pyramid
|
|
|
|
faceNodes.clear();
|
|
faceNodes.push_back( ledges[0]->_nodes[0] );
|
|
faceNodes.push_back( ledges[1]->_nodes[0] );
|
|
if ( ledges[0]->_nodes.size() > 1 ) faceNodes.push_back( ledges[0]->_nodes[1] );
|
|
if ( ledges[1]->_nodes.size() > 1 ) faceNodes.push_back( ledges[1]->_nodes[1] );
|
|
|
|
if ( getMeshDS()->FindElement( faceNodes, SMDSAbs_Face, /*noMedium=*/true))
|
|
continue; // faces already created
|
|
}
|
|
for ( ++u2n; u2n != u2nodes.end(); ++u2n )
|
|
ledges.push_back( n2eMap[ u2n->second ]);
|
|
|
|
// Find out orientation and type of face to create
|
|
|
|
bool reverse = false, isOnFace;
|
|
TopoDS_Shape F;
|
|
|
|
map< TGeomID, TopoDS_Shape >::iterator e2f = data._shrinkShape2Shape.find( edgeID );
|
|
if (( isOnFace = ( e2f != data._shrinkShape2Shape.end() )))
|
|
{
|
|
F = e2f->second.Oriented( TopAbs_FORWARD );
|
|
reverse = ( helper.GetSubShapeOri( F, E ) == TopAbs_REVERSED );
|
|
if ( helper.GetSubShapeOri( data._solid, F ) == TopAbs_REVERSED )
|
|
reverse = !reverse, F.Reverse();
|
|
if ( helper.IsReversedSubMesh( TopoDS::Face(F) ))
|
|
reverse = !reverse;
|
|
}
|
|
else if ( !data._ignoreFaceIds.count( e2f->first ))
|
|
{
|
|
// find FACE with layers sharing E
|
|
PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE, &data._solid );
|
|
if ( fIt->more() )
|
|
F = *( fIt->next() );
|
|
}
|
|
// Find the sub-mesh to add new faces
|
|
SMESHDS_SubMesh* sm = 0;
|
|
if ( isOnFace )
|
|
sm = getMeshDS()->MeshElements( F );
|
|
else
|
|
sm = data._proxyMesh->getFaceSubM( TopoDS::Face(F), /*create=*/true );
|
|
if ( !sm )
|
|
return error("error in addBoundaryElements()", data._index);
|
|
|
|
// Find a proxy sub-mesh of the FACE of an adjacent SOLID, which will use the new boundary
|
|
// faces for 3D meshing (PAL23414)
|
|
SMESHDS_SubMesh* adjSM = 0;
|
|
if ( isOnFace )
|
|
{
|
|
const TGeomID faceID = sm->GetID();
|
|
PShapeIteratorPtr soIt = helper.GetAncestors( F, *_mesh, TopAbs_SOLID );
|
|
while ( const TopoDS_Shape* solid = soIt->next() )
|
|
if ( !solid->IsSame( data._solid ))
|
|
{
|
|
size_t iData = _solids.FindIndex( *solid ) - 1;
|
|
if ( iData < _sdVec.size() &&
|
|
_sdVec[ iData ]._ignoreFaceIds.count( faceID ) &&
|
|
_sdVec[ iData ]._shrinkShape2Shape.count( edgeID ) == 0 )
|
|
{
|
|
SMESH_ProxyMesh::SubMesh* proxySub =
|
|
_sdVec[ iData ]._proxyMesh->getFaceSubM( TopoDS::Face( F ), /*create=*/false);
|
|
if ( proxySub && proxySub->NbElements() > 0 )
|
|
adjSM = proxySub;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make faces
|
|
const int dj1 = reverse ? 0 : 1;
|
|
const int dj2 = reverse ? 1 : 0;
|
|
vector< const SMDS_MeshElement*> ff; // new faces row
|
|
SMESHDS_Mesh* m = getMeshDS();
|
|
for ( size_t j = 1; j < ledges.size(); ++j )
|
|
{
|
|
vector< const SMDS_MeshNode*>& nn1 = ledges[j-dj1]->_nodes;
|
|
vector< const SMDS_MeshNode*>& nn2 = ledges[j-dj2]->_nodes;
|
|
ff.resize( std::max( nn1.size(), nn2.size() ), NULL );
|
|
if ( nn1.size() == nn2.size() )
|
|
{
|
|
if ( isOnFace )
|
|
for ( size_t z = 1; z < nn1.size(); ++z )
|
|
sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] ));
|
|
else
|
|
for ( size_t z = 1; z < nn1.size(); ++z )
|
|
sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z] ));
|
|
}
|
|
else if ( nn1.size() == 1 )
|
|
{
|
|
if ( isOnFace )
|
|
for ( size_t z = 1; z < nn2.size(); ++z )
|
|
sm->AddElement( ff[z-1] = m->AddFace( nn1[0], nn2[z-1], nn2[z] ));
|
|
else
|
|
for ( size_t z = 1; z < nn2.size(); ++z )
|
|
sm->AddElement( new SMDS_FaceOfNodes( nn1[0], nn2[z-1], nn2[z] ));
|
|
}
|
|
else
|
|
{
|
|
if ( isOnFace )
|
|
for ( size_t z = 1; z < nn1.size(); ++z )
|
|
sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[0], nn1[z] ));
|
|
else
|
|
for ( size_t z = 1; z < nn1.size(); ++z )
|
|
sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[0], nn2[z] ));
|
|
}
|
|
|
|
if ( adjSM ) // add faces to a proxy SM of the adjacent SOLID
|
|
{
|
|
for ( size_t z = 0; z < ff.size(); ++z )
|
|
if ( ff[ z ])
|
|
adjSM->AddElement( ff[ z ]);
|
|
ff.clear();
|
|
}
|
|
}
|
|
|
|
// Make edges
|
|
for ( int isFirst = 0; isFirst < 2; ++isFirst )
|
|
{
|
|
_LayerEdge* edge = isFirst ? ledges.front() : ledges.back();
|
|
_EdgesOnShape* eos = data.GetShapeEdges( edge );
|
|
if ( eos && eos->SWOLType() == TopAbs_EDGE )
|
|
{
|
|
vector< const SMDS_MeshNode*>& nn = edge->_nodes;
|
|
if ( nn.size() < 2 || nn[1]->NbInverseElements( SMDSAbs_Edge ) >= 2 )
|
|
continue;
|
|
helper.SetSubShape( eos->_sWOL );
|
|
helper.SetElementsOnShape( true );
|
|
for ( size_t z = 1; z < nn.size(); ++z )
|
|
helper.AddEdge( nn[z-1], nn[z] );
|
|
}
|
|
}
|
|
|
|
} // loop on EDGE's
|
|
} // loop on _SolidData's
|
|
|
|
return true;
|
|
}
|