smesh/src/SMESH/SMESH_MeshEditor.hxx

820 lines
38 KiB
C++

// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : SMESH_MeshEditor.hxx
// Created : Mon Apr 12 14:56:19 2004
// Author : Edward AGAPOV (eap)
// Module : SMESH
//
#ifndef SMESH_MeshEditor_HeaderFile
#define SMESH_MeshEditor_HeaderFile
#include "SMESH_SMESH.hxx"
#include "SMESH_Controls.hxx"
#include "SMESH_TypeDefs.hxx"
#include "SMESH_ComputeError.hxx"
#include <utilities.h>
#include <TColStd_HSequenceOfReal.hxx>
#include <gp_Dir.hxx>
#include <list>
#include <map>
#include <set>
class SMDS_MeshElement;
class SMDS_MeshFace;
class SMDS_MeshNode;
class SMESHDS_Mesh;
class SMESHDS_SubMesh;
class SMESH_Group;
class SMESH_Mesh;
class SMESH_MesherHelper;
class SMESH_NodeSearcher;
class SMESH_subMesh;
class TopoDS_Edge;
class TopoDS_Shape;
class TopoDS_Vertex;
class gp_Ax1;
class gp_Pnt;
class gp_Vec;
// ============================================================
/*!
* \brief Editor of a mesh
*/
// ============================================================
class SMESH_EXPORT SMESH_MeshEditor
{
public:
SMESH_MeshEditor( SMESH_Mesh* theMesh );
SMESH_Mesh * GetMesh() { return myMesh; }
SMESHDS_Mesh * GetMeshDS();
const SMESH_SequenceOfElemPtr& GetLastCreatedNodes() const { return myLastCreatedNodes; }
const SMESH_SequenceOfElemPtr& GetLastCreatedElems() const { return myLastCreatedElems; }
void ClearLastCreated();
SMESH_ComputeErrorPtr & GetError() { return myError; }
// --------------------------------------------------------------------------------
struct ElemFeatures //!< Features of element to create
{
SMDSAbs_ElementType myType;
bool myIsPoly, myIsQuad;
int myID;
double myBallDiameter;
std::vector<int> myPolyhedQuantities;
SMESH_EXPORT ElemFeatures( SMDSAbs_ElementType type=SMDSAbs_All, bool isPoly=false, bool isQuad=false )
:myType( type ), myIsPoly(isPoly), myIsQuad(isQuad), myID(-1), myBallDiameter(0) {}
SMESH_EXPORT ElemFeatures& Init( SMDSAbs_ElementType type, bool isPoly=false, bool isQuad=false )
{ myType = type; myIsPoly = isPoly; myIsQuad = isQuad; return *this; }
SMESH_EXPORT ElemFeatures& Init( const SMDS_MeshElement* elem, bool basicOnly=true );
SMESH_EXPORT ElemFeatures& Init( double diameter )
{ myType = SMDSAbs_Ball; myBallDiameter = diameter; return *this; }
SMESH_EXPORT ElemFeatures& Init( std::vector<int>& quanities, bool isQuad=false )
{ myType = SMDSAbs_Volume; myIsPoly = 1; myIsQuad = isQuad;
myPolyhedQuantities.swap( quanities ); return *this; }
SMESH_EXPORT ElemFeatures& Init( const std::vector<int>& quanities, bool isQuad=false )
{ myType = SMDSAbs_Volume; myIsPoly = 1; myIsQuad = isQuad;
myPolyhedQuantities = quanities; return *this; }
SMESH_EXPORT ElemFeatures& SetPoly(bool isPoly) { myIsPoly = isPoly; return *this; }
SMESH_EXPORT ElemFeatures& SetQuad(bool isQuad) { myIsQuad = isQuad; return *this; }
SMESH_EXPORT ElemFeatures& SetID (int ID) { myID = ID; return *this; }
};
/*!
* \brief Add element
*/
SMDS_MeshElement* AddElement(const std::vector<const SMDS_MeshNode*> & nodes,
const ElemFeatures& features);
/*!
* \brief Add element
*/
SMDS_MeshElement* AddElement(const std::vector<int> & nodeIDs,
const ElemFeatures& features);
int Remove (const std::list< int >& theElemIDs, const bool isNodes);
// Remove a node or an element.
// Modify a compute state of sub-meshes which become empty
void Create0DElementsOnAllNodes( const TIDSortedElemSet& elements,
TIDSortedElemSet& all0DElems,
const bool duplicateElements);
// Create 0D elements on all nodes of the given. \a all0DElems returns
// all 0D elements found or created on nodes of \a elements
bool InverseDiag (const SMDS_MeshElement * theTria1,
const SMDS_MeshElement * theTria2 );
// Replace two neighbour triangles with ones built on the same 4 nodes
// but having other common link.
// Return False if args are improper
bool InverseDiag (const SMDS_MeshNode * theNode1,
const SMDS_MeshNode * theNode2 );
// Replace two neighbour triangles sharing theNode1-theNode2 link
// with ones built on the same 4 nodes but having other common link.
// Return false if proper faces not found
bool DeleteDiag (const SMDS_MeshNode * theNode1,
const SMDS_MeshNode * theNode2 );
// Replace two neighbour triangles sharing theNode1-theNode2 link
// with a quadrangle built on the same 4 nodes.
// Return false if proper faces not found
bool Reorient (const SMDS_MeshElement * theElement);
// Reverse theElement orientation
int Reorient2D (TIDSortedElemSet & theFaces,
const gp_Dir& theDirection,
const SMDS_MeshElement * theFace);
// Reverse theFaces whose orientation to be same as that of theFace
// oriented according to theDirection. Return nb of reoriented faces
int Reorient2DBy3D (TIDSortedElemSet & theFaces,
TIDSortedElemSet & theVolumes,
const bool theOutsideNormal);
// Reorient faces basing on orientation of adjacent volumes.
// Return nb of reoriented faces
/*!
* \brief Fuse neighbour triangles into quadrangles.
* \param theElems - The triangles to be fused.
* \param theCriterion - Is used to choose a neighbour to fuse with.
* \param theMaxAngle - Is a max angle between element normals at which fusion
* is still performed; theMaxAngle is mesured in radians.
* \return bool - Success or not.
*/
bool TriToQuad (TIDSortedElemSet & theElems,
SMESH::Controls::NumericalFunctorPtr theCriterion,
const double theMaxAngle);
/*!
* \brief Split quadrangles into triangles.
* \param theElems - The faces to be splitted.
* \param theCriterion - Is used to choose a diagonal for splitting.
* \return bool - Success or not.
*/
bool QuadToTri (TIDSortedElemSet & theElems,
SMESH::Controls::NumericalFunctorPtr theCriterion);
/*!
* \brief Split quadrangles into triangles.
* \param theElems - The faces to be splitted.
* \param the13Diag - Is used to choose a diagonal for splitting.
* \return bool - Success or not.
*/
bool QuadToTri (TIDSortedElemSet & theElems,
const bool the13Diag);
/*!
* \brief Split each of given quadrangles into 4 triangles.
* \param theElems - The faces to be splitted. If empty all faces are split.
*/
void QuadTo4Tri (TIDSortedElemSet & theElems);
/*!
* \brief Find better diagonal for splitting.
* \param theQuad - The face to find better splitting of.
* \param theCriterion - Is used to choose a diagonal for splitting.
* \return int - 1 for 1-3 diagonal, 2 for 2-4, -1 - for errors.
*/
int BestSplit (const SMDS_MeshElement* theQuad,
SMESH::Controls::NumericalFunctorPtr theCriterion);
typedef std::map < const SMDS_MeshElement*, int, TIDCompare > TFacetOfElem;
//!<2nd arg of SplitVolumes()
enum SplitVolumToTetraFlags { HEXA_TO_5 = 1, // split into tetrahedra
HEXA_TO_6,
HEXA_TO_24,
HEXA_TO_2_PRISMS, // split into prisms
HEXA_TO_4_PRISMS };
/*!
* \brief Split volumic elements into tetrahedra or prisms.
* If facet ID < 0, element is split into tetrahedra,
* else a hexahedron is split into prisms so that the given facet is
* split into triangles
*/
void SplitVolumes (const TFacetOfElem & theElems, const int theMethodFlags);
/*!
* \brief For hexahedra that will be split into prisms, finds facets to
* split into triangles
* \param [in,out] theHexas - the hexahedra
* \param [in] theFacetNormal - facet normal
* \param [out] theFacets - the hexahedra and found facet IDs
*/
void GetHexaFacetsToSplit( TIDSortedElemSet& theHexas,
const gp_Ax1& theFacetNormal,
TFacetOfElem & theFacets);
/*!
* \brief Split bi-quadratic elements into linear ones without creation of additional nodes
* - bi-quadratic triangle will be split into 3 linear quadrangles;
* - bi-quadratic quadrangle will be split into 4 linear quadrangles;
* - tri-quadratic hexahedron will be split into 8 linear hexahedra;
* Quadratic elements of lower dimension adjacent to the split bi-quadratic element
* will be split in order to keep the mesh conformal.
* \param elems - elements to split
*/
void SplitBiQuadraticIntoLinear(TIDSortedElemSet& theElems);
enum SmoothMethod { LAPLACIAN = 0, CENTROIDAL };
void Smooth (TIDSortedElemSet & theElements,
std::set<const SMDS_MeshNode*> & theFixedNodes,
const SmoothMethod theSmoothMethod,
const int theNbIterations,
double theTgtAspectRatio = 1.0,
const bool the2D = true);
// Smooth theElements using theSmoothMethod during theNbIterations
// or until a worst element has aspect ratio <= theTgtAspectRatio.
// Aspect Ratio varies in range [1.0, inf].
// If theElements is empty, the whole mesh is smoothed.
// theFixedNodes contains additionally fixed nodes. Nodes built
// on edges and boundary nodes are always fixed.
// If the2D, smoothing is performed using UV parameters of nodes
// on geometrical faces
typedef TIDTypeCompare TElemSort;
typedef std::map < const SMDS_MeshElement*,
std::list<const SMDS_MeshElement*>, TElemSort > TTElemOfElemListMap;
typedef std::map<const SMDS_MeshNode*, std::list<const SMDS_MeshNode*> > TNodeOfNodeListMap;
typedef TNodeOfNodeListMap::iterator TNodeOfNodeListMapItr;
typedef std::vector<TNodeOfNodeListMapItr> TVecOfNnlmiMap;
typedef std::map<const SMDS_MeshElement*, TVecOfNnlmiMap, TElemSort > TElemOfVecOfNnlmiMap;
typedef std::auto_ptr< std::list<int> > PGroupIDs;
PGroupIDs RotationSweep (TIDSortedElemSet theElements[2],
const gp_Ax1& theAxis,
const double theAngle,
const int theNbSteps,
const double theToler,
const bool theMakeGroups,
const bool theMakeWalls=true);
// Generate new elements by rotation of theElements around theAxis
// by theAngle by theNbSteps
/*!
* Flags of extrusion.
* BOUNDARY: create or not boundary for result of extrusion
* SEW: try to use existing nodes or create new nodes in any case
* GROUPS: to create groups
* BY_AVG_NORMAL: step size is measured along average normal to elements,
* else step size is measured along average normal of any element
* USE_INPUT_ELEMS_ONLY: to use only input elements to compute extrusion direction
* for ExtrusionByNormal()
* SCALE_LINEAR_VARIATION: to make linear variation of scale factors
*/
enum ExtrusionFlags {
EXTRUSION_FLAG_BOUNDARY = 0x01,
EXTRUSION_FLAG_SEW = 0x02,
EXTRUSION_FLAG_GROUPS = 0x04,
EXTRUSION_FLAG_BY_AVG_NORMAL = 0x08,
EXTRUSION_FLAG_USE_INPUT_ELEMS_ONLY = 0x10,
EXTRUSION_FLAG_SCALE_LINEAR_VARIATION = 0x20
};
/*!
* Generator of nodes for extrusion functionality
*/
class SMESH_EXPORT ExtrusParam
{
gp_Dir myDir; // direction of extrusion
Handle(TColStd_HSequenceOfReal) mySteps; // magnitudes for each step
std::vector<double> myScales, myMediumScales;// scale factors
gp_XYZ myBaseP; // scaling center
SMESH_SequenceOfNode myNodes; // nodes for using in sewing
int myFlags; // see ExtrusionFlags
double myTolerance; // tolerance for sewing nodes
const TIDSortedElemSet* myElemsToUse; // elements to use for extrusion by normal
int (ExtrusParam::*myMakeNodesFun)(SMESHDS_Mesh* mesh,
const SMDS_MeshNode* srcNode,
std::list<const SMDS_MeshNode*> & newNodes,
const bool makeMediumNodes);
public:
ExtrusParam( const gp_Vec& theStep,
const int theNbSteps,
const std::list<double>& theScales,
const gp_XYZ* theBaseP,
const int theFlags = 0,
const double theTolerance = 1e-6);
ExtrusParam( const gp_Dir& theDir,
Handle(TColStd_HSequenceOfReal) theSteps,
const int theFlags = 0,
const double theTolerance = 1e-6);
ExtrusParam( const double theStep,
const int theNbSteps,
const int theFlags,
const int theDim); // for extrusion by normal
SMESH_SequenceOfNode& ChangeNodes() { return myNodes; }
int& Flags() { return myFlags; }
bool ToMakeBoundary() const { return myFlags & EXTRUSION_FLAG_BOUNDARY; }
bool ToMakeGroups() const { return myFlags & EXTRUSION_FLAG_GROUPS; }
bool ToUseInpElemsOnly() const { return myFlags & EXTRUSION_FLAG_USE_INPUT_ELEMS_ONLY; }
bool IsLinearVariation() const { return myFlags & EXTRUSION_FLAG_SCALE_LINEAR_VARIATION; }
int NbSteps() const { return mySteps->Length(); }
// stores elements to use for extrusion by normal, depending on
// state of EXTRUSION_FLAG_USE_INPUT_ELEMS_ONLY flag;
// define myBaseP for scaling
void SetElementsToUse( const TIDSortedElemSet& elems, const TIDSortedElemSet& nodes );
// creates nodes and returns number of nodes added in \a newNodes
int MakeNodes( SMESHDS_Mesh* mesh,
const SMDS_MeshNode* srcNode,
std::list<const SMDS_MeshNode*> & newNodes,
const bool makeMediumNodes)
{
return (this->*myMakeNodesFun)( mesh, srcNode, newNodes, makeMediumNodes );
}
private:
int makeNodesByDir( SMESHDS_Mesh* mesh,
const SMDS_MeshNode* srcNode,
std::list<const SMDS_MeshNode*> & newNodes,
const bool makeMediumNodes);
int makeNodesByDirAndSew( SMESHDS_Mesh* mesh,
const SMDS_MeshNode* srcNode,
std::list<const SMDS_MeshNode*> & newNodes,
const bool makeMediumNodes);
int makeNodesByNormal2D( SMESHDS_Mesh* mesh,
const SMDS_MeshNode* srcNode,
std::list<const SMDS_MeshNode*> & newNodes,
const bool makeMediumNodes);
int makeNodesByNormal1D( SMESHDS_Mesh* mesh,
const SMDS_MeshNode* srcNode,
std::list<const SMDS_MeshNode*> & newNodes,
const bool makeMediumNodes);
// step iteration
void beginStepIter( bool withMediumNodes );
bool moreSteps();
double nextStep();
std::vector< double > myCurSteps;
bool myWithMediumNodes;
int myNextStep;
};
/*!
* Generate new elements by extrusion of theElements
* It is a method used in .idl file. All functionality
* is implemented in the next method (see below) which
* is used in the current method.
* @param theElems - list of elements for extrusion
* @param newElemsMap returns history of extrusion
* @param theFlags set flags for performing extrusion (see description
* of enum ExtrusionFlags for additional information)
* @param theTolerance - uses for comparing locations of nodes if flag
* EXTRUSION_FLAG_SEW is set
*/
PGroupIDs ExtrusionSweep (TIDSortedElemSet theElems[2],
const gp_Vec& theStep,
const int theNbSteps,
TTElemOfElemListMap& newElemsMap,
const int theFlags,
const double theTolerance = 1.e-6);
/*!
* Generate new elements by extrusion of theElements
* @param theElems - list of elements for extrusion
* @param newElemsMap returns history of extrusion
* @param theFlags set flags for performing extrusion (see description
* of enum ExtrusionFlags for additional information)
* @param theTolerance - uses for comparing locations of nodes if flag
* EXTRUSION_FLAG_SEW is set
* @param theParams - special structure for manage of extrusion
*/
PGroupIDs ExtrusionSweep (TIDSortedElemSet theElems[2],
ExtrusParam& theParams,
TTElemOfElemListMap& newElemsMap);
// Generate new elements by extrusion of theElements
// by theStep by theNbSteps
enum Extrusion_Error {
EXTR_OK,
EXTR_NO_ELEMENTS,
EXTR_PATH_NOT_EDGE,
EXTR_BAD_PATH_SHAPE,
EXTR_BAD_STARTING_NODE,
EXTR_BAD_ANGLES_NUMBER,
EXTR_CANT_GET_TANGENT
};
Extrusion_Error ExtrusionAlongTrack (TIDSortedElemSet theElements[2],
SMESH_subMesh* theTrackPattern,
const SMDS_MeshNode* theNodeStart,
const bool theHasAngles,
std::list<double>& theAngles,
const bool theLinearVariation,
const bool theHasRefPoint,
const gp_Pnt& theRefPoint,
const bool theMakeGroups);
Extrusion_Error ExtrusionAlongTrack (TIDSortedElemSet theElements[2],
SMESH_Mesh* theTrackPattern,
const SMDS_MeshNode* theNodeStart,
const bool theHasAngles,
std::list<double>& theAngles,
const bool theLinearVariation,
const bool theHasRefPoint,
const gp_Pnt& theRefPoint,
const bool theMakeGroups);
// Generate new elements by extrusion of theElements along path given by theTrackPattern,
// theHasAngles are the rotation angles, base point can be given by theRefPoint
PGroupIDs Transform (TIDSortedElemSet & theElements,
const gp_Trsf& theTrsf,
const bool theCopy,
const bool theMakeGroups,
SMESH_Mesh* theTargetMesh=0);
// Move or copy theElements applying theTrsf to their nodes
typedef std::list< std::list< const SMDS_MeshNode* > > TListOfListOfNodes;
void FindCoincidentNodes (TIDSortedNodeSet & theNodes,
const double theTolerance,
TListOfListOfNodes & theGroupsOfNodes,
bool theSeparateCornersAndMedium);
// Return list of group of nodes close to each other within theTolerance.
// Search among theNodes or in the whole mesh if theNodes is empty.
void MergeNodes (TListOfListOfNodes & theNodeGroups);
// In each group, the cdr of nodes are substituted by the first one
// in all elements.
typedef std::list< std::list< int > > TListOfListOfElementsID;
void FindEqualElements(TIDSortedElemSet & theElements,
TListOfListOfElementsID & theGroupsOfElementsID);
// Return list of group of elements build on the same nodes.
// Search among theElements or in the whole mesh if theElements is empty.
void MergeElements(TListOfListOfElementsID & theGroupsOfElementsID);
// In each group remove all but first of elements.
void MergeEqualElements();
// Remove all but one of elements built on the same nodes.
// Return nb of successfully merged groups.
int SimplifyFace (const std::vector<const SMDS_MeshNode *>& faceNodes,
std::vector<const SMDS_MeshNode *>& poly_nodes,
std::vector<int>& quantities) const;
// Split face, defined by <faceNodes>, into several faces by repeating nodes.
// Is used by MergeNodes()
static bool CheckFreeBorderNodes(const SMDS_MeshNode* theNode1,
const SMDS_MeshNode* theNode2,
const SMDS_MeshNode* theNode3 = 0);
// Return true if the three nodes are on a free border
static bool FindFreeBorder (const SMDS_MeshNode* theFirstNode,
const SMDS_MeshNode* theSecondNode,
const SMDS_MeshNode* theLastNode,
std::list< const SMDS_MeshNode* > & theNodes,
std::list< const SMDS_MeshElement* >& theFaces);
// Return nodes and faces of a free border if found
enum Sew_Error {
SEW_OK,
// for SewFreeBorder()
SEW_BORDER1_NOT_FOUND,
SEW_BORDER2_NOT_FOUND,
SEW_BOTH_BORDERS_NOT_FOUND,
SEW_BAD_SIDE_NODES,
SEW_VOLUMES_TO_SPLIT,
// for SewSideElements()
SEW_DIFF_NB_OF_ELEMENTS,
SEW_TOPO_DIFF_SETS_OF_ELEMENTS,
SEW_BAD_SIDE1_NODES,
SEW_BAD_SIDE2_NODES,
SEW_INTERNAL_ERROR
};
Sew_Error SewFreeBorder (const SMDS_MeshNode* theBorderFirstNode,
const SMDS_MeshNode* theBorderSecondNode,
const SMDS_MeshNode* theBorderLastNode,
const SMDS_MeshNode* theSide2FirstNode,
const SMDS_MeshNode* theSide2SecondNode,
const SMDS_MeshNode* theSide2ThirdNode = 0,
const bool theSide2IsFreeBorder = true,
const bool toCreatePolygons = false,
const bool toCreatePolyedrs = false);
// Sew the free border to the side2 by replacing nodes in
// elements on the free border with nodes of the elements
// of the side 2. If nb of links in the free border and
// between theSide2FirstNode and theSide2LastNode are different,
// additional nodes are inserted on a link provided that no
// volume elements share the splitted link.
// The side 2 is a free border if theSide2IsFreeBorder == true.
// Sewing is peformed between the given first, second and last
// nodes on the sides.
// theBorderFirstNode is merged with theSide2FirstNode.
// if (!theSide2IsFreeBorder) then theSide2SecondNode gives
// the last node on the side 2, which will be merged with
// theBorderLastNode.
// if (theSide2IsFreeBorder) then theSide2SecondNode will
// be merged with theBorderSecondNode.
// if (theSide2IsFreeBorder && theSide2ThirdNode == 0) then
// the 2 free borders are sewn link by link and no additional
// nodes are inserted.
// Return false, if sewing failed.
Sew_Error SewSideElements (TIDSortedElemSet& theSide1,
TIDSortedElemSet& theSide2,
const SMDS_MeshNode* theFirstNode1ToMerge,
const SMDS_MeshNode* theFirstNode2ToMerge,
const SMDS_MeshNode* theSecondNode1ToMerge,
const SMDS_MeshNode* theSecondNode2ToMerge);
// Sew two sides of a mesh. Nodes belonging to theSide1 are
// merged with nodes of elements of theSide2.
// Number of elements in theSide1 and in theSide2 must be
// equal and they should have similar node connectivity.
// The nodes to merge should belong to side s borders and
// the first node should be linked to the second.
void InsertNodesIntoLink(const SMDS_MeshElement* theFace,
const SMDS_MeshNode* theBetweenNode1,
const SMDS_MeshNode* theBetweenNode2,
std::list<const SMDS_MeshNode*>& theNodesToInsert,
const bool toCreatePoly = false);
// insert theNodesToInsert into theFace between theBetweenNode1 and theBetweenNode2.
// If toCreatePoly is true, replace theFace by polygon, else split theFace.
void UpdateVolumes (const SMDS_MeshNode* theBetweenNode1,
const SMDS_MeshNode* theBetweenNode2,
std::list<const SMDS_MeshNode*>& theNodesToInsert);
// insert theNodesToInsert into all volumes, containing link
// theBetweenNode1 - theBetweenNode2, between theBetweenNode1 and theBetweenNode2.
void ConvertToQuadratic(const bool theForce3d, const bool theToBiQuad);
void ConvertToQuadratic(const bool theForce3d,
TIDSortedElemSet& theElements, const bool theToBiQuad);
// Converts all mesh to quadratic or bi-quadratic one, deletes old elements,
// replacing them with quadratic or bi-quadratic ones with the same id.
// If theForce3d = 1; this results in the medium node lying at the
// middle of the line segments connecting start and end node of a mesh element.
// If theForce3d = 0; this results in the medium node lying at the
// geometrical edge from which the mesh element is built.
bool ConvertFromQuadratic();
void ConvertFromQuadratic(TIDSortedElemSet& theElements);
// Converts all mesh from quadratic to ordinary ones, deletes old quadratic elements, replacing
// them with ordinary mesh elements with the same id.
// Returns true in case of success, false otherwise.
static void AddToSameGroups (const SMDS_MeshElement* elemToAdd,
const SMDS_MeshElement* elemInGroups,
SMESHDS_Mesh * aMesh);
// Add elemToAdd to the all groups the elemInGroups belongs to
static void RemoveElemFromGroups (const SMDS_MeshElement* element,
SMESHDS_Mesh * aMesh);
// remove element from the all groups
static void ReplaceElemInGroups (const SMDS_MeshElement* elemToRm,
const SMDS_MeshElement* elemToAdd,
SMESHDS_Mesh * aMesh);
// replace elemToRm by elemToAdd in the all groups
static void ReplaceElemInGroups (const SMDS_MeshElement* elemToRm,
const std::vector<const SMDS_MeshElement*>& elemToAdd,
SMESHDS_Mesh * aMesh);
// replace elemToRm by elemToAdd in the all groups
/*!
* \brief Return nodes linked to the given one in elements of the type
*/
static void GetLinkedNodes( const SMDS_MeshNode* node,
TIDSortedElemSet & linkedNodes,
SMDSAbs_ElementType type = SMDSAbs_All );
/*!
* \brief Find corresponding nodes in two sets of faces
* \param theSide1 - first face set
* \param theSide2 - second first face
* \param theFirstNode1 - a boundary node of set 1
* \param theFirstNode2 - a node of set 2 corresponding to theFirstNode1
* \param theSecondNode1 - a boundary node of set 1 linked with theFirstNode1
* \param theSecondNode2 - a node of set 2 corresponding to theSecondNode1
* \param nReplaceMap - output map of corresponding nodes
* \return Sew_Error - is a success or not
*/
static Sew_Error FindMatchingNodes(std::set<const SMDS_MeshElement*>& theSide1,
std::set<const SMDS_MeshElement*>& theSide2,
const SMDS_MeshNode* theFirstNode1,
const SMDS_MeshNode* theFirstNode2,
const SMDS_MeshNode* theSecondNode1,
const SMDS_MeshNode* theSecondNode2,
TNodeNodeMap & theNodeReplaceMap);
/*!
* \brief Returns true if given node is medium
* \param n - node to check
* \param typeToCheck - type of elements containing the node to ask about node status
* \return bool - check result
*/
static bool IsMedium(const SMDS_MeshNode* node,
const SMDSAbs_ElementType typeToCheck = SMDSAbs_All);
int FindShape (const SMDS_MeshElement * theElem);
// Return an index of the shape theElem is on
// or zero if a shape not found
void DoubleElements( const TIDSortedElemSet& theElements );
bool DoubleNodes( const std::list< int >& theListOfNodes,
const std::list< int >& theListOfModifiedElems );
bool DoubleNodes( const TIDSortedElemSet& theElems,
const TIDSortedElemSet& theNodesNot,
const TIDSortedElemSet& theAffectedElems );
bool AffectedElemGroupsInRegion( const TIDSortedElemSet& theElems,
const TIDSortedElemSet& theNodesNot,
const TopoDS_Shape& theShape,
TIDSortedElemSet& theAffectedElems);
bool DoubleNodesInRegion( const TIDSortedElemSet& theElems,
const TIDSortedElemSet& theNodesNot,
const TopoDS_Shape& theShape );
double OrientedAngle(const gp_Pnt& p0, const gp_Pnt& p1, const gp_Pnt& g1, const gp_Pnt& g2);
bool DoubleNodesOnGroupBoundaries( const std::vector<TIDSortedElemSet>& theElems,
bool createJointElems,
bool onAllBoundaries);
bool CreateFlatElementsOnFacesGroups( const std::vector<TIDSortedElemSet>& theElems );
void CreateHoleSkin(double radius,
const TopoDS_Shape& theShape,
SMESH_NodeSearcher* theNodeSearcher,
const char* groupName,
std::vector<double>& nodesCoords,
std::vector<std::vector<int> >& listOfListOfNodes);
/*!
* \brief Generated skin mesh (containing 2D cells) from 3D mesh
* The created 2D mesh elements based on nodes of free faces of boundary volumes
* \return TRUE if operation has been completed successfully, FALSE otherwise
*/
bool Make2DMeshFrom3D();
enum Bnd_Dimension { BND_2DFROM3D, BND_1DFROM3D, BND_1DFROM2D };
int MakeBoundaryMesh(const TIDSortedElemSet& elements,
Bnd_Dimension dimension,
SMESH_Group* group = 0,
SMESH_Mesh* targetMesh = 0,
bool toCopyElements = false,
bool toCopyExistingBondary = false,
bool toAddExistingBondary = false,
bool aroundElements = false);
private:
/*!
* \brief Convert elements contained in a submesh to quadratic
* \return int - nb of checked elements
*/
int convertElemToQuadratic(SMESHDS_SubMesh * theSm,
SMESH_MesherHelper& theHelper,
const bool theForce3d);
/*!
* \brief Convert quadratic elements to linear ones and remove quadratic nodes
* \return nb of checked elements
*/
int removeQuadElem( SMESHDS_SubMesh * theSm,
SMDS_ElemIteratorPtr theItr,
const int theShapeID);
/*!
* \brief Create groups of elements made during transformation
* \param nodeGens - nodes making corresponding myLastCreatedNodes
* \param elemGens - elements making corresponding myLastCreatedElems
* \param postfix - to append to names of new groups
* \param targetMesh - mesh to create groups in
* \param topPresent - is there "top" elements that are created by sweeping
*/
PGroupIDs generateGroups(const SMESH_SequenceOfElemPtr& nodeGens,
const SMESH_SequenceOfElemPtr& elemGens,
const std::string& postfix,
SMESH_Mesh* targetMesh=0,
const bool topPresent=true);
/*!
* \brief Create elements by sweeping an element
* \param elem - element to sweep
* \param newNodesItVec - nodes generated from each node of the element
* \param newElems - generated elements
* \param nbSteps - number of sweeping steps
* \param srcElements - to append elem for each generated element
*/
void sweepElement(const SMDS_MeshElement* elem,
const std::vector<TNodeOfNodeListMapItr> & newNodesItVec,
std::list<const SMDS_MeshElement*>& newElems,
const size_t nbSteps,
SMESH_SequenceOfElemPtr& srcElements);
/*!
* \brief Create 1D and 2D elements around swept elements
* \param mapNewNodes - source nodes and ones generated from them
* \param newElemsMap - source elements and ones generated from them
* \param elemNewNodesMap - nodes generated from each node of each element
* \param elemSet - all swept elements
* \param nbSteps - number of sweeping steps
* \param srcElements - to append elem for each generated element
*/
void makeWalls (TNodeOfNodeListMap & mapNewNodes,
TTElemOfElemListMap & newElemsMap,
TElemOfVecOfNnlmiMap & elemNewNodesMap,
TIDSortedElemSet& elemSet,
const int nbSteps,
SMESH_SequenceOfElemPtr& srcElements);
struct SMESH_MeshEditor_PathPoint
{
gp_Pnt myPnt;
gp_Dir myTgt;
double myAngle, myPrm;
SMESH_MeshEditor_PathPoint(): myPnt(99., 99., 99.), myTgt(1.,0.,0.), myAngle(0), myPrm(0) {}
void SetPnt (const gp_Pnt& aP3D) { myPnt =aP3D; }
void SetTangent (const gp_Dir& aTgt) { myTgt =aTgt; }
void SetAngle (const double& aBeta) { myAngle=aBeta; }
void SetParameter(const double& aPrm) { myPrm =aPrm; }
const gp_Pnt& Pnt ()const { return myPnt; }
const gp_Dir& Tangent ()const { return myTgt; }
double Angle ()const { return myAngle; }
double Parameter ()const { return myPrm; }
};
Extrusion_Error MakeEdgePathPoints(std::list<double>& aPrms,
const TopoDS_Edge& aTrackEdge,
bool aFirstIsStart,
std::list<SMESH_MeshEditor_PathPoint>& aLPP);
Extrusion_Error MakeExtrElements(TIDSortedElemSet theElements[2],
std::list<SMESH_MeshEditor_PathPoint>& theFullList,
const bool theHasAngles,
std::list<double>& theAngles,
const bool theLinearVariation,
const bool theHasRefPoint,
const gp_Pnt& theRefPoint,
const bool theMakeGroups);
static void LinearAngleVariation(const int NbSteps,
std::list<double>& theAngles);
bool doubleNodes( SMESHDS_Mesh* theMeshDS,
const TIDSortedElemSet& theElems,
const TIDSortedElemSet& theNodesNot,
TNodeNodeMap& theNodeNodeMap,
const bool theIsDoubleElem );
void copyPosition( const SMDS_MeshNode* from,
const SMDS_MeshNode* to );
private:
SMESH_Mesh * myMesh;
// Nodes and elements created during last operation
SMESH_SequenceOfElemPtr myLastCreatedNodes, myLastCreatedElems;
// Description of error/warning occured during last operation
SMESH_ComputeErrorPtr myError;
};
#endif