smesh/src/SMESH/SMESH_MesherHelper.cxx

2507 lines
92 KiB
C++
Raw Normal View History

2009-02-17 10:27:49 +05:00
// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE
//
2009-02-17 10:27:49 +05:00
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
2009-02-17 10:27:49 +05:00
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
2009-02-17 10:27:49 +05:00
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
2009-02-17 10:27:49 +05:00
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File: SMESH_MesherHelper.cxx
// Created: 15.02.06 15:22:41
// Author: Sergey KUUL
2009-02-17 10:27:49 +05:00
//
#include "SMESH_MesherHelper.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMESH_subMesh.hxx"
#include <BRepAdaptor_Surface.hxx>
#include <BRepTools.hxx>
2009-02-17 10:27:49 +05:00
#include <BRepTools_WireExplorer.hxx>
#include <BRep_Tool.hxx>
#include <Geom2d_Curve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <ShapeAnalysis.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapIteratorOfMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <gp_Ax3.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Trsf.hxx>
#include <Standard_Failure.hxx>
#include <Standard_ErrorHandler.hxx>
#include <utilities.h>
2009-07-20 19:11:57 +06:00
#include <limits>
#define RETURN_BAD_RESULT(msg) { MESSAGE(msg); return false; }
namespace {
gp_XYZ XYZ(const SMDS_MeshNode* n) { return gp_XYZ(n->X(), n->Y(), n->Z()); }
}
//================================================================================
/*!
* \brief Constructor
*/
//================================================================================
SMESH_MesherHelper::SMESH_MesherHelper(SMESH_Mesh& theMesh)
: myMesh(&theMesh), myShapeID(0), myCreateQuadratic(false), myCheckNodePos(false)
{
mySetElemOnShape = ( ! myMesh->HasShapeToMesh() );
}
//=======================================================================
//function : CheckShape
//purpose :
//=======================================================================
bool SMESH_MesherHelper::IsQuadraticSubMesh(const TopoDS_Shape& aSh)
{
SMESHDS_Mesh* meshDS = GetMeshDS();
// we can create quadratic elements only if all elements
// created on subshapes of given shape are quadratic
// also we have to fill myTLinkNodeMap
myCreateQuadratic = true;
mySeamShapeIds.clear();
myDegenShapeIds.clear();
TopAbs_ShapeEnum subType( aSh.ShapeType()==TopAbs_FACE ? TopAbs_EDGE : TopAbs_FACE );
SMDSAbs_ElementType elemType( subType==TopAbs_FACE ? SMDSAbs_Face : SMDSAbs_Edge );
int nbOldLinks = myTLinkNodeMap.size();
TopExp_Explorer exp( aSh, subType );
for (; exp.More() && myCreateQuadratic; exp.Next()) {
if ( SMESHDS_SubMesh * subMesh = meshDS->MeshElements( exp.Current() )) {
if ( SMDS_ElemIteratorPtr it = subMesh->GetElements() ) {
while(it->more()) {
const SMDS_MeshElement* e = it->next();
if ( e->GetType() != elemType || !e->IsQuadratic() ) {
myCreateQuadratic = false;
break;
}
else {
// fill TLinkNodeMap
switch ( e->NbNodes() ) {
case 3:
AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(2)); break;
case 6:
AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(3));
AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(4));
AddTLinkNode(e->GetNode(2),e->GetNode(0),e->GetNode(5)); break;
case 8:
AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(4));
AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(5));
AddTLinkNode(e->GetNode(2),e->GetNode(3),e->GetNode(6));
AddTLinkNode(e->GetNode(3),e->GetNode(0),e->GetNode(7));
break;
default:
myCreateQuadratic = false;
break;
}
}
}
}
}
}
if ( nbOldLinks == myTLinkNodeMap.size() )
myCreateQuadratic = false;
if(!myCreateQuadratic) {
myTLinkNodeMap.clear();
}
SetSubShape( aSh );
return myCreateQuadratic;
}
//================================================================================
/*!
* \brief Set geomerty to make elements on
* \param aSh - geomertic shape
*/
//================================================================================
void SMESH_MesherHelper::SetSubShape(const int aShID)
{
if ( aShID == myShapeID )
return;
if ( aShID > 1 )
SetSubShape( GetMeshDS()->IndexToShape( aShID ));
else
SetSubShape( TopoDS_Shape() );
}
//================================================================================
/*!
* \brief Set geomerty to make elements on
* \param aSh - geomertic shape
*/
//================================================================================
void SMESH_MesherHelper::SetSubShape(const TopoDS_Shape& aSh)
{
if ( myShape.IsSame( aSh ))
return;
myShape = aSh;
mySeamShapeIds.clear();
myDegenShapeIds.clear();
if ( myShape.IsNull() ) {
myShapeID = 0;
return;
}
SMESHDS_Mesh* meshDS = GetMeshDS();
myShapeID = meshDS->ShapeToIndex(aSh);
// treatment of periodic faces
for ( TopExp_Explorer eF( aSh, TopAbs_FACE ); eF.More(); eF.Next() )
{
const TopoDS_Face& face = TopoDS::Face( eF.Current() );
BRepAdaptor_Surface surface( face );
if ( surface.IsUPeriodic() || surface.IsVPeriodic() )
{
2009-02-17 10:27:49 +05:00
for (TopExp_Explorer exp( face, TopAbs_EDGE ); exp.More(); exp.Next())
{
// look for a seam edge
const TopoDS_Edge& edge = TopoDS::Edge( exp.Current() );
if ( BRep_Tool::IsClosed( edge, face )) {
// initialize myPar1, myPar2 and myParIndex
if ( mySeamShapeIds.empty() ) {
gp_Pnt2d uv1, uv2;
BRep_Tool::UVPoints( edge, face, uv1, uv2 );
if ( Abs( uv1.Coord(1) - uv2.Coord(1) ) < Abs( uv1.Coord(2) - uv2.Coord(2) ))
{
myParIndex = 1; // U periodic
myPar1 = surface.FirstUParameter();
myPar2 = surface.LastUParameter();
}
else {
myParIndex = 2; // V periodic
myPar1 = surface.FirstVParameter();
myPar2 = surface.LastVParameter();
}
}
2009-02-17 10:27:49 +05:00
// store seam shape indices, negative if shape encounters twice
int edgeID = meshDS->ShapeToIndex( edge );
mySeamShapeIds.insert( IsSeamShape( edgeID ) ? -edgeID : edgeID );
for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() ) {
int vertexID = meshDS->ShapeToIndex( v.Current() );
mySeamShapeIds.insert( IsSeamShape( vertexID ) ? -vertexID : vertexID );
}
}
// look for a degenerated edge
if ( BRep_Tool::Degenerated( edge )) {
myDegenShapeIds.insert( meshDS->ShapeToIndex( edge ));
for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() )
myDegenShapeIds.insert( meshDS->ShapeToIndex( v.Current() ));
}
}
}
}
}
//================================================================================
/*!
* \brief Check if inFaceNode argument is necessary for call GetNodeUV(F,..)
* \param F - the face
* \retval bool - return true if the face is periodic
*/
//================================================================================
bool SMESH_MesherHelper::GetNodeUVneedInFaceNode(const TopoDS_Face& F) const
{
if ( F.IsNull() ) return !mySeamShapeIds.empty();
if ( !F.IsNull() && !myShape.IsNull() && myShape.IsSame( F ))
return !mySeamShapeIds.empty();
TopLoc_Location loc;
Handle(Geom_Surface) aSurface = BRep_Tool::Surface( F,loc );
if ( !aSurface.IsNull() )
return ( aSurface->IsUPeriodic() || aSurface->IsVPeriodic() );
return false;
}
//=======================================================================
//function : IsMedium
//purpose :
//=======================================================================
bool SMESH_MesherHelper::IsMedium(const SMDS_MeshNode* node,
const SMDSAbs_ElementType typeToCheck)
{
return SMESH_MeshEditor::IsMedium( node, typeToCheck );
}
//=======================================================================
/*!
* \brief Return support shape of a node
* \param node - the node
* \param meshDS - mesh DS
* \retval TopoDS_Shape - found support shape
*/
//=======================================================================
TopoDS_Shape SMESH_MesherHelper::GetSubShapeByNode(const SMDS_MeshNode* node,
SMESHDS_Mesh* meshDS)
{
int shapeID = node->GetPosition()->GetShapeId();
if ( 0 < shapeID && shapeID <= meshDS->MaxShapeIndex() )
return meshDS->IndexToShape( shapeID );
else
return TopoDS_Shape();
}
//=======================================================================
//function : AddTLinkNode
//purpose :
//=======================================================================
/*!
* Auxilary function for filling myTLinkNodeMap
*/
void SMESH_MesherHelper::AddTLinkNode(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n12)
{
// add new record to map
SMESH_TLink link( n1, n2 );
myTLinkNodeMap.insert( make_pair(link,n12));
}
//=======================================================================
/*!
* \brief Select UV on either of 2 pcurves of a seam edge, closest to the given UV
* \param uv1 - UV on the seam
* \param uv2 - UV within a face
* \retval gp_Pnt2d - selected UV
*/
//=======================================================================
gp_Pnt2d SMESH_MesherHelper::GetUVOnSeam( const gp_Pnt2d& uv1, const gp_Pnt2d& uv2 ) const
{
double p1 = uv1.Coord( myParIndex );
double p2 = uv2.Coord( myParIndex );
double p3 = ( Abs( p1 - myPar1 ) < Abs( p1 - myPar2 )) ? myPar2 : myPar1;
if ( Abs( p2 - p1 ) > Abs( p2 - p3 ))
p1 = p3;
gp_Pnt2d result = uv1;
result.SetCoord( myParIndex, p1 );
return result;
}
//=======================================================================
/*!
* \brief Return node UV on face
* \param F - the face
* \param n - the node
* \param n2 - a node of element being created located inside a face
* \retval gp_XY - resulting UV
*
* Auxilary function called form GetMediumNode()
*/
//=======================================================================
gp_XY SMESH_MesherHelper::GetNodeUV(const TopoDS_Face& F,
const SMDS_MeshNode* n,
const SMDS_MeshNode* n2,
bool* check) const
{
gp_Pnt2d uv( 1e100, 1e100 );
const SMDS_PositionPtr Pos = n->GetPosition();
if(Pos->GetTypeOfPosition()==SMDS_TOP_FACE)
{
// node has position on face
const SMDS_FacePosition* fpos =
static_cast<const SMDS_FacePosition*>(n->GetPosition().get());
uv.SetCoord(fpos->GetUParameter(),fpos->GetVParameter());
if ( check && *check )
{
// check that uv is correct
TopLoc_Location loc;
Handle(Geom_Surface) surface = BRep_Tool::Surface( F,loc );
double tol = 2 * BRep_Tool::Tolerance( F );
gp_Pnt nodePnt = XYZ( n );
if ( !loc.IsIdentity() ) nodePnt.Transform( loc.Transformation().Inverted() );
if ( nodePnt.Distance( surface->Value( uv.X(), uv.Y() )) > tol ) {
// uv incorrect, project the node to surface
GeomAPI_ProjectPointOnSurf projector( nodePnt, surface, tol );
if ( !projector.IsDone() || projector.NbPoints() < 1 ) {
MESSAGE( "SMESH_MesherHelper::GetNodeUV() failed to project" )
return uv.XY();
}
Quantity_Parameter U,V;
projector.LowerDistanceParameters(U,V);
if ( nodePnt.Distance( surface->Value( U, V )) > tol )
MESSAGE( "SMESH_MesherHelper::GetNodeUV(), invalid projection" );
uv.SetCoord( U,V );
}
else if ( uv.XY().Modulus() > numeric_limits<double>::min() ) {
*check = false; // parameters are OK, do not check further more
}
}
}
else if(Pos->GetTypeOfPosition()==SMDS_TOP_EDGE)
{
// node has position on edge => it is needed to find
// corresponding edge from face, get pcurve for this
// edge and retrieve value from this pcurve
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(n->GetPosition().get());
int edgeID = Pos->GetShapeId();
TopoDS_Edge E = TopoDS::Edge(GetMeshDS()->IndexToShape(edgeID));
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
uv = C2d->Value( epos->GetUParameter() );
// for a node on a seam edge select one of UVs on 2 pcurves
2009-02-17 10:27:49 +05:00
if ( n2 && IsSeamShape( edgeID ) )
uv = GetUVOnSeam( uv, GetNodeUV( F, n2, 0 ));
// adjust uv to period
TopLoc_Location loc;
Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc);
Standard_Boolean isUPeriodic = S->IsUPeriodic();
Standard_Boolean isVPeriodic = S->IsVPeriodic();
if ( isUPeriodic || isVPeriodic ) {
Standard_Real UF,UL,VF,VL;
S->Bounds(UF,UL,VF,VL);
if(isUPeriodic)
uv.SetX( uv.X() + ShapeAnalysis::AdjustToPeriod(uv.X(),UF,UL));
if(isVPeriodic)
uv.SetY( uv.Y() + ShapeAnalysis::AdjustToPeriod(uv.Y(),VF,VL));
}
}
else if(Pos->GetTypeOfPosition()==SMDS_TOP_VERTEX)
{
if ( int vertexID = n->GetPosition()->GetShapeId() ) {
bool ok = true;
const TopoDS_Vertex& V = TopoDS::Vertex(GetMeshDS()->IndexToShape(vertexID));
try {
uv = BRep_Tool::Parameters( V, F );
}
catch (Standard_Failure& exc) {
ok = false;
}
if ( !ok ) {
for ( TopExp_Explorer vert(F,TopAbs_VERTEX); !ok && vert.More(); vert.Next() )
ok = ( V == vert.Current() );
if ( !ok ) {
#ifdef _DEBUG_
2009-02-17 10:27:49 +05:00
MESSAGE ( "SMESH_MesherHelper::GetNodeUV(); Vertex " << vertexID
<< " not in face " << GetMeshDS()->ShapeToIndex( F ) );
#endif
// get UV of a vertex closest to the node
double dist = 1e100;
gp_Pnt pn = XYZ( n );
for ( TopExp_Explorer vert(F,TopAbs_VERTEX); !ok && vert.More(); vert.Next() ) {
TopoDS_Vertex curV = TopoDS::Vertex( vert.Current() );
gp_Pnt p = BRep_Tool::Pnt( curV );
double curDist = p.SquareDistance( pn );
if ( curDist < dist ) {
dist = curDist;
uv = BRep_Tool::Parameters( curV, F );
if ( dist < DBL_MIN ) break;
}
}
}
else {
TopTools_ListIteratorOfListOfShape it( myMesh->GetAncestors( V ));
for ( ; it.More(); it.Next() ) {
if ( it.Value().ShapeType() == TopAbs_EDGE ) {
const TopoDS_Edge & edge = TopoDS::Edge( it.Value() );
double f,l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(edge, F, f, l);
if ( !C2d.IsNull() ) {
double u = ( V == TopExp::FirstVertex( edge ) ) ? f : l;
uv = C2d->Value( u );
break;
}
}
}
}
}
2009-02-17 10:27:49 +05:00
if ( n2 && IsSeamShape( vertexID ) )
uv = GetUVOnSeam( uv, GetNodeUV( F, n2, 0 ));
}
}
return uv.XY();
}
//=======================================================================
/*!
* \brief Return middle UV taking in account surface period
*/
//=======================================================================
gp_XY SMESH_MesherHelper::GetMiddleUV(const Handle(Geom_Surface)& surface,
const gp_XY& p1,
const gp_XY& p2)
{
if ( surface.IsNull() )
return 0.5 * ( p1 + p2 );
//checking if surface is periodic
Standard_Real UF,UL,VF,VL;
surface->Bounds(UF,UL,VF,VL);
Standard_Real u,v;
Standard_Boolean isUPeriodic = surface->IsUPeriodic();
if(isUPeriodic) {
Standard_Real UPeriod = surface->UPeriod();
Standard_Real p2x = p2.X()+ShapeAnalysis::AdjustByPeriod(p2.X(),p1.X(),UPeriod);
Standard_Real pmid = (p1.X()+p2x)/2.;
u = pmid+ShapeAnalysis::AdjustToPeriod(pmid,UF,UL);
}
else {
u= (p1.X()+p2.X())/2.;
}
Standard_Boolean isVPeriodic = surface->IsVPeriodic();
if(isVPeriodic) {
Standard_Real VPeriod = surface->VPeriod();
Standard_Real p2y = p2.Y()+ShapeAnalysis::AdjustByPeriod(p2.Y(),p1.Y(),VPeriod);
Standard_Real pmid = (p1.Y()+p2y)/2.;
v = pmid+ShapeAnalysis::AdjustToPeriod(pmid,VF,VL);
}
else {
v = (p1.Y()+p2.Y())/2.;
}
return gp_XY( u,v );
}
//=======================================================================
/*!
* \brief Return node U on edge
* \param E - the Edge
* \param n - the node
* \retval double - resulting U
*
* Auxilary function called form GetMediumNode()
*/
//=======================================================================
double SMESH_MesherHelper::GetNodeU(const TopoDS_Edge& E,
const SMDS_MeshNode* n,
bool* check)
{
double param = 0;
const SMDS_PositionPtr Pos = n->GetPosition();
if(Pos->GetTypeOfPosition()==SMDS_TOP_EDGE) {
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(n->GetPosition().get());
param = epos->GetUParameter();
}
else if(Pos->GetTypeOfPosition()==SMDS_TOP_VERTEX) {
SMESHDS_Mesh * meshDS = GetMeshDS();
int vertexID = n->GetPosition()->GetShapeId();
const TopoDS_Vertex& V = TopoDS::Vertex(meshDS->IndexToShape(vertexID));
param = BRep_Tool::Parameter( V, E );
}
return param;
}
//================================================================================
/*!
* \brief Return existing or create new medium nodes between given ones
* \param force3d - if true, new node is the middle of n1 and n2,
* else is located on geom face or geom edge
*/
//================================================================================
const SMDS_MeshNode* SMESH_MesherHelper::GetMediumNode(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
bool force3d)
{
SMESH_TLink link(n1,n2);
ItTLinkNode itLN = myTLinkNodeMap.find( link );
if ( itLN != myTLinkNodeMap.end() ) {
return (*itLN).second;
}
// create medium node
SMDS_MeshNode* n12;
SMESHDS_Mesh* meshDS = GetMeshDS();
int faceID = -1, edgeID = -1;
const SMDS_PositionPtr Pos1 = n1->GetPosition();
const SMDS_PositionPtr Pos2 = n2->GetPosition();
if( myShape.IsNull() )
{
if( Pos1->GetTypeOfPosition()==SMDS_TOP_FACE ) {
faceID = Pos1->GetShapeId();
}
else if( Pos2->GetTypeOfPosition()==SMDS_TOP_FACE ) {
faceID = Pos2->GetShapeId();
}
if( Pos1->GetTypeOfPosition()==SMDS_TOP_EDGE ) {
edgeID = Pos1->GetShapeId();
}
if( Pos2->GetTypeOfPosition()==SMDS_TOP_EDGE ) {
edgeID = Pos2->GetShapeId();
}
}
if(!force3d)
{
// we try to create medium node using UV parameters of
// nodes, else - medium between corresponding 3d points
TopAbs_ShapeEnum shapeType = myShape.IsNull() ? TopAbs_SHAPE : myShape.ShapeType();
if(faceID>0 || shapeType == TopAbs_FACE) {
// obtaining a face and 2d points for nodes
TopoDS_Face F;
if( myShape.IsNull() )
F = TopoDS::Face(meshDS->IndexToShape(faceID));
else {
F = TopoDS::Face(myShape);
faceID = myShapeID;
}
gp_XY p1 = GetNodeUV(F,n1,n2, &myCheckNodePos);
gp_XY p2 = GetNodeUV(F,n2,n1, &myCheckNodePos);
if ( IsDegenShape( Pos1->GetShapeId() ))
p1.SetCoord( myParIndex, p2.Coord( myParIndex ));
else if ( IsDegenShape( Pos2->GetShapeId() ))
p2.SetCoord( myParIndex, p1.Coord( myParIndex ));
TopLoc_Location loc;
Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc);
gp_XY uv = GetMiddleUV( S, p1, p2 );
gp_Pnt P = S->Value( uv.X(), uv.Y() ).Transformed(loc);
n12 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(n12, faceID, uv.X(), uv.Y());
myTLinkNodeMap.insert(make_pair(link,n12));
return n12;
}
if (edgeID>0 || shapeType == TopAbs_EDGE) {
TopoDS_Edge E;
if( myShape.IsNull() )
E = TopoDS::Edge(meshDS->IndexToShape(edgeID));
else {
E = TopoDS::Edge(myShape);
edgeID = myShapeID;
}
double p1 = GetNodeU(E,n1, &myCheckNodePos);
double p2 = GetNodeU(E,n2, &myCheckNodePos);
double f,l;
Handle(Geom_Curve) C = BRep_Tool::Curve(E, f, l);
if(!C.IsNull()) {
Standard_Boolean isPeriodic = C->IsPeriodic();
double u;
if(isPeriodic) {
Standard_Real Period = C->Period();
Standard_Real p = p2+ShapeAnalysis::AdjustByPeriod(p2,p1,Period);
Standard_Real pmid = (p1+p)/2.;
u = pmid+ShapeAnalysis::AdjustToPeriod(pmid,C->FirstParameter(),C->LastParameter());
}
else
u = (p1+p2)/2.;
gp_Pnt P = C->Value( u );
n12 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(n12, edgeID, u);
myTLinkNodeMap.insert(make_pair(link,n12));
return n12;
}
}
}
// 3d variant
double x = ( n1->X() + n2->X() )/2.;
double y = ( n1->Y() + n2->Y() )/2.;
double z = ( n1->Z() + n2->Z() )/2.;
n12 = meshDS->AddNode(x,y,z);
if(edgeID>0)
meshDS->SetNodeOnEdge(n12, edgeID);
else if(faceID>0)
meshDS->SetNodeOnFace(n12, faceID);
else
meshDS->SetNodeInVolume(n12, myShapeID);
myTLinkNodeMap.insert( make_pair( link, n12 ));
return n12;
}
//=======================================================================
/*!
* Creates a node
*/
//=======================================================================
SMDS_MeshNode* SMESH_MesherHelper::AddNode(double x, double y, double z, int ID)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshNode* node = 0;
if ( ID )
node = meshDS->AddNodeWithID( x, y, z, ID );
else
node = meshDS->AddNode( x, y, z );
if ( mySetElemOnShape && myShapeID > 0 ) {
switch ( myShape.ShapeType() ) {
case TopAbs_SOLID: meshDS->SetNodeInVolume( node, myShapeID); break;
case TopAbs_SHELL: meshDS->SetNodeInVolume( node, myShapeID); break;
case TopAbs_FACE: meshDS->SetNodeOnFace( node, myShapeID); break;
case TopAbs_EDGE: meshDS->SetNodeOnEdge( node, myShapeID); break;
case TopAbs_VERTEX: meshDS->SetNodeOnVertex( node, myShapeID); break;
default: ;
}
}
return node;
}
//=======================================================================
/*!
* Creates quadratic or linear edge
*/
//=======================================================================
SMDS_MeshEdge* SMESH_MesherHelper::AddEdge(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshEdge* edge = 0;
if (myCreateQuadratic) {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
if(id)
edge = meshDS->AddEdgeWithID(n1, n2, n12, id);
else
edge = meshDS->AddEdge(n1, n2, n12);
}
else {
if(id)
edge = meshDS->AddEdgeWithID(n1, n2, id);
else
edge = meshDS->AddEdge(n1, n2);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( edge, myShapeID );
return edge;
}
//=======================================================================
/*!
* Creates quadratic or linear triangle
*/
//=======================================================================
SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const int id,
2009-09-10 17:06:18 +06:00
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshFace* elem = 0;
if( n1==n2 || n2==n3 || n3==n1 )
return elem;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, id);
else
elem = meshDS->AddFace(n1, n2, n3);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d);
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n12, n23, n31, id);
else
elem = meshDS->AddFace(n1, n2, n3, n12, n23, n31);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
/*!
* Creates quadratic or linear quadrangle
*/
//=======================================================================
SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const int id,
2009-09-10 17:06:18 +06:00
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshFace* elem = 0;
if( n1==n2 ) {
return AddFace(n1,n3,n4,id,force3d);
}
if( n1==n3 ) {
return AddFace(n1,n2,n4,id,force3d);
}
if( n1==n4 ) {
return AddFace(n1,n2,n3,id,force3d);
}
if( n2==n3 ) {
return AddFace(n1,n2,n4,id,force3d);
}
if( n2==n4 ) {
return AddFace(n1,n2,n3,id,force3d);
}
if( n3==n4 ) {
return AddFace(n1,n2,n3,id,force3d);
}
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n4, id);
else
elem = meshDS->AddFace(n1, n2, n3, n4);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d);
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n4, n12, n23, n34, n41, id);
else
elem = meshDS->AddFace(n1, n2, n3, n4, n12, n23, n34, n41);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
/*!
* Creates quadratic or linear volume
*/
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n5,
const SMDS_MeshNode* n6,
const int id,
2009-09-10 17:06:18 +06:00
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d);
const SMDS_MeshNode* n45 = GetMediumNode(n4,n5,force3d);
const SMDS_MeshNode* n56 = GetMediumNode(n5,n6,force3d);
const SMDS_MeshNode* n64 = GetMediumNode(n6,n4,force3d);
const SMDS_MeshNode* n14 = GetMediumNode(n1,n4,force3d);
const SMDS_MeshNode* n25 = GetMediumNode(n2,n5,force3d);
const SMDS_MeshNode* n36 = GetMediumNode(n3,n6,force3d);
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6,
n12, n23, n31, n45, n56, n64, n14, n25, n36, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6,
n12, n23, n31, n45, n56, n64, n14, n25, n36);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
/*!
* Creates quadratic or linear volume
*/
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const int id,
2009-09-10 17:06:18 +06:00
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d);
const SMDS_MeshNode* n14 = GetMediumNode(n1,n4,force3d);
const SMDS_MeshNode* n24 = GetMediumNode(n2,n4,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
/*!
* Creates quadratic or linear pyramid
*/
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n5,
const int id,
2009-09-10 17:06:18 +06:00
const bool force3d)
{
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = GetMeshDS()->AddVolumeWithID(n1, n2, n3, n4, n5, id);
else
elem = GetMeshDS()->AddVolume(n1, n2, n3, n4, n5);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d);
const SMDS_MeshNode* n15 = GetMediumNode(n1,n5,force3d);
const SMDS_MeshNode* n25 = GetMediumNode(n2,n5,force3d);
const SMDS_MeshNode* n35 = GetMediumNode(n3,n5,force3d);
const SMDS_MeshNode* n45 = GetMediumNode(n4,n5,force3d);
if(id)
elem = GetMeshDS()->AddVolumeWithID ( n1, n2, n3, n4, n5,
n12, n23, n34, n41,
n15, n25, n35, n45,
id);
else
elem = GetMeshDS()->AddVolume( n1, n2, n3, n4, n5,
n12, n23, n34, n41,
n15, n25, n35, n45);
}
if ( mySetElemOnShape && myShapeID > 0 )
GetMeshDS()->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
/*!
* Creates quadratic or linear hexahedron
*/
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n5,
const SMDS_MeshNode* n6,
const SMDS_MeshNode* n7,
const SMDS_MeshNode* n8,
const int id,
2009-09-10 17:06:18 +06:00
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d);
const SMDS_MeshNode* n56 = GetMediumNode(n5,n6,force3d);
const SMDS_MeshNode* n67 = GetMediumNode(n6,n7,force3d);
const SMDS_MeshNode* n78 = GetMediumNode(n7,n8,force3d);
const SMDS_MeshNode* n85 = GetMediumNode(n8,n5,force3d);
const SMDS_MeshNode* n15 = GetMediumNode(n1,n5,force3d);
const SMDS_MeshNode* n26 = GetMediumNode(n2,n6,force3d);
const SMDS_MeshNode* n37 = GetMediumNode(n3,n7,force3d);
const SMDS_MeshNode* n48 = GetMediumNode(n4,n8,force3d);
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8,
n12, n23, n34, n41, n56, n67,
n78, n85, n15, n26, n37, n48, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8,
n12, n23, n34, n41, n56, n67,
n78, n85, n15, n26, n37, n48);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
2009-02-17 10:27:49 +05:00
/*!
* \brief Load nodes bound to face into a map of node columns
* \param theParam2ColumnMap - map of node columns to fill
* \param theFace - the face on which nodes are searched for
* \param theBaseEdge - the edge nodes of which are columns' bases
* \param theMesh - the mesh containing nodes
* \retval bool - false if something is wrong
*
* The key of the map is a normalized parameter of each
* base node on theBaseEdge.
* This method works in supposition that nodes on the face
* forms a rectangular grid and elements can be quardrangles or triangles
*/
//=======================================================================
bool SMESH_MesherHelper::LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap,
const TopoDS_Face& theFace,
const TopoDS_Edge& theBaseEdge,
SMESHDS_Mesh* theMesh)
{
// get vertices of theBaseEdge
TopoDS_Vertex vfb, vlb, vft; // first and last, bottom and top vertices
TopoDS_Edge eFrw = TopoDS::Edge( theBaseEdge.Oriented( TopAbs_FORWARD ));
TopExp::Vertices( eFrw, vfb, vlb );
// find the other edges of theFace and orientation of e1
TopoDS_Edge e1, e2, eTop;
bool rev1, CumOri = false;
TopExp_Explorer exp( theFace, TopAbs_EDGE );
int nbEdges = 0;
for ( ; exp.More(); exp.Next() ) {
if ( ++nbEdges > 4 ) {
return false; // more than 4 edges in theFace
}
TopoDS_Edge e = TopoDS::Edge( exp.Current() );
if ( theBaseEdge.IsSame( e ))
continue;
TopoDS_Vertex vCommon;
if ( !TopExp::CommonVertex( theBaseEdge, e, vCommon ))
eTop = e;
else if ( vCommon.IsSame( vfb )) {
e1 = e;
vft = TopExp::LastVertex( e1, CumOri );
rev1 = vfb.IsSame( vft );
if ( rev1 )
vft = TopExp::FirstVertex( e1, CumOri );
}
else
e2 = e;
}
if ( nbEdges < 4 ) {
return false; // less than 4 edges in theFace
}
if ( e2.IsNull() && vfb.IsSame( vlb ))
e2 = e1;
// submeshes corresponding to shapes
SMESHDS_SubMesh* smFace = theMesh->MeshElements( theFace );
SMESHDS_SubMesh* smb = theMesh->MeshElements( theBaseEdge );
SMESHDS_SubMesh* smt = theMesh->MeshElements( eTop );
SMESHDS_SubMesh* sm1 = theMesh->MeshElements( e1 );
SMESHDS_SubMesh* sm2 = theMesh->MeshElements( e2 );
SMESHDS_SubMesh* smVfb = theMesh->MeshElements( vfb );
SMESHDS_SubMesh* smVlb = theMesh->MeshElements( vlb );
SMESHDS_SubMesh* smVft = theMesh->MeshElements( vft );
if (!smFace || !smb || !smt || !sm1 || !sm2 || !smVfb || !smVlb || !smVft ) {
RETURN_BAD_RESULT( "NULL submesh " <<smFace<<" "<<smb<<" "<<smt<<" "<<
sm1<<" "<<sm2<<" "<<smVfb<<" "<<smVlb<<" "<<smVft);
}
if ( smb->NbNodes() != smt->NbNodes() || sm1->NbNodes() != sm2->NbNodes() ) {
RETURN_BAD_RESULT(" Diff nb of nodes on opposite edges" );
}
if (smVfb->NbNodes() != 1 || smVlb->NbNodes() != 1 || smVft->NbNodes() != 1) {
RETURN_BAD_RESULT("Empty submesh of vertex");
}
// define whether mesh is quadratic
bool isQuadraticMesh = false;
SMDS_ElemIteratorPtr eIt = smFace->GetElements();
if ( !eIt->more() ) {
RETURN_BAD_RESULT("No elements on the face");
}
const SMDS_MeshElement* e = eIt->next();
isQuadraticMesh = e->IsQuadratic();
if ( sm1->NbNodes() * smb->NbNodes() != smFace->NbNodes() ) {
// check quadratic case
if ( isQuadraticMesh ) {
// what if there are quadrangles and triangles mixed?
// int n1 = sm1->NbNodes()/2;
// int n2 = smb->NbNodes()/2;
// int n3 = sm1->NbNodes() - n1;
// int n4 = smb->NbNodes() - n2;
// int nf = sm1->NbNodes()*smb->NbNodes() - n3*n4;
// if( nf != smFace->NbNodes() ) {
// MESSAGE( "Wrong nb face nodes: " <<
// sm1->NbNodes()<<" "<<smb->NbNodes()<<" "<<smFace->NbNodes());
// return false;
// }
}
else {
RETURN_BAD_RESULT( "Wrong nb face nodes: " <<
sm1->NbNodes()<<" "<<smb->NbNodes()<<" "<<smFace->NbNodes());
}
}
// IJ size
int vsize = sm1->NbNodes() + 2;
int hsize = smb->NbNodes() + 2;
if(isQuadraticMesh) {
vsize = vsize - sm1->NbNodes()/2 -1;
hsize = hsize - smb->NbNodes()/2 -1;
}
// load nodes from theBaseEdge
2009-02-17 10:27:49 +05:00
std::set<const SMDS_MeshNode*> loadedNodes;
const SMDS_MeshNode* nullNode = 0;
2009-02-17 10:27:49 +05:00
std::vector<const SMDS_MeshNode*> & nVecf = theParam2ColumnMap[ 0.];
nVecf.resize( vsize, nullNode );
loadedNodes.insert( nVecf[ 0 ] = smVfb->GetNodes()->next() );
2009-02-17 10:27:49 +05:00
std::vector<const SMDS_MeshNode*> & nVecl = theParam2ColumnMap[ 1.];
nVecl.resize( vsize, nullNode );
loadedNodes.insert( nVecl[ 0 ] = smVlb->GetNodes()->next() );
double f, l;
BRep_Tool::Range( eFrw, f, l );
double range = l - f;
SMDS_NodeIteratorPtr nIt = smb->GetNodes();
const SMDS_MeshNode* node;
while ( nIt->more() ) {
node = nIt->next();
if(IsMedium(node, SMDSAbs_Edge))
continue;
const SMDS_EdgePosition* pos =
dynamic_cast<const SMDS_EdgePosition*>( node->GetPosition().get() );
if ( !pos ) {
return false;
}
double u = ( pos->GetUParameter() - f ) / range;
2009-02-17 10:27:49 +05:00
std::vector<const SMDS_MeshNode*> & nVec = theParam2ColumnMap[ u ];
nVec.resize( vsize, nullNode );
loadedNodes.insert( nVec[ 0 ] = node );
}
if ( theParam2ColumnMap.size() != hsize ) {
RETURN_BAD_RESULT( "Wrong node positions on theBaseEdge" );
}
// load nodes from e1
2009-02-17 10:27:49 +05:00
std::map< double, const SMDS_MeshNode*> sortedNodes; // sort by param on edge
nIt = sm1->GetNodes();
while ( nIt->more() ) {
node = nIt->next();
if(IsMedium(node))
continue;
const SMDS_EdgePosition* pos =
dynamic_cast<const SMDS_EdgePosition*>( node->GetPosition().get() );
if ( !pos ) {
return false;
}
2009-02-17 10:27:49 +05:00
sortedNodes.insert( std::make_pair( pos->GetUParameter(), node ));
}
loadedNodes.insert( nVecf[ vsize - 1 ] = smVft->GetNodes()->next() );
2009-02-17 10:27:49 +05:00
std::map< double, const SMDS_MeshNode*>::iterator u_n = sortedNodes.begin();
int row = rev1 ? vsize - 1 : 0;
int dRow = rev1 ? -1 : +1;
for ( ; u_n != sortedNodes.end(); u_n++ ) {
row += dRow;
loadedNodes.insert( nVecf[ row ] = u_n->second );
}
// try to load the rest nodes
// get all faces from theFace
TIDSortedElemSet allFaces, foundFaces;
eIt = smFace->GetElements();
while ( eIt->more() ) {
const SMDS_MeshElement* e = eIt->next();
if ( e->GetType() == SMDSAbs_Face )
allFaces.insert( e );
}
// Starting from 2 neighbour nodes on theBaseEdge, look for a face
// the nodes belong to, and between the nodes of the found face,
// look for a not loaded node considering this node to be the next
// in a column of the starting second node. Repeat, starting
// from nodes next to the previous starting nodes in their columns,
// and so on while a face can be found. Then go the the next pair
// of nodes on theBaseEdge.
TParam2ColumnMap::iterator par_nVec_1 = theParam2ColumnMap.begin();
TParam2ColumnMap::iterator par_nVec_2 = par_nVec_1;
// loop on columns
int col = 0;
for ( par_nVec_2++; par_nVec_2 != theParam2ColumnMap.end(); par_nVec_1++, par_nVec_2++ ) {
col++;
row = 0;
const SMDS_MeshNode* n1 = par_nVec_1->second[ row ];
const SMDS_MeshNode* n2 = par_nVec_2->second[ row ];
const SMDS_MeshElement* face = 0;
bool lastColOnClosedFace = ( nVecf[ row ] == n2 );
do {
// look for a face by 2 nodes
face = SMESH_MeshEditor::FindFaceInSet( n1, n2, allFaces, foundFaces );
if ( face ) {
int nbFaceNodes = face->NbNodes();
if ( face->IsQuadratic() )
nbFaceNodes /= 2;
if ( nbFaceNodes>4 ) {
RETURN_BAD_RESULT(" Too many nodes in a face: " << nbFaceNodes );
}
// look for a not loaded node of the <face>
bool found = false;
const SMDS_MeshNode* n3 = 0; // a node defferent from n1 and n2
for ( int i = 0; i < nbFaceNodes && !found; ++i ) {
node = face->GetNode( i );
found = loadedNodes.insert( node ).second;
if ( !found && node != n1 && node != n2 )
n3 = node;
}
if ( lastColOnClosedFace && row + 1 < vsize ) {
node = nVecf[ row + 1 ];
found = ( face->GetNodeIndex( node ) >= 0 );
}
if ( found ) {
if ( ++row > vsize - 1 ) {
RETURN_BAD_RESULT( "Too many nodes in column "<< col <<": "<< row+1);
}
par_nVec_2->second[ row ] = node;
foundFaces.insert( face );
n2 = node;
if ( nbFaceNodes==4 ) {
n1 = par_nVec_1->second[ row ];
}
}
else if ( nbFaceNodes==3 && n3 == par_nVec_1->second[ row + 1 ] ) {
n1 = n3;
}
else {
RETURN_BAD_RESULT( "Not quad mesh, column "<< col );
}
}
}
while ( face && n1 && n2 );
if ( row < vsize - 1 ) {
MESSAGE( "Too few nodes in column "<< col <<": "<< row+1);
MESSAGE( "Base node 1: "<< par_nVec_1->second[0]);
MESSAGE( "Base node 2: "<< par_nVec_2->second[0]);
if ( n1 ) { MESSAGE( "Current node 1: "<< n1); }
else { MESSAGE( "Current node 1: NULL"); }
if ( n2 ) { MESSAGE( "Current node 2: "<< n2); }
else { MESSAGE( "Current node 2: NULL"); }
MESSAGE( "first base node: "<< theParam2ColumnMap.begin()->second[0]);
MESSAGE( "last base node: "<< theParam2ColumnMap.rbegin()->second[0]);
return false;
}
} // loop on columns
return true;
}
2009-02-17 11:55:16 +05:00
//=======================================================================
/*!
* \brief Return number of unique ancestors of the shape
*/
//=======================================================================
int SMESH_MesherHelper::NbAncestors(const TopoDS_Shape& shape,
const SMESH_Mesh& mesh,
TopAbs_ShapeEnum ancestorType/*=TopAbs_SHAPE*/)
{
TopTools_MapOfShape ancestors;
TopTools_ListIteratorOfListOfShape ansIt( mesh.GetAncestors(shape) );
for ( ; ansIt.More(); ansIt.Next() ) {
if ( ancestorType == TopAbs_SHAPE || ansIt.Value().ShapeType() == ancestorType )
ancestors.Add( ansIt.Value() );
}
return ancestors.Extent();
}
2009-02-17 10:27:49 +05:00
//=======================================================================
/**
* Check mesh without geometry for: if all elements on this shape are quadratic,
* quadratic elements will be created.
* Used then generated 3D mesh without geometry.
2009-02-17 10:27:49 +05:00
*/
//=======================================================================
SMESH_MesherHelper:: MType SMESH_MesherHelper::IsQuadraticMesh()
{
int NbAllEdgsAndFaces=0;
int NbQuadFacesAndEdgs=0;
int NbFacesAndEdges=0;
//All faces and edges
NbAllEdgsAndFaces = myMesh->NbEdges() + myMesh->NbFaces();
//Quadratic faces and edges
NbQuadFacesAndEdgs = myMesh->NbEdges(ORDER_QUADRATIC) + myMesh->NbFaces(ORDER_QUADRATIC);
//Linear faces and edges
NbFacesAndEdges = myMesh->NbEdges(ORDER_LINEAR) + myMesh->NbFaces(ORDER_LINEAR);
if (NbAllEdgsAndFaces == NbQuadFacesAndEdgs) {
//Quadratic mesh
return SMESH_MesherHelper::QUADRATIC;
}
else if (NbAllEdgsAndFaces == NbFacesAndEdges) {
//Linear mesh
return SMESH_MesherHelper::LINEAR;
}
else
//Mesh with both type of elements
return SMESH_MesherHelper::COMP;
}
2009-02-17 10:27:49 +05:00
//=======================================================================
/*!
* \brief Return an alternative parameter for a node on seam
*/
//=======================================================================
double SMESH_MesherHelper::GetOtherParam(const double param) const
{
return fabs(param-myPar1) < fabs(param-myPar2) ? myPar2 : myPar1;
}
//=======================================================================
namespace { // Structures used by FixQuadraticElements()
//=======================================================================
#define __DMP__(txt) \
//cout << txt
#define MSG(txt) __DMP__(txt<<endl)
#define MSGBEG(txt) __DMP__(txt)
const double straightTol2 = 1e-33; // to detect straing links
struct QFace;
// ---------------------------------------
/*!
* \brief Quadratic link knowing its faces
*/
struct QLink: public SMESH_TLink
{
const SMDS_MeshNode* _mediumNode;
mutable vector<const QFace* > _faces;
mutable gp_Vec _nodeMove;
mutable int _nbMoves;
QLink(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* nm):
SMESH_TLink( n1,n2 ), _mediumNode(nm), _nodeMove(0,0,0), _nbMoves(0) {
_faces.reserve(4);
//if ( MediumPos() != SMDS_TOP_3DSPACE )
_nodeMove = MediumPnt() - MiddlePnt();
}
void SetContinuesFaces() const;
const QFace* GetContinuesFace( const QFace* face ) const;
bool OnBoundary() const;
gp_XYZ MiddlePnt() const { return ( XYZ( node1() ) + XYZ( node2() )) / 2.; }
gp_XYZ MediumPnt() const { return XYZ( _mediumNode ); }
SMDS_TypeOfPosition MediumPos() const
{ return _mediumNode->GetPosition()->GetTypeOfPosition(); }
SMDS_TypeOfPosition EndPos(bool isSecond) const
{ return (isSecond ? node2() : node1())->GetPosition()->GetTypeOfPosition(); }
const SMDS_MeshNode* EndPosNode(SMDS_TypeOfPosition pos) const
{ return EndPos(0) == pos ? node1() : EndPos(1) == pos ? node2() : 0; }
void Move(const gp_Vec& move, bool sum=false) const
{ _nodeMove += move; _nbMoves += sum ? (_nbMoves==0) : 1; }
gp_XYZ Move() const { return _nodeMove.XYZ() / _nbMoves; }
bool IsMoved() const { return (_nbMoves > 0 && !IsStraight()); }
bool IsStraight() const { return _nodeMove.SquareMagnitude() <= straightTol2; }
bool operator<(const QLink& other) const {
return (node1()->GetID() == other.node1()->GetID() ?
node2()->GetID() < other.node2()->GetID() :
node1()->GetID() < other.node1()->GetID());
}
struct PtrComparator {
bool operator() (const QLink* l1, const QLink* l2 ) const { return *l1 < *l2; }
};
};
// ---------------------------------------------------------
/*!
* \brief Link in the chain of links; it connects two faces
*/
struct TChainLink
{
const QLink* _qlink;
mutable const QFace* _qfaces[2];
TChainLink(const QLink* qlink=0):_qlink(qlink) {
_qfaces[0] = _qfaces[1] = 0;
}
void SetFace(const QFace* face) { int iF = _qfaces[0] ? 1 : 0; _qfaces[iF]=face; }
bool IsBoundary() const { return !_qfaces[1]; }
void RemoveFace( const QFace* face ) const
2009-07-31 19:52:22 +06:00
{ _qfaces[(face == _qfaces[1])] = 0; if (!_qfaces[0]) std::swap(_qfaces[0],_qfaces[1]); }
const QFace* NextFace( const QFace* f ) const
{ return _qfaces[0]==f ? _qfaces[1] : _qfaces[0]; }
const SMDS_MeshNode* NextNode( const SMDS_MeshNode* n ) const
{ return n == _qlink->node1() ? _qlink->node2() : _qlink->node1(); }
bool operator<(const TChainLink& other) const { return *_qlink < *other._qlink; }
operator bool() const { return (_qlink); }
const QLink* operator->() const { return _qlink; }
gp_Vec Normal() const;
};
// --------------------------------------------------------------------
typedef list< TChainLink > TChain;
typedef set < TChainLink > TLinkSet;
2009-07-31 19:52:22 +06:00
typedef TLinkSet::const_iterator TLinkInSet;
const int theFirstStep = 5;
enum { ERR_OK, ERR_TRI, ERR_PRISM, ERR_UNKNOWN }; // errors of QFace::GetLinkChain()
// --------------------------------------------------------------------
/*!
* \brief Face shared by two volumes and bound by QLinks
*/
struct QFace: public TIDSortedElemSet
{
mutable const SMDS_MeshElement* _volumes[2];
mutable vector< const QLink* > _sides;
mutable bool _sideIsAdded[4]; // added in chain of links
gp_Vec _normal;
QFace( const vector< const QLink*>& links );
void SetVolume(const SMDS_MeshElement* v) const { _volumes[ _volumes[0] ? 1 : 0 ] = v; }
int NbVolumes() const { return !_volumes[0] ? 0 : !_volumes[1] ? 1 : 2; }
void AddSelfToLinks() const {
for ( int i = 0; i < _sides.size(); ++i )
_sides[i]->_faces.push_back( this );
}
int LinkIndex( const QLink* side ) const {
for (int i=0; i<_sides.size(); ++i ) if ( _sides[i] == side ) return i;
return -1;
}
bool GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& error) const;
bool GetLinkChain( TChainLink& link, TChain& chain, SMDS_TypeOfPosition pos, int& error) const
{
int i = LinkIndex( link._qlink );
if ( i < 0 ) return true;
_sideIsAdded[i] = true;
link.SetFace( this );
// continue from opposite link
return GetLinkChain( (i+2)%_sides.size(), chain, pos, error );
}
bool IsBoundary() const { return !_volumes[1]; }
bool Contains( const SMDS_MeshNode* node ) const { return count(node); }
TLinkInSet GetBoundaryLink( const TLinkSet& links,
const TChainLink& avoidLink,
TLinkInSet * notBoundaryLink = 0,
const SMDS_MeshNode* nodeToContain = 0,
bool * isAdjacentUsed = 0) const;
TLinkInSet GetLinkByNode( const TLinkSet& links,
const TChainLink& avoidLink,
const SMDS_MeshNode* nodeToContain) const;
const SMDS_MeshNode* GetNodeInFace() const {
for ( int iL = 0; iL < _sides.size(); ++iL )
if ( _sides[iL]->MediumPos() == SMDS_TOP_FACE ) return _sides[iL]->_mediumNode;
return 0;
}
gp_Vec LinkNorm(const int i, SMESH_MesherHelper* theFaceHelper=0) const;
double MoveByBoundary( const TChainLink& theLink,
const gp_Vec& theRefVec,
const TLinkSet& theLinks,
SMESH_MesherHelper* theFaceHelper=0,
const double thePrevLen=0,
const int theStep=theFirstStep,
gp_Vec* theLinkNorm=0,
double theSign=1.0) const;
};
//================================================================================
/*!
* \brief Dump QLink and QFace
*/
ostream& operator << (ostream& out, const QLink& l)
{
out <<"QLink nodes: "
<< l.node1()->GetID() << " - "
<< l._mediumNode->GetID() << " - "
<< l.node2()->GetID() << endl;
return out;
}
ostream& operator << (ostream& out, const QFace& f)
{
out <<"QFace nodes: "/*<< &f << " "*/;
2009-07-31 19:52:22 +06:00
for ( TIDSortedElemSet::const_iterator n = f.begin(); n != f.end(); ++n )
out << (*n)->GetID() << " ";
out << " \tvolumes: "
<< (f._volumes[0] ? f._volumes[0]->GetID() : 0) << " "
<< (f._volumes[1] ? f._volumes[1]->GetID() : 0);
out << " \tNormal: "<< f._normal.X() <<", "<<f._normal.Y() <<", "<<f._normal.Z() << endl;
return out;
}
//================================================================================
/*!
* \brief Construct QFace from QLinks
*/
//================================================================================
QFace::QFace( const vector< const QLink*>& links )
{
_volumes[0] = _volumes[1] = 0;
_sides = links;
_sideIsAdded[0]=_sideIsAdded[1]=_sideIsAdded[2]=_sideIsAdded[3]=false;
_normal.SetCoord(0,0,0);
for ( int i = 1; i < _sides.size(); ++i ) {
const QLink *l1 = _sides[i-1], *l2 = _sides[i];
insert( l1->node1() ); insert( l1->node2() );
// compute normal
gp_Vec v1( XYZ( l1->node2()), XYZ( l1->node1()));
gp_Vec v2( XYZ( l2->node1()), XYZ( l2->node2()));
if ( l1->node1() != l2->node1() && l1->node2() != l2->node2() )
v1.Reverse();
_normal += v1 ^ v2;
}
double normSqSize = _normal.SquareMagnitude();
if ( normSqSize > numeric_limits<double>::min() )
_normal /= sqrt( normSqSize );
else
_normal.SetCoord(1e-33,0,0);
}
//================================================================================
/*!
* \brief Make up chain of links
* \param iSide - link to add first
* \param chain - chain to fill in
* \param pos - postion of medium nodes the links should have
* \param error - out, specifies what is wrong
* \retval bool - false if valid chain can't be built; "valid" means that links
* of the chain belongs to rectangles bounding hexahedrons
*/
//================================================================================
bool QFace::GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& error) const
{
if ( iSide >= _sides.size() ) // wrong argument iSide
return false;
if ( _sideIsAdded[ iSide ]) // already in chain
return true;
if ( _sides.size() != 4 ) { // triangle - visit all my continous faces
MSGBEG( *this );
for ( int i = 0; i < _sides.size(); ++i ) {
if ( !_sideIsAdded[i] && _sides[i] ) {
_sideIsAdded[i]=true;
TChain::iterator chLink = chain.insert( chain.begin(), TChainLink(_sides[i]));
chLink->SetFace( this );
if ( _sides[i]->MediumPos() >= pos )
if ( const QFace* f = _sides[i]->GetContinuesFace( this ))
f->GetLinkChain( *chLink, chain, pos, error );
}
}
if ( error < ERR_TRI )
error = ERR_TRI;
return false;
}
_sideIsAdded[iSide] = true; // not to add this link to chain again
const QLink* link = _sides[iSide];
if ( !link)
return true;
// add link into chain
TChain::iterator chLink = chain.insert( chain.begin(), TChainLink(link));
chLink->SetFace( this );
MSGBEG( *this );
// propagate from rectangle to neighbour faces
if ( link->MediumPos() >= pos ) {
int nbLinkFaces = link->_faces.size();
if ( nbLinkFaces == 4 || nbLinkFaces < 4 && link->OnBoundary()) {
// hexahedral mesh or boundary quadrangles - goto a continous face
if ( const QFace* f = link->GetContinuesFace( this ))
return f->GetLinkChain( *chLink, chain, pos, error );
}
else {
TChainLink chLink(link); // side face of prismatic mesh - visit all faces of iSide
for ( int i = 0; i < nbLinkFaces; ++i )
if ( link->_faces[i] )
link->_faces[i]->GetLinkChain( chLink, chain, pos, error );
if ( error < ERR_PRISM )
error = ERR_PRISM;
return false;
}
}
return true;
}
//================================================================================
/*!
* \brief Return a boundary link of the triangle face
* \param links - set of all links
* \param avoidLink - link not to return
* \param notBoundaryLink - out, neither the returned link nor avoidLink
* \param nodeToContain - node the returned link must contain; if provided, search
* also performed on adjacent faces
* \param isAdjacentUsed - returns true if link is found in adjacent faces
*/
//================================================================================
TLinkInSet QFace::GetBoundaryLink( const TLinkSet& links,
const TChainLink& avoidLink,
TLinkInSet * notBoundaryLink,
const SMDS_MeshNode* nodeToContain,
bool * isAdjacentUsed) const
{
TLinkInSet linksEnd = links.end(), boundaryLink = linksEnd;
typedef list< pair< const QFace*, TLinkInSet > > TFaceLinkList;
TFaceLinkList adjacentFaces;
for ( int iL = 0; iL < _sides.size(); ++iL )
{
if ( avoidLink._qlink == _sides[iL] )
continue;
TLinkInSet link = links.find( _sides[iL] );
if ( link == linksEnd ) continue;
// check link
if ( link->IsBoundary() ) {
if ( !nodeToContain ||
(*link)->node1() == nodeToContain ||
(*link)->node2() == nodeToContain )
{
boundaryLink = link;
if ( !notBoundaryLink ) break;
}
}
else if ( notBoundaryLink ) {
*notBoundaryLink = link;
if ( boundaryLink != linksEnd ) break;
}
if ( boundaryLink == linksEnd && nodeToContain ) // cellect adjacent faces
if ( const QFace* adj = link->NextFace( this ))
if ( adj->Contains( nodeToContain ))
adjacentFaces.push_back( make_pair( adj, link ));
}
if ( isAdjacentUsed ) *isAdjacentUsed = false;
if ( boundaryLink == linksEnd && nodeToContain ) // check adjacent faces
{
TFaceLinkList::iterator adj = adjacentFaces.begin();
for ( ; boundaryLink == linksEnd && adj != adjacentFaces.end(); ++adj )
boundaryLink = adj->first->GetBoundaryLink( links, *(adj->second),
0, nodeToContain, isAdjacentUsed);
if ( isAdjacentUsed ) *isAdjacentUsed = true;
}
return boundaryLink;
}
//================================================================================
/*!
* \brief Return a link ending at the given node but not avoidLink
*/
//================================================================================
TLinkInSet QFace::GetLinkByNode( const TLinkSet& links,
const TChainLink& avoidLink,
const SMDS_MeshNode* nodeToContain) const
{
for ( int i = 0; i < _sides.size(); ++i )
if ( avoidLink._qlink != _sides[i] &&
(_sides[i]->node1() == nodeToContain || _sides[i]->node2() == nodeToContain ))
return links.find( _sides[ i ]);
return links.end();
}
//================================================================================
/*!
* \brief Return normal to the i-th side pointing outside the face
*/
//================================================================================
gp_Vec QFace::LinkNorm(const int i, SMESH_MesherHelper* /*uvHelper*/) const
{
gp_Vec norm, vecOut;
// if ( uvHelper ) {
// TopoDS_Face face = TopoDS::Face( uvHelper->GetSubShape());
// const SMDS_MeshNode* inFaceNode = uvHelper->GetNodeUVneedInFaceNode() ? GetNodeInFace() : 0;
// gp_XY uv1 = uvHelper->GetNodeUV( face, _sides[i]->node1(), inFaceNode );
// gp_XY uv2 = uvHelper->GetNodeUV( face, _sides[i]->node2(), inFaceNode );
// norm.SetCoord( uv1.Y() - uv2.Y(), uv2.X() - uv1.X(), 0 );
// const QLink* otherLink = _sides[(i + 1) % _sides.size()];
// const SMDS_MeshNode* otherNode =
// otherLink->node1() == _sides[i]->node1() ? otherLink->node2() : otherLink->node1();
// gp_XY pIn = uvHelper->GetNodeUV( face, otherNode, inFaceNode );
// vecOut.SetCoord( uv1.X() - pIn.X(), uv1.Y() - pIn.Y(), 0 );
// }
// else {
norm = _normal ^ gp_Vec( XYZ(_sides[i]->node1()), XYZ(_sides[i]->node2()));
gp_XYZ pIn = ( XYZ( _sides[0]->node1() ) +
XYZ( _sides[0]->node2() ) +
XYZ( _sides[1]->node1() )) / 3.;
vecOut.SetXYZ( _sides[i]->MiddlePnt() - pIn );
//}
if ( norm * vecOut < 0 )
norm.Reverse();
double mag2 = norm.SquareMagnitude();
if ( mag2 > numeric_limits<double>::min() )
norm /= sqrt( mag2 );
return norm;
}
//================================================================================
/*!
* \brief Move medium node of theLink according to its distance from boundary
* \param theLink - link to fix
* \param theRefVec - movement of boundary
* \param theLinks - all adjacent links of continous triangles
* \param theFaceHelper - helper is not used so far
* \param thePrevLen - distance from the boundary
* \param theStep - number of steps till movement propagation limit
* \param theLinkNorm - out normal to theLink
* \param theSign - 1 or -1 depending on movement of boundary
* \retval double - distance from boundary to propagation limit or other boundary
*/
//================================================================================
double QFace::MoveByBoundary( const TChainLink& theLink,
const gp_Vec& theRefVec,
const TLinkSet& theLinks,
SMESH_MesherHelper* theFaceHelper,
const double thePrevLen,
const int theStep,
gp_Vec* theLinkNorm,
double theSign) const
{
if ( !theStep )
return thePrevLen; // propagation limit reached
int iL; // index of theLink
for ( iL = 0; iL < _sides.size(); ++iL )
if ( theLink._qlink == _sides[ iL ])
break;
MSG(string(theStep,'.')<<" Ref( "<<theRefVec.X()<<","<<theRefVec.Y()<<","<<theRefVec.Z()<<" )"
<<" thePrevLen " << thePrevLen);
MSG(string(theStep,'.')<<" "<<*theLink._qlink);
gp_Vec linkNorm = -LinkNorm( iL/*, theFaceHelper*/ ); // normal to theLink
double refProj = theRefVec * linkNorm; // project movement vector to normal of theLink
if ( theStep == theFirstStep )
theSign = refProj < 0. ? -1. : 1.;
else if ( theSign * refProj < 0.4 * theRefVec.Magnitude())
return thePrevLen; // to propagate movement forward only, not in side dir or backward
int iL1 = (iL + 1) % 3, iL2 = (iL + 2) % 3; // indices of the two other links of triangle
TLinkInSet link1 = theLinks.find( _sides[iL1] );
TLinkInSet link2 = theLinks.find( _sides[iL2] );
const QFace* f1 = link1->NextFace( this ); // adjacent faces
const QFace* f2 = link2->NextFace( this );
// propagate to adjacent faces till limit step or boundary
double len1 = thePrevLen + (theLink->MiddlePnt() - _sides[iL1]->MiddlePnt()).Modulus();
double len2 = thePrevLen + (theLink->MiddlePnt() - _sides[iL2]->MiddlePnt()).Modulus();
gp_Vec linkDir1, linkDir2;
try {
OCC_CATCH_SIGNALS;
if ( f1 )
len1 = f1->MoveByBoundary
( *link1, theRefVec, theLinks, theFaceHelper, len1, theStep-1, &linkDir1, theSign);
else
linkDir1 = LinkNorm( iL1/*, theFaceHelper*/ );
} catch (...) {
MSG( " --------------- EXCEPTION");
return thePrevLen;
}
try {
OCC_CATCH_SIGNALS;
if ( f2 )
len2 = f2->MoveByBoundary
( *link2, theRefVec, theLinks, theFaceHelper, len2, theStep-1, &linkDir2, theSign);
else
linkDir2 = LinkNorm( iL2/*, theFaceHelper*/ );
} catch (...) {
MSG( " --------------- EXCEPTION");
return thePrevLen;
}
double fullLen = 0;
if ( theStep != theFirstStep )
{
// choose chain length by direction of propagation most codirected with theRefVec
bool choose1 = ( theRefVec * linkDir1 * theSign > theRefVec * linkDir2 * theSign );
fullLen = choose1 ? len1 : len2;
double r = thePrevLen / fullLen;
gp_Vec move = linkNorm * refProj * ( 1 - r );
theLink->Move( move, true );
MSG(string(theStep,'.')<<" Move "<< theLink->_mediumNode->GetID()<<
" by " << refProj * ( 1 - r ) << " following " <<
(choose1 ? *link1->_qlink : *link2->_qlink));
if ( theLinkNorm ) *theLinkNorm = linkNorm;
}
return fullLen;
}
//================================================================================
/*!
* \brief Find pairs of continues faces
*/
//================================================================================
void QLink::SetContinuesFaces() const
{
// x0 x - QLink, [-|] - QFace, v - volume
// v0 | v1
// | Between _faces of link x2 two vertical faces are continues
// x1----x2-----x3 and two horizontal faces are continues. We set vertical faces
// | to _faces[0] and _faces[1] and horizontal faces to
// v2 | v3 _faces[2] and _faces[3] (or vise versa).
// x4
if ( _faces.empty() )
return;
int iFaceCont = -1;
for ( int iF = 1; iFaceCont < 0 && iF < _faces.size(); ++iF )
{
// look for a face bounding none of volumes bound by _faces[0]
bool sameVol = false;
int nbVol = _faces[iF]->NbVolumes();
for ( int iV = 0; !sameVol && iV < nbVol; ++iV )
sameVol = ( _faces[iF]->_volumes[iV] == _faces[0]->_volumes[0] ||
_faces[iF]->_volumes[iV] == _faces[0]->_volumes[1]);
if ( !sameVol )
iFaceCont = iF;
}
if ( iFaceCont > 0 ) // continues faces found, set one by the other
{
if ( iFaceCont != 1 )
2009-07-31 19:52:22 +06:00
std::swap( _faces[1], _faces[iFaceCont] );
}
else if ( _faces.size() > 1 ) // not found, set NULL by the first face
{
_faces.insert( ++_faces.begin(), 0 );
}
}
//================================================================================
/*!
* \brief Return a face continues to the given one
*/
//================================================================================
const QFace* QLink::GetContinuesFace( const QFace* face ) const
{
for ( int i = 0; i < _faces.size(); ++i ) {
if ( _faces[i] == face ) {
int iF = i < 2 ? 1-i : 5-i;
return iF < _faces.size() ? _faces[iF] : 0;
}
}
return 0;
}
//================================================================================
/*!
* \brief True if link is on mesh boundary
*/
//================================================================================
bool QLink::OnBoundary() const
{
for ( int i = 0; i < _faces.size(); ++i )
if (_faces[i] && _faces[i]->IsBoundary()) return true;
return false;
}
//================================================================================
/*!
* \brief Return normal of link of the chain
*/
//================================================================================
gp_Vec TChainLink::Normal() const {
gp_Vec norm;
if (_qfaces[0]) norm = _qfaces[0]->_normal;
if (_qfaces[1]) norm += _qfaces[1]->_normal;
return norm;
}
//================================================================================
/*!
* \brief Move medium nodes of vertical links of pentahedrons adjacent by side faces
*/
//================================================================================
void fixPrism( TChain& allLinks )
{
// separate boundary links from internal ones
typedef set<const QLink*/*, QLink::PtrComparator*/> QLinkSet;
QLinkSet interLinks, bndLinks1, bndLink2;
bool isCurved = false;
for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) {
if ( (*lnk)->OnBoundary() )
bndLinks1.insert( lnk->_qlink );
else
interLinks.insert( lnk->_qlink );
isCurved = isCurved || !(*lnk)->IsStraight();
}
if ( !isCurved )
return; // no need to move
QLinkSet *curBndLinks = &bndLinks1, *newBndLinks = &bndLink2;
while ( !interLinks.empty() && !curBndLinks->empty() )
{
// propagate movement from boundary links to connected internal links
QLinkSet::iterator bnd = curBndLinks->begin(), bndEnd = curBndLinks->end();
for ( ; bnd != bndEnd; ++bnd )
{
const QLink* bndLink = *bnd;
for ( int i = 0; i < bndLink->_faces.size(); ++i ) // loop on faces of bndLink
{
const QFace* face = bndLink->_faces[i]; // quadrange lateral face of a prism
if ( !face ) continue;
// find and move internal link opposite to bndLink within the face
int interInd = ( face->LinkIndex( bndLink ) + 2 ) % face->_sides.size();
const QLink* interLink = face->_sides[ interInd ];
QLinkSet::iterator pInterLink = interLinks.find( interLink );
if ( pInterLink == interLinks.end() ) continue; // not internal link
interLink->Move( bndLink->_nodeMove );
// treated internal links become new boundary ones
interLinks. erase( pInterLink );
newBndLinks->insert( interLink );
}
}
curBndLinks->clear();
2009-07-31 19:52:22 +06:00
std::swap( curBndLinks, newBndLinks );
}
}
//================================================================================
/*!
* \brief Fix links of continues triangles near curved boundary
*/
//================================================================================
void fixTriaNearBoundary( TChain & allLinks, SMESH_MesherHelper& /*helper*/)
{
if ( allLinks.empty() ) return;
TLinkSet linkSet( allLinks.begin(), allLinks.end());
TLinkInSet linkIt = linkSet.begin(), linksEnd = linkSet.end();
// move in 2d if we are on geom face
// TopoDS_Face face;
// TopLoc_Location loc;
// SMESH_MesherHelper faceHelper( *helper.GetMesh());
// while ( linkIt->IsBoundary()) ++linkIt;
// if ( linkIt == linksEnd ) return;
// if ( (*linkIt)->MediumPos() == SMDS_TOP_FACE ) {
// bool checkPos = true;
// TopoDS_Shape f = helper.GetSubShapeByNode( (*linkIt)->_mediumNode, helper.GetMeshDS() );
// if ( !f.IsNull() && f.ShapeType() == TopAbs_FACE ) {
// face = TopoDS::Face( f );
// helper.GetNodeUV( face, (*linkIt)->_mediumNode, 0, &checkPos);
// if (checkPos)
// face.Nullify();
// else
// faceHelper.SetSubShape( face );
// }
// }
for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt)
{
if ( linkIt->IsBoundary() && !(*linkIt)->IsStraight() && linkIt->_qfaces[0])
{
// if ( !face.IsNull() ) {
// const SMDS_MeshNode* inFaceNode =
// faceHelper.GetNodeUVneedInFaceNode() ? linkIt->_qfaces[0]->GetNodeInFace() : 0;
// gp_XY uvm = helper.GetNodeUV( face, (*linkIt)->_mediumNode, inFaceNode );
// gp_XY uv1 = helper.GetNodeUV( face, (*linkIt)->node1(), inFaceNode);
// gp_XY uv2 = helper.GetNodeUV( face, (*linkIt)->node2(), inFaceNode);
// gp_XY uvMove = uvm - helper.GetMiddleUV( BRep_Tool::Surface(face,loc), uv1, uv2);
// gp_Vec move( uvMove.X(), uvMove.Y(), 0 );
// linkIt->_qfaces[0]->MoveByBoundary( *linkIt, move, linkSet, &faceHelper );
// }
// else {
linkIt->_qfaces[0]->MoveByBoundary( *linkIt, (*linkIt)->_nodeMove, linkSet );
//}
}
}
}
//================================================================================
/*!
* \brief Detect rectangular structure of links and build chains from them
*/
//================================================================================
enum TSplitTriaResult {
_OK, _NO_CORNERS, _FEW_ROWS, _MANY_ROWS, _NO_SIDELINK, _BAD_MIDQUAD, _NOT_RECT,
_NO_MIDQUAD, _NO_UPTRIA, _BAD_SET_SIZE, _BAD_CORNER, _BAD_START, _NO_BOTLINK };
TSplitTriaResult splitTrianglesIntoChains( TChain & allLinks,
vector< TChain> & resultChains,
SMDS_TypeOfPosition pos )
{
// put links in the set and evalute number of result chains by number of boundary links
TLinkSet linkSet;
int nbBndLinks = 0;
for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) {
linkSet.insert( *lnk );
nbBndLinks += lnk->IsBoundary();
}
resultChains.clear();
resultChains.reserve( nbBndLinks / 2 );
TLinkInSet linkIt, linksEnd = linkSet.end();
// find a boundary link with corner node; corner node has position pos-2
// i.e. SMDS_TOP_VERTEX for links on faces and SMDS_TOP_EDGE for
// links in volume
SMDS_TypeOfPosition cornerPos = SMDS_TypeOfPosition(pos-2);
const SMDS_MeshNode* corner = 0;
for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt )
if ( linkIt->IsBoundary() && (corner = (*linkIt)->EndPosNode(cornerPos)))
break;
if ( !corner)
return _NO_CORNERS;
TLinkInSet startLink = linkIt;
const SMDS_MeshNode* startCorner = corner;
vector< TChain* > rowChains;
int iCol = 0;
while ( startLink != linksEnd) // loop on columns
{
// We suppose we have a rectangular structure like shown here. We have found a
// corner of the rectangle (startCorner) and a boundary link sharing
// |/ |/ | the startCorner (startLink). We are going to loop on rows of the
// --o---o---o structure making several chains at once. One chain (columnChain)
// |\ | /| starts at startLink and continues upward (we look at the structure
// \ | \ | / | from such point that startLink is on the bottom of the structure).
// \| \|/ | While going upward we also fill horizontal chains (rowChains) we
// --o---o---o encounter.
// /|\ |\ |
// / | \ | \ | startCorner
// | \| \|,'
// --o---o---o
// `.startLink
if ( resultChains.size() == nbBndLinks / 2 )
return _NOT_RECT;
resultChains.push_back( TChain() );
TChain& columnChain = resultChains.back();
TLinkInSet botLink = startLink; // current horizontal link to go up from
corner = startCorner; // current corner the botLink ends at
int iRow = 0;
while ( botLink != linksEnd ) // loop on rows
{
// add botLink to the columnChain
columnChain.push_back( *botLink );
const QFace* botTria = botLink->_qfaces[0]; // bottom triangle bound by botLink
if ( !botTria )
{ // the column ends
linkSet.erase( botLink );
if ( iRow != rowChains.size() )
return _FEW_ROWS; // different nb of rows in columns
break;
}
// find the link dividing the quadrangle (midQuadLink) and vertical boundary
// link ending at <corner> (sideLink); there are two cases:
// 1) midQuadLink does not end at <corner>, then we easily find it by botTria,
// since midQuadLink is not at boundary while sideLink is.
// 2) midQuadLink ends at <corner>
bool isCase2;
TLinkInSet midQuadLink = linksEnd;
TLinkInSet sideLink = botTria->GetBoundaryLink( linkSet, *botLink, &midQuadLink,
corner, &isCase2 );
if ( isCase2 ) { // find midQuadLink among links of botTria
midQuadLink = botTria->GetLinkByNode( linkSet, *botLink, corner );
if ( midQuadLink->IsBoundary() )
return _BAD_MIDQUAD;
}
if ( sideLink == linksEnd || midQuadLink == linksEnd || sideLink == midQuadLink )
return sideLink == linksEnd ? _NO_SIDELINK : _NO_MIDQUAD;
// fill chains
columnChain.push_back( *midQuadLink );
if ( iRow >= rowChains.size() ) {
if ( iCol > 0 )
return _MANY_ROWS; // different nb of rows in columns
if ( resultChains.size() == nbBndLinks / 2 )
return _NOT_RECT;
resultChains.push_back( TChain() );
rowChains.push_back( & resultChains.back() );
}
rowChains[iRow]->push_back( *sideLink );
rowChains[iRow]->push_back( *midQuadLink );
const QFace* upTria = midQuadLink->NextFace( botTria ); // upper tria of the rectangle
if ( !upTria)
return _NO_UPTRIA;
if ( iRow == 0 ) {
// prepare startCorner and startLink for the next column
startCorner = startLink->NextNode( startCorner );
if (isCase2)
startLink = botTria->GetBoundaryLink( linkSet, *botLink, 0, startCorner );
else
startLink = upTria->GetBoundaryLink( linkSet, *midQuadLink, 0, startCorner );
// check if no more columns remains
if ( startLink != linksEnd ) {
const SMDS_MeshNode* botNode = startLink->NextNode( startCorner );
if ( (isCase2 ? botTria : upTria)->Contains( botNode ))
startLink = linksEnd; // startLink bounds upTria or botTria
else if ( startLink == botLink || startLink == midQuadLink || startLink == sideLink )
return _BAD_START;
}
}
// find bottom link and corner for the next row
corner = sideLink->NextNode( corner );
// next bottom link ends at the new corner
linkSet.erase( botLink );
botLink = upTria->GetLinkByNode( linkSet, (isCase2 ? *sideLink : *midQuadLink), corner );
if ( botLink == linksEnd || botLink == (isCase2 ? midQuadLink : sideLink))
return _NO_BOTLINK;
linkSet.erase( midQuadLink );
linkSet.erase( sideLink );
// make faces neighboring the found ones be boundary
if ( startLink != linksEnd ) {
const QFace* tria = isCase2 ? botTria : upTria;
for ( int iL = 0; iL < 3; ++iL ) {
linkIt = linkSet.find( tria->_sides[iL] );
if ( linkIt != linksEnd )
linkIt->RemoveFace( tria );
}
}
if ( botLink->_qfaces[0] == upTria || botLink->_qfaces[1] == upTria )
botLink->RemoveFace( upTria ); // make next botTria first in vector
iRow++;
} // loop on rows
iCol++;
}
// In the linkSet, there must remain the last links of rowChains; add them
if ( linkSet.size() != rowChains.size() )
return _BAD_SET_SIZE;
for ( int iRow = 0; iRow < rowChains.size(); ++iRow ) {
// find the link (startLink) ending at startCorner
corner = 0;
for ( startLink = linkSet.begin(); startLink != linksEnd; ++startLink ) {
if ( (*startLink)->node1() == startCorner ) {
corner = (*startLink)->node2(); break;
}
else if ( (*startLink)->node2() == startCorner) {
corner = (*startLink)->node1(); break;
}
}
if ( startLink == linksEnd )
return _BAD_CORNER;
rowChains[ iRow ]->push_back( *startLink );
linkSet.erase( startLink );
startCorner = corner;
}
return _OK;
}
}
//=======================================================================
/*!
* \brief Move medium nodes of faces and volumes to fix distorted elements
* \param volumeOnly - to fix nodes on faces or not, if the shape is solid
*
* Issue 0020307: EDF 992 SMESH : Linea/Quadratic with Medium Node on Geometry
*/
//=======================================================================
void SMESH_MesherHelper::FixQuadraticElements(bool volumeOnly)
{
// apply algorithm to solids or geom faces
// ----------------------------------------------
if ( myShape.IsNull() ) {
if ( !myMesh->HasShapeToMesh() ) return;
SetSubShape( myMesh->GetShapeToMesh() );
TopTools_MapOfShape faces; // faces not in solid or in not meshed solid
for ( TopExp_Explorer f(myShape,TopAbs_FACE,TopAbs_SOLID); f.More(); f.Next() ) {
faces.Add( f.Current() );
}
for ( TopExp_Explorer v(myShape,TopAbs_SOLID); v.More(); v.Next() ) {
if ( myMesh->GetSubMesh( v.Current() )->IsEmpty() ) { // get faces of solid
for ( TopExp_Explorer f( v.Current(), TopAbs_FACE); f.More(); f.Next() )
faces.Add( f.Current() );
}
else { // fix nodes in the solid and its faces
SMESH_MesherHelper h(*myMesh);
h.SetSubShape( v.Current() );
h.FixQuadraticElements(false);
}
}
// fix nodes on geom faces
for ( TopTools_MapIteratorOfMapOfShape fIt( faces ); fIt.More(); fIt.Next() ) {
SMESH_MesherHelper h(*myMesh);
h.SetSubShape( fIt.Key() );
h.FixQuadraticElements();
}
return;
}
// Find out type of elements and get iterator on them
// ---------------------------------------------------
SMDS_ElemIteratorPtr elemIt;
SMDSAbs_ElementType elemType = SMDSAbs_All;
SMESH_subMesh* submesh = myMesh->GetSubMeshContaining( myShapeID );
if ( !submesh )
return;
if ( SMESHDS_SubMesh* smDS = submesh->GetSubMeshDS() ) {
elemIt = smDS->GetElements();
if ( elemIt->more() ) {
elemType = elemIt->next()->GetType();
elemIt = smDS->GetElements();
}
}
if ( !elemIt || !elemIt->more() || elemType < SMDSAbs_Face )
return;
// Fill in auxiliary data structures
// ----------------------------------
set< QLink > links;
set< QFace > faces;
set< QLink >::iterator pLink;
set< QFace >::iterator pFace;
bool isCurved = false;
bool hasRectFaces = false;
set<int> nbElemNodeSet;
if ( elemType == SMDSAbs_Volume )
{
SMDS_VolumeTool volTool;
while ( elemIt->more() ) // loop on volumes
{
const SMDS_MeshElement* vol = elemIt->next();
if ( !vol->IsQuadratic() || !volTool.Set( vol ))
return; //continue;
for ( int iF = 0; iF < volTool.NbFaces(); ++iF ) // loop on faces of volume
{
int nbN = volTool.NbFaceNodes( iF );
nbElemNodeSet.insert( nbN );
const SMDS_MeshNode** faceNodes = volTool.GetFaceNodes( iF );
vector< const QLink* > faceLinks( nbN/2 );
for ( int iN = 0; iN < nbN; iN += 2 ) // loop on links of a face
{
// store QLink
QLink link( faceNodes[iN], faceNodes[iN+2], faceNodes[iN+1] );
pLink = links.insert( link ).first;
faceLinks[ iN/2 ] = & *pLink;
if ( !isCurved )
isCurved = !link.IsStraight();
if ( link.MediumPos() == SMDS_TOP_3DSPACE && !link.IsStraight() )
return; // already fixed
}
// store QFace
pFace = faces.insert( QFace( faceLinks )).first;
if ( pFace->NbVolumes() == 0 )
pFace->AddSelfToLinks();
pFace->SetVolume( vol );
hasRectFaces = hasRectFaces ||
( volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_HEXA ||
volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_PENTA );
}
}
set< QLink >::iterator pLink = links.begin();
for ( ; pLink != links.end(); ++pLink )
pLink->SetContinuesFaces();
}
else
{
while ( elemIt->more() ) // loop on faces
{
const SMDS_MeshElement* face = elemIt->next();
if ( !face->IsQuadratic() )
continue;
nbElemNodeSet.insert( face->NbNodes() );
int nbN = face->NbNodes()/2;
vector< const QLink* > faceLinks( nbN );
for ( int iN = 0; iN < nbN; ++iN ) // loop on links of a face
{
// store QLink
QLink link( face->GetNode(iN), face->GetNode((iN+1)%nbN), face->GetNode(iN+nbN) );
pLink = links.insert( link ).first;
faceLinks[ iN ] = & *pLink;
if ( !isCurved )
isCurved = !link.IsStraight();
}
// store QFace
pFace = faces.insert( QFace( faceLinks )).first;
pFace->AddSelfToLinks();
hasRectFaces = ( hasRectFaces || nbN == 4 );
}
}
if ( !isCurved )
return; // no curved edges of faces
// Compute displacement of medium nodes
// -------------------------------------
// two loops on faces: the first is to treat boundary links, the second is for internal ones
TopLoc_Location loc;
// not treat boundary of volumic submesh
int isInside = ( elemType == SMDSAbs_Volume && volumeOnly ) ? 1 : 0;
for ( ; isInside < 2; ++isInside ) {
MSG( "--------------- LOOP " << isInside << " ------------------");
SMDS_TypeOfPosition pos = isInside ? SMDS_TOP_3DSPACE : SMDS_TOP_FACE;
for ( pFace = faces.begin(); pFace != faces.end(); ++pFace ) {
if ( bool(isInside) == pFace->IsBoundary() )
continue;
for ( int dir = 0; dir < 2; ++dir ) // 2 directions of propagation from quadrangle
{
MSG( "CHAIN");
// make chain of links connected via continues faces
int error = ERR_OK;
TChain rawChain;
if ( !pFace->GetLinkChain( dir, rawChain, pos, error) && error ==ERR_UNKNOWN ) continue;
rawChain.reverse();
if ( !pFace->GetLinkChain( dir+2, rawChain, pos, error ) && error ==ERR_UNKNOWN ) continue;
vector< TChain > chains;
if ( error == ERR_OK ) { // chains contains continues rectangles
chains.resize(1);
chains[0].splice( chains[0].begin(), rawChain );
}
else if ( error == ERR_TRI ) { // chains contains continues triangles
TSplitTriaResult res = splitTrianglesIntoChains( rawChain, chains, pos );
if ( res != _OK ) { // not rectangles split into triangles
fixTriaNearBoundary( rawChain, *this );
break;
}
}
else if ( error == ERR_PRISM ) { // side faces of prisms
fixPrism( rawChain );
break;
}
else {
continue;
}
for ( int iC = 0; iC < chains.size(); ++iC )
{
TChain& chain = chains[iC];
if ( chain.empty() ) continue;
if ( chain.front()->IsStraight() && chain.back()->IsStraight() ) {
MSG("3D straight");
continue;
}
// mesure chain length and compute link position along the chain
double chainLen = 0;
vector< double > linkPos;
MSGBEG( "Link medium nodes: ");
TChain::iterator link0 = chain.begin(), link1 = chain.begin(), link2;
for ( ++link1; link1 != chain.end(); ++link1, ++link0 ) {
MSGBEG( (*link0)->_mediumNode->GetID() << "-" <<(*link1)->_mediumNode->GetID()<<" ");
double len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus();
while ( len < numeric_limits<double>::min() ) { // remove degenerated link
link1 = chain.erase( link1 );
if ( link1 == chain.end() )
break;
len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus();
}
chainLen += len;
linkPos.push_back( chainLen );
}
MSG("");
if ( linkPos.size() < 2 )
continue;
gp_Vec move0 = chain.front()->_nodeMove;
gp_Vec move1 = chain.back ()->_nodeMove;
TopoDS_Face face;
bool checkUV = true;
if ( !isInside ) {
// compute node displacement of end links in parametric space of face
const SMDS_MeshNode* nodeOnFace = (*(++chain.begin()))->_mediumNode;
TopoDS_Shape f = GetSubShapeByNode( nodeOnFace, GetMeshDS() );
if ( !f.IsNull() && f.ShapeType() == TopAbs_FACE ) {
face = TopoDS::Face( f );
for ( int is1 = 0; is1 < 2; ++is1 ) { // move0 or move1
TChainLink& link = is1 ? chain.back() : chain.front();
gp_XY uv1 = GetNodeUV( face, link->node1(), nodeOnFace, &checkUV);
gp_XY uv2 = GetNodeUV( face, link->node2(), nodeOnFace, &checkUV);
gp_XY uvm = GetNodeUV( face, link->_mediumNode, nodeOnFace, &checkUV);
gp_XY uvMove = uvm - GetMiddleUV( BRep_Tool::Surface(face,loc), uv1, uv2);
if ( is1 ) move1.SetCoord( uvMove.X(), uvMove.Y(), 0 );
else move0.SetCoord( uvMove.X(), uvMove.Y(), 0 );
}
if ( move0.SquareMagnitude() < straightTol2 &&
move1.SquareMagnitude() < straightTol2 ) {
MSG("2D straight");
continue; // straight - no need to move nodes of internal links
}
}
}
gp_Trsf trsf;
if ( isInside || face.IsNull() )
{
// compute node displacement of end links in their local coord systems
{
TChainLink& ln0 = chain.front(), ln1 = *(++chain.begin());
trsf.SetTransformation( gp_Ax3( gp::Origin(), ln0.Normal(),
gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() )));
move0.Transform(trsf);
}
{
TChainLink& ln0 = *(++chain.rbegin()), ln1 = chain.back();
trsf.SetTransformation( gp_Ax3( gp::Origin(), ln1.Normal(),
gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() )));
move1.Transform(trsf);
}
}
// compute displacement of medium nodes
link2 = chain.begin();
link0 = link2++;
link1 = link2++;
for ( int i = 0; link2 != chain.end(); ++link0, ++link1, ++link2, ++i )
{
double r = linkPos[i] / chainLen;
// displacement in local coord system
gp_Vec move = (1. - r) * move0 + r * move1;
if ( isInside || face.IsNull()) {
// transform to global
gp_Vec x01( (*link0)->MiddlePnt(), (*link1)->MiddlePnt() );
gp_Vec x12( (*link1)->MiddlePnt(), (*link2)->MiddlePnt() );
gp_Vec x = x01.Normalized() + x12.Normalized();
trsf.SetTransformation( gp_Ax3( gp::Origin(), link1->Normal(), x), gp_Ax3() );
move.Transform(trsf);
}
else {
// compute 3D displacement by 2D one
gp_XY oldUV = GetNodeUV( face, (*link1)->_mediumNode, 0, &checkUV);
gp_XY newUV = oldUV + gp_XY( move.X(), move.Y() );
gp_Pnt newPnt = BRep_Tool::Surface(face,loc)->Value( newUV.X(), newUV.Y());
move = gp_Vec( XYZ((*link1)->_mediumNode), newPnt.Transformed(loc) );
#ifdef _DEBUG_
if ( (XYZ((*link1)->node1()) - XYZ((*link1)->node2())).SquareModulus() <
move.SquareMagnitude())
{
gp_XY uv0 = GetNodeUV( face, (*link0)->_mediumNode, 0, &checkUV);
gp_XY uv2 = GetNodeUV( face, (*link2)->_mediumNode, 0, &checkUV);
MSG( "uv0: "<<uv0.X()<<", "<<uv0.Y()<<" \t" <<
"uv2: "<<uv2.X()<<", "<<uv2.Y()<<" \t" <<
"uvOld: "<<oldUV.X()<<", "<<oldUV.Y()<<" \t" <<
"newUV: "<<newUV.X()<<", "<<newUV.Y()<<" \t");
}
#endif
}
(*link1)->Move( move );
MSG( "Move " << (*link1)->_mediumNode->GetID() << " following "
<< chain.front()->_mediumNode->GetID() <<"-"
<< chain.back ()->_mediumNode->GetID() <<
" by " << move.Magnitude());
}
} // loop on chains of links
} // loop on 2 directions of propagation from quadrangle
} // loop on faces
}
// Move nodes
// -----------
for ( pLink = links.begin(); pLink != links.end(); ++pLink ) {
if ( pLink->IsMoved() ) {
//gp_Pnt p = pLink->MediumPnt() + pLink->Move();
gp_Pnt p = pLink->MiddlePnt() + pLink->Move();
GetMeshDS()->MoveNode( pLink->_mediumNode, p.X(), p.Y(), p.Z());
}
}
}