smesh/src/StdMeshers/StdMeshers_ProjectionUtils.cxx
eap f6b5d2f920 54122: Bad quality prismatic mesh
Extract class Delaunay from class Morph

+ Print warning when creating an algorithm with unexpected arguments
  (expected ones are algo type and geometry) -- smeshBuilder.py
2017-04-20 14:16:23 +03:00

2960 lines
117 KiB
C++

// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : idl implementation based on 'SMESH' unit's calsses
// File : StdMeshers_ProjectionUtils.cxx
// Created : Fri Oct 27 10:24:28 2006
// Author : Edward AGAPOV (eap)
//
#include "StdMeshers_ProjectionUtils.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Hypothesis.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MeshAlgos.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "StdMeshers_ProjectionSource1D.hxx"
#include "StdMeshers_ProjectionSource2D.hxx"
#include "StdMeshers_ProjectionSource3D.hxx"
#include "utilities.h"
#include <BRepAdaptor_Surface.hxx>
#include <BRepMesh_Delaun.hxx>
#include <BRepTools.hxx>
#include <BRepTools_WireExplorer.hxx>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_Box.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom_Curve.hxx>
#include <TopAbs.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_Array1OfShape.hxx>
#include <TopTools_DataMapIteratorOfDataMapOfShapeListOfShape.hxx>
#include <TopTools_DataMapIteratorOfDataMapOfShapeShape.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Compound.hxx>
#include <TopoDS_Shape.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <math_Gauss.hxx>
#include <numeric>
#include <limits>
using namespace std;
#define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; }
#define CONT_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); continue; }
#define SHOW_SHAPE(v,msg) \
// { show_shape((v),(msg)); }
#define SHOW_LIST(msg,l) \
// { show_list((msg),(l)); }
namespace HERE = StdMeshers_ProjectionUtils;
namespace {
static SMESHDS_Mesh* theMeshDS[2] = { 0, 0 }; // used for debug only
long shapeIndex(const TopoDS_Shape& S)
{
if ( theMeshDS[0] && theMeshDS[1] )
return max(theMeshDS[0]->ShapeToIndex(S), theMeshDS[1]->ShapeToIndex(S) );
return long(S.TShape().operator->());
}
void show_shape( TopoDS_Shape v, const char* msg ) // debug
{
if ( v.IsNull() ) cout << msg << " NULL SHAPE" << endl;
else if (v.ShapeType() == TopAbs_VERTEX) {
gp_Pnt p = BRep_Tool::Pnt( TopoDS::Vertex( v ));
cout<<msg<<" "<<shapeIndex((v))<<" ( "<<p.X()<<", "<<p.Y()<<", "<<p.Z()<<" )"<<endl;}
else {
cout << msg << " "; TopAbs::Print((v).ShapeType(),cout) <<" "<<shapeIndex((v))<<endl;}
}
void show_list( const char* msg, const list< TopoDS_Edge >& l ) // debug
{
cout << msg << " ";
list< TopoDS_Edge >::const_iterator e = l.begin();
for ( int i = 0; e != l.end(); ++e, ++i ) {
cout << i << "V (" << TopExp::FirstVertex( *e, true ).TShape().operator->() << ") "
<< i << "E (" << e->TShape().operator->() << "); "; }
cout << endl;
}
//================================================================================
/*!
* \brief Write shape for debug purposes
*/
//================================================================================
bool storeShapeForDebug(const TopoDS_Shape& shape)
{
#ifdef _DEBUG_
const char* type[] ={"COMPOUND","COMPSOLID","SOLID","SHELL","FACE","WIRE","EDGE","VERTEX"};
BRepTools::Write( shape, SMESH_Comment("/tmp/") << type[shape.ShapeType()] << "_"
<< shape.TShape().operator->() << ".brep");
if ( !theMeshDS[0] ) {
show_shape( TopoDS_Shape(), "avoid warning: show_shape() defined but not used");
show_list( "avoid warning: show_list() defined but not used", list< TopoDS_Edge >() );
}
#endif
return false;
}
//================================================================================
/*!
* \brief Reverse order of edges in a list and their orientation
* \param edges - list of edges to reverse
* \param nbEdges - number of edges to reverse
*/
//================================================================================
void reverseEdges( list< TopoDS_Edge > & edges, const int nbEdges, const int firstEdge=0)
{
SHOW_LIST("BEFORE REVERSE", edges);
list< TopoDS_Edge >::iterator eIt = edges.begin();
std::advance( eIt, firstEdge );
list< TopoDS_Edge >::iterator eBackIt = eIt;
for ( int i = 0; i < nbEdges; ++i, ++eBackIt )
eBackIt->Reverse(); // reverse edge
// reverse list
--eBackIt;
while ( eIt != eBackIt )
{
std::swap( *eIt, *eBackIt );
SHOW_LIST("# AFTER SWAP", edges)
if ( (++eIt) != eBackIt )
--eBackIt;
}
SHOW_LIST("ATFER REVERSE", edges)
}
//================================================================================
/*!
* \brief Check if propagation is possible
* \param theMesh1 - source mesh
* \param theMesh2 - target mesh
* \retval bool - true if possible
*/
//================================================================================
bool isPropagationPossible( SMESH_Mesh* theMesh1, SMESH_Mesh* theMesh2 )
{
if ( theMesh1 != theMesh2 ) {
TopoDS_Shape mainShape1 = theMesh1->GetMeshDS()->ShapeToMesh();
TopoDS_Shape mainShape2 = theMesh2->GetMeshDS()->ShapeToMesh();
return mainShape1.IsSame( mainShape2 );
}
return true;
}
//================================================================================
/*!
* \brief Fix up association of edges in faces by possible propagation
* \param nbEdges - nb of edges in an outer wire
* \param edges1 - edges of one face
* \param edges2 - matching edges of another face
* \param theMesh1 - mesh 1
* \param theMesh2 - mesh 2
* \retval bool - true if association was fixed
*/
//================================================================================
bool fixAssocByPropagation( const int nbEdges,
list< TopoDS_Edge > & edges1,
list< TopoDS_Edge > & edges2,
SMESH_Mesh* theMesh1,
SMESH_Mesh* theMesh2)
{
if ( nbEdges == 2 && isPropagationPossible( theMesh1, theMesh2 ) )
{
list< TopoDS_Edge >::iterator eIt2 = ++edges2.begin(); // 2nd edge of the 2nd face
TopoDS_Edge edge2 = HERE::GetPropagationEdge( theMesh1, *eIt2, edges1.front() ).second;
if ( !edge2.IsNull() ) { // propagation found for the second edge
reverseEdges( edges2, nbEdges );
return true;
}
}
return false;
}
//================================================================================
/*!
* \brief Associate faces having one edge in the outer wire.
* No check is done if there is really only one outer edge
*/
//================================================================================
bool assocFewEdgesFaces( const TopoDS_Face& face1,
SMESH_Mesh* mesh1,
const TopoDS_Face& face2,
SMESH_Mesh* mesh2,
HERE::TShapeShapeMap & theMap)
{
TopoDS_Vertex v1 = TopoDS::Vertex( HERE::OuterShape( face1, TopAbs_VERTEX ));
TopoDS_Vertex v2 = TopoDS::Vertex( HERE::OuterShape( face2, TopAbs_VERTEX ));
TopoDS_Vertex VV1[2] = { v1, v1 };
TopoDS_Vertex VV2[2] = { v2, v2 };
list< TopoDS_Edge > edges1, edges2;
if ( int nbE = HERE::FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2 ))
{
HERE::InsertAssociation( face1, face2, theMap );
fixAssocByPropagation( nbE, edges1, edges2, mesh1, mesh2 );
list< TopoDS_Edge >::iterator eIt1 = edges1.begin();
list< TopoDS_Edge >::iterator eIt2 = edges2.begin();
for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 )
{
HERE::InsertAssociation( *eIt1, *eIt2, theMap );
v1 = SMESH_MesherHelper::IthVertex( 0, *eIt1 );
v2 = SMESH_MesherHelper::IthVertex( 0, *eIt2 );
HERE::InsertAssociation( v1, v2, theMap );
}
theMap.SetAssocType( HERE::TShapeShapeMap::FEW_EF );
return true;
}
return false;
}
//================================================================================
/*!
* \brief Look for a group containing a target shape and similar to a source group
* \param tgtShape - target edge or face
* \param tgtMesh1 - target mesh
* \param srcGroup - source group
* \retval TopoDS_Shape - found target group
*/
//================================================================================
TopoDS_Shape findGroupContaining(const TopoDS_Shape& tgtShape,
const SMESH_Mesh* tgtMesh1,
const TopoDS_Shape& srcGroup)
{
list<SMESH_subMesh*> subMeshes = tgtMesh1->GetGroupSubMeshesContaining(tgtShape);
list<SMESH_subMesh*>::iterator sm = subMeshes.begin();
int type, last = TopAbs_SHAPE;
for ( ; sm != subMeshes.end(); ++sm ) {
const TopoDS_Shape & group = (*sm)->GetSubShape();
// check if group is similar to srcGroup
for ( type = srcGroup.ShapeType(); type < last; ++type)
if ( SMESH_MesherHelper::Count( srcGroup, (TopAbs_ShapeEnum)type, 0) !=
SMESH_MesherHelper::Count( group, (TopAbs_ShapeEnum)type, 0))
break;
if ( type == last )
return group;
}
return TopoDS_Shape();
}
//================================================================================
/*!
* \brief Find association of groups at top and bottom of prism
*/
//================================================================================
bool assocGroupsByPropagation(const TopoDS_Shape& theGroup1,
const TopoDS_Shape& theGroup2,
SMESH_Mesh& theMesh,
HERE::TShapeShapeMap& theMap)
{
// If groups are on top and bottom of prism then we can associate
// them using "vertical" (or "side") edges and faces of prism since
// they connect corresponding vertices and edges of groups.
TopTools_IndexedMapOfShape subshapes1, subshapes2;
TopExp::MapShapes( theGroup1, subshapes1 );
TopExp::MapShapes( theGroup2, subshapes2 );
TopTools_ListIteratorOfListOfShape ancestIt;
// Iterate on vertices of group1 to find corresponding vertices in group2
// and associate adjacent edges and faces
TopTools_MapOfShape verticShapes;
TopExp_Explorer vExp1( theGroup1, TopAbs_VERTEX );
for ( ; vExp1.More(); vExp1.Next() )
{
const TopoDS_Vertex& v1 = TopoDS::Vertex( vExp1.Current() );
if ( theMap.IsBound( v1 )) continue; // already processed
// Find "vertical" edge ending in v1 and whose other vertex belongs to group2
TopoDS_Shape verticEdge, v2;
ancestIt.Initialize( theMesh.GetAncestors( v1 ));
for ( ; verticEdge.IsNull() && ancestIt.More(); ancestIt.Next() )
{
if ( ancestIt.Value().ShapeType() != TopAbs_EDGE ) continue;
v2 = HERE::GetNextVertex( TopoDS::Edge( ancestIt.Value() ), v1 );
if ( subshapes2.Contains( v2 ))
verticEdge = ancestIt.Value();
}
if ( verticEdge.IsNull() )
return false;
HERE::InsertAssociation( v1, v2, theMap);
// Associate edges by vertical faces sharing the found vertical edge
ancestIt.Initialize( theMesh.GetAncestors( verticEdge ) );
for ( ; ancestIt.More(); ancestIt.Next() )
{
if ( ancestIt.Value().ShapeType() != TopAbs_FACE ) continue;
if ( !verticShapes.Add( ancestIt.Value() )) continue;
const TopoDS_Face& face = TopoDS::Face( ancestIt.Value() );
// get edges of the face
TopoDS_Edge edgeGr1, edgeGr2, verticEdge2;
list< TopoDS_Edge > edges; list< int > nbEdgesInWire;
SMESH_Block::GetOrderedEdges( face, edges, nbEdgesInWire, v1);
if ( nbEdgesInWire.front() != 4 )
return storeShapeForDebug( face );
list< TopoDS_Edge >::iterator edge = edges.begin();
if ( verticEdge.IsSame( *edge )) {
edgeGr2 = *(++edge);
verticEdge2 = *(++edge);
edgeGr1 = *(++edge);
} else {
edgeGr1 = *(edge++);
verticEdge2 = *(edge++);
edgeGr2 = *(edge++);
}
HERE::InsertAssociation( edgeGr1, edgeGr2.Reversed(), theMap);
}
}
// Associate faces
TopoDS_Iterator gr1It( theGroup1 );
if ( gr1It.Value().ShapeType() == TopAbs_FACE )
{
// find a boundary edge of group1 to start from
TopoDS_Shape bndEdge = HERE::GetBoundaryEdge( theGroup1, theMesh );
if ( bndEdge.IsNull() )
return false;
list< TopoDS_Shape > edges(1, bndEdge);
list< TopoDS_Shape >::iterator edge1 = edges.begin();
for ( ; edge1 != edges.end(); ++edge1 )
{
// there must be one or zero not associated faces between ancestors of edge
// belonging to theGroup1
TopoDS_Shape face1;
ancestIt.Initialize( theMesh.GetAncestors( *edge1 ) );
for ( ; ancestIt.More() && face1.IsNull(); ancestIt.Next() ) {
if ( ancestIt.Value().ShapeType() == TopAbs_FACE &&
!theMap.IsBound( ancestIt.Value() ) &&
subshapes1.Contains( ancestIt.Value() ))
face1 = ancestIt.Value();
// add edges of face1 to start searching for adjacent faces from
for ( TopExp_Explorer e(face1, TopAbs_EDGE); e.More(); e.Next())
if ( !edge1->IsSame( e.Current() ))
edges.push_back( e.Current() );
}
if ( !face1.IsNull() ) {
// find the corresponding face of theGroup2
TopoDS_Shape edge2 = theMap( *edge1 );
TopoDS_Shape face2;
ancestIt.Initialize( theMesh.GetAncestors( edge2 ) );
for ( ; ancestIt.More() && face2.IsNull(); ancestIt.Next() ) {
if ( ancestIt.Value().ShapeType() == TopAbs_FACE &&
!theMap.IsBound( ancestIt.Value(), /*is2nd=*/true ) &&
subshapes2.Contains( ancestIt.Value() ))
face2 = ancestIt.Value();
}
if ( face2.IsNull() )
return false;
HERE::InsertAssociation( face1, face2, theMap);
}
}
}
theMap.SetAssocType( HERE::TShapeShapeMap::PROPAGATION );
return true;
}
//================================================================================
/*!
* \brief Return true if uv position of the vIndex-th vertex of edge on face is close
* enough to given uv
*/
//================================================================================
bool sameVertexUV( const TopoDS_Edge& edge,
const TopoDS_Face& face,
const int& vIndex,
const gp_Pnt2d& uv,
const double& tol2d )
{
TopoDS_Vertex V = SMESH_MesherHelper::IthVertex( vIndex, edge, /*CumOri=*/true );
gp_Pnt2d v1UV = BRep_Tool::Parameters( V, face);
double dist2d = v1UV.Distance( uv );
return dist2d < tol2d;
}
//================================================================================
/*!
* \brief Returns an EDGE suitable for search of initial vertex association
*/
//================================================================================
bool getOuterEdges( const TopoDS_Shape shape,
SMESH_Mesh& mesh,
std::list< TopoDS_Edge >& allBndEdges )
{
if ( shape.ShapeType() == TopAbs_COMPOUND )
{
TopoDS_Iterator it( shape );
if ( it.More() && it.Value().ShapeType() == TopAbs_FACE ) // group of FACEs
{
// look for a boundary EDGE of a group
StdMeshers_ProjectionUtils::GetBoundaryEdge( shape, mesh, &allBndEdges );
if ( !allBndEdges.empty() )
return true;
}
}
SMESH_MesherHelper helper( mesh );
helper.SetSubShape( shape );
TopExp_Explorer expF( shape, TopAbs_FACE ), expE;
if ( expF.More() ) {
for ( ; expF.More(); expF.Next() ) {
TopoDS_Shape wire =
StdMeshers_ProjectionUtils::OuterShape( TopoDS::Face( expF.Current() ), TopAbs_WIRE );
for ( expE.Init( wire, TopAbs_EDGE ); expE.More(); expE.Next() )
if ( ! helper.IsClosedEdge( TopoDS::Edge( expE.Current() )))
{
if ( helper.IsSeamShape( expE.Current() ))
allBndEdges.push_back( TopoDS::Edge( expE.Current() ));
else
allBndEdges.push_front( TopoDS::Edge( expE.Current() ));
}
}
}
else if ( shape.ShapeType() != TopAbs_EDGE) { // no faces
for ( expE.Init( shape, TopAbs_EDGE ); expE.More(); expE.Next() )
if ( ! helper.IsClosedEdge( TopoDS::Edge( expE.Current() )))
{
if ( helper.IsSeamShape( expE.Current() ))
allBndEdges.push_back( TopoDS::Edge( expE.Current() ));
else
allBndEdges.push_front( TopoDS::Edge( expE.Current() ));
}
}
else if ( shape.ShapeType() == TopAbs_EDGE ) {
if ( ! helper.IsClosedEdge( TopoDS::Edge( shape )))
allBndEdges.push_back( TopoDS::Edge( shape ));
}
return !allBndEdges.empty();
}
/*!
* \brief Convertor used in Delaunay constructor
*/
struct SideVector2UVPtStructVec
{
std::vector< const UVPtStructVec* > _uvVecs;
SideVector2UVPtStructVec( const TSideVector& wires )
{
_uvVecs.resize( wires.size() );
for ( size_t i = 0; i < wires.size(); ++i )
_uvVecs[ i ] = & wires[i]->GetUVPtStruct();
}
operator const std::vector< const UVPtStructVec* > & () const
{
return _uvVecs;
}
};
} // namespace
//=======================================================================
/*
* Looks for association of all sub-shapes of two shapes
* \param theShape1 - target shape
* \param theMesh1 - mesh built on shape 1
* \param theShape2 - source shape
* \param theMesh2 - mesh built on shape 2
* \param theAssociation - association map to be filled that may
* contain association of one or two pairs of vertices
* \retval bool - true if association found
*/
//=======================================================================
bool StdMeshers_ProjectionUtils::FindSubShapeAssociation(const TopoDS_Shape& theShape1,
SMESH_Mesh* theMesh1,
const TopoDS_Shape& theShape2,
SMESH_Mesh* theMesh2,
TShapeShapeMap & theMap)
{
// Structure of this long function is following
// 1) Group -> Group projection: theShape1 is a group member,
// theShape2 is another group. We find the group theShape1 is in and recall self.
// 2) Accosiate same shapes with different location (partners).
// 3) If vertex association is given, perform association according to shape type:
// switch ( ShapeType ) {
// case TopAbs_EDGE:
// case ...:
// }
// 4) else try to accosiate in different ways:
// a) accosiate shapes by propagation and other simple cases
// switch ( ShapeType ) {
// case TopAbs_EDGE:
// case ...:
// }
// b) find association of a couple of vertices and recall self.
//
theMeshDS[0] = theMesh1->GetMeshDS(); // debug
theMeshDS[1] = theMesh2->GetMeshDS();
// =================================================================================
// 1) Is it the case of associating a group member -> another group? (PAL16202, 16203)
// =================================================================================
if ( theShape1.ShapeType() != theShape2.ShapeType() )
{
TopoDS_Shape group1, group2;
if ( theShape1.ShapeType() == TopAbs_COMPOUND ) {
group1 = theShape1;
group2 = findGroupContaining( theShape2, theMesh2, group1 );
}
else if ( theShape2.ShapeType() == TopAbs_COMPOUND ) {
group2 = theShape2;
group1 = findGroupContaining( theShape1, theMesh1, group2 );
}
if ( group1.IsNull() || group2.IsNull() )
RETURN_BAD_RESULT("Different shape types");
// Associate compounds
return FindSubShapeAssociation(group1, theMesh1, group2, theMesh2, theMap );
}
// ============
// 2) Is partner?
// ============
bool partner = theShape1.IsPartner( theShape2 );
TopTools_DataMapIteratorOfDataMapOfShapeShape vvIt( theMap._map1to2 );
for ( ; partner && vvIt.More(); vvIt.Next() )
partner = vvIt.Key().IsPartner( vvIt.Value() );
if ( partner ) // Same shape with different location
{
// recursively associate all sub-shapes of theShape1 and theShape2
typedef list< pair< TopoDS_Shape, TopoDS_Shape > > TShapePairsList;
TShapePairsList shapesQueue( 1, make_pair( theShape1, theShape2 ));
TShapePairsList::iterator s1_s2 = shapesQueue.begin();
for ( ; s1_s2 != shapesQueue.end(); ++s1_s2 )
{
if ( theMap.IsBound( s1_s2->first )) // avoid re-binding for a seam edge
continue; // to avoid this: Forward seam -> Reversed seam
InsertAssociation( s1_s2->first, s1_s2->second, theMap );
TopoDS_Iterator s1It( s1_s2->first), s2It( s1_s2->second );
for ( ; s1It.More(); s1It.Next(), s2It.Next() )
shapesQueue.push_back( make_pair( s1It.Value(), s2It.Value() ));
}
theMap.SetAssocType( TShapeShapeMap::PARTNER );
return true;
}
if ( !theMap.IsEmpty() )
{
//======================================================================
// 3) HAS initial vertex association
//======================================================================
bool isVCloseness = ( theMap._assocType == TShapeShapeMap::CLOSE_VERTEX );
theMap.SetAssocType( TShapeShapeMap::INIT_VERTEX );
switch ( theShape1.ShapeType() ) {
// ----------------------------------------------------------------------
case TopAbs_EDGE: { // TopAbs_EDGE
// ----------------------------------------------------------------------
if ( theMap.Extent() != 1 )
RETURN_BAD_RESULT("Wrong map extent " << theMap.Extent() );
TopoDS_Edge edge1 = TopoDS::Edge( theShape1 );
TopoDS_Edge edge2 = TopoDS::Edge( theShape2 );
if ( edge1.Orientation() >= TopAbs_INTERNAL ) edge1.Orientation( TopAbs_FORWARD );
if ( edge2.Orientation() >= TopAbs_INTERNAL ) edge2.Orientation( TopAbs_FORWARD );
TopoDS_Vertex VV1[2], VV2[2];
TopExp::Vertices( edge1, VV1[0], VV1[1] );
TopExp::Vertices( edge2, VV2[0], VV2[1] );
int i1 = 0, i2 = 0;
if ( theMap.IsBound( VV1[ i1 ] )) i1 = 1;
if ( theMap.IsBound( VV2[ i2 ] )) i2 = 1;
InsertAssociation( VV1[ i1 ], VV2[ i2 ], theMap );
InsertAssociation( theShape1, theShape2, theMap );
return true;
}
// ----------------------------------------------------------------------
case TopAbs_FACE: { // TopAbs_FACE
// ----------------------------------------------------------------------
TopoDS_Face face1 = TopoDS::Face( theShape1 );
TopoDS_Face face2 = TopoDS::Face( theShape2 );
if ( face1.Orientation() >= TopAbs_INTERNAL ) face1.Orientation( TopAbs_FORWARD );
if ( face2.Orientation() >= TopAbs_INTERNAL ) face2.Orientation( TopAbs_FORWARD );
TopoDS_Vertex VV1[2], VV2[2];
// find a not closed edge of face1 both vertices of which are associated
int nbEdges = 0;
TopExp_Explorer exp ( face1, TopAbs_EDGE );
for ( ; VV2[ 1 ].IsNull() && exp.More(); exp.Next(), ++nbEdges ) {
TopExp::Vertices( TopoDS::Edge( exp.Current() ), VV1[0], VV1[1] );
if ( theMap.IsBound( VV1[0] ) ) {
VV2[ 0 ] = TopoDS::Vertex( theMap( VV1[0] ));
if ( theMap.IsBound( VV1[1] ) && !VV1[0].IsSame( VV1[1] ))
VV2[ 1 ] = TopoDS::Vertex( theMap( VV1[1] ));
}
}
if ( VV2[ 1 ].IsNull() ) { // 2 bound vertices not found
if ( nbEdges > 1 ) {
RETURN_BAD_RESULT("2 bound vertices not found" );
} else {
VV2[ 1 ] = VV2[ 0 ];
}
}
list< TopoDS_Edge > edges1, edges2;
int nbE = FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2, isVCloseness );
if ( !nbE ) RETURN_BAD_RESULT("FindFaceAssociation() failed");
fixAssocByPropagation( nbE, edges1, edges2, theMesh1, theMesh2 );
list< TopoDS_Edge >::iterator eIt1 = edges1.begin();
list< TopoDS_Edge >::iterator eIt2 = edges2.begin();
for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 )
{
InsertAssociation( *eIt1, *eIt2, theMap );
VV1[0] = TopExp::FirstVertex( *eIt1, true );
VV2[0] = TopExp::FirstVertex( *eIt2, true );
InsertAssociation( VV1[0], VV2[0], theMap );
}
InsertAssociation( theShape1, theShape2, theMap );
return true;
}
// ----------------------------------------------------------------------
case TopAbs_SHELL: // TopAbs_SHELL, TopAbs_SOLID
case TopAbs_SOLID: {
// ----------------------------------------------------------------------
TopoDS_Vertex VV1[2], VV2[2];
// try to find a not closed edge of shape1 both vertices of which are associated
TopoDS_Edge edge1;
TopExp_Explorer exp ( theShape1, TopAbs_EDGE );
for ( ; VV2[ 1 ].IsNull() && exp.More(); exp.Next() ) {
edge1 = TopoDS::Edge( exp.Current() );
if ( edge1.Orientation() >= TopAbs_INTERNAL ) edge1.Orientation( TopAbs_FORWARD );
TopExp::Vertices( edge1 , VV1[0], VV1[1] );
if ( theMap.IsBound( VV1[0] )) {
VV2[ 0 ] = TopoDS::Vertex( theMap( VV1[0] ));
if ( theMap.IsBound( VV1[1] ) && !VV1[0].IsSame( VV1[1] ))
VV2[ 1 ] = TopoDS::Vertex( theMap( VV1[1] ));
}
}
if ( VV2[ 1 ].IsNull() ) // 2 bound vertices not found
RETURN_BAD_RESULT("2 bound vertices not found" );
// get an edge2 of theShape2 corresponding to edge1
TopoDS_Edge edge2 = GetEdgeByVertices( theMesh2, VV2[ 0 ], VV2[ 1 ]);
if ( edge2.IsNull() )
RETURN_BAD_RESULT("GetEdgeByVertices() failed");
// build map of edge to faces if shapes are not sub-shapes of main ones
bool isSubOfMain = false;
if ( SMESHDS_SubMesh * sm = theMesh1->GetMeshDS()->MeshElements( theShape1 ))
isSubOfMain = !sm->IsComplexSubmesh();
else
isSubOfMain = theMesh1->GetMeshDS()->ShapeToIndex( theShape1 );
TAncestorMap e2f1, e2f2;
const TAncestorMap& edgeToFace1 = isSubOfMain ? theMesh1->GetAncestorMap() : e2f1;
const TAncestorMap& edgeToFace2 = isSubOfMain ? theMesh2->GetAncestorMap() : e2f2;
if (!isSubOfMain) {
TopExp::MapShapesAndAncestors( theShape1, TopAbs_EDGE, TopAbs_FACE, e2f1 );
TopExp::MapShapesAndAncestors( theShape2, TopAbs_EDGE, TopAbs_FACE, e2f2 );
if ( !edgeToFace1.Contains( edge1 ))
RETURN_BAD_RESULT("edge1 does not belong to theShape1");
if ( !edgeToFace2.Contains( edge2 ))
RETURN_BAD_RESULT("edge2 does not belong to theShape2");
}
//
// Look for 2 corresponing faces:
//
TopoDS_Shape F1, F2;
// get a face sharing edge1 (F1)
TopTools_ListIteratorOfListOfShape ancestIt1( edgeToFace1.FindFromKey( edge1 ));
for ( ; F1.IsNull() && ancestIt1.More(); ancestIt1.Next() )
if ( ancestIt1.Value().ShapeType() == TopAbs_FACE )
F1 = ancestIt1.Value().Oriented //( TopAbs_FORWARD );
( SMESH_MesherHelper::GetSubShapeOri( theShape1, ancestIt1.Value() ));
if ( F1.IsNull() )
RETURN_BAD_RESULT(" Face1 not found");
// get 2 faces sharing edge2 (one of them is F2)
TopoDS_Shape FF2[2];
TopTools_ListIteratorOfListOfShape ancestIt2( edgeToFace2.FindFromKey( edge2 ));
for ( int i = 0; FF2[1].IsNull() && ancestIt2.More(); ancestIt2.Next() )
if ( ancestIt2.Value().ShapeType() == TopAbs_FACE )
FF2[ i++ ] = ancestIt2.Value().Oriented // ( TopAbs_FORWARD );
( SMESH_MesherHelper::GetSubShapeOri( theShape2, ancestIt2.Value() ));
// get oriented edge1 and edge2 from F1 and FF2[0]
for ( exp.Init( F1, TopAbs_EDGE ); exp.More(); exp.Next() )
if ( edge1.IsSame( exp.Current() )) {
edge1 = TopoDS::Edge( exp.Current() );
break;
}
for ( exp.Init( FF2[ 0 ], TopAbs_EDGE ); exp.More(); exp.Next() )
if ( edge2.IsSame( exp.Current() )) {
edge2 = TopoDS::Edge( exp.Current() );
break;
}
// compare first vertices of edge1 and edge2
TopExp::Vertices( edge1, VV1[0], VV1[1], true );
TopExp::Vertices( edge2, VV2[0], VV2[1], true );
F2 = FF2[ 0 ]; // (F2 !)
if ( !VV1[ 0 ].IsSame( theMap( VV2[ 0 ], /*is2=*/true))) {
edge2.Reverse();
if ( FF2[ 1 ].IsNull() )
F2.Reverse();
else
F2 = FF2[ 1 ];
}
// association of face sub-shapes and neighbour faces
list< pair < TopoDS_Face, TopoDS_Edge > > FE1, FE2;
list< pair < TopoDS_Face, TopoDS_Edge > >::iterator fe1, fe2;
FE1.push_back( make_pair( TopoDS::Face( F1 ), edge1 ));
FE2.push_back( make_pair( TopoDS::Face( F2 ), edge2 ));
for ( fe1 = FE1.begin(), fe2 = FE2.begin(); fe1 != FE1.end(); ++fe1, ++fe2 )
{
const TopoDS_Face& face1 = fe1->first;
if ( theMap.IsBound( face1 ) ) continue;
const TopoDS_Face& face2 = fe2->first;
edge1 = fe1->second;
edge2 = fe2->second;
TopExp::Vertices( edge1, VV1[0], VV1[1], true );
TopExp::Vertices( edge2, VV2[0], VV2[1], true );
list< TopoDS_Edge > edges1, edges2;
int nbE = FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2, isVCloseness );
if ( !nbE ) RETURN_BAD_RESULT("FindFaceAssociation() failed");
InsertAssociation( face1, face2, theMap ); // assoc faces
// MESSAGE("Assoc FACE " << theMesh1->GetMeshDS()->ShapeToIndex( face1 )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( face2 ));
if ( nbE == 2 && (edge1.IsSame( edges1.front())) != (edge2.IsSame( edges2.front())))
{
reverseEdges( edges2, nbE );
}
list< TopoDS_Edge >::iterator eIt1 = edges1.begin();
list< TopoDS_Edge >::iterator eIt2 = edges2.begin();
for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 )
{
if ( !InsertAssociation( *eIt1, *eIt2, theMap )) // assoc edges
continue; // already associated
VV1[0] = TopExp::FirstVertex( *eIt1, true );
VV2[0] = TopExp::FirstVertex( *eIt2, true );
InsertAssociation( VV1[0], VV2[0], theMap ); // assoc vertices
// add adjacent faces to process
TopoDS_Face nextFace1 = GetNextFace( edgeToFace1, *eIt1, face1 );
TopoDS_Face nextFace2 = GetNextFace( edgeToFace2, *eIt2, face2 );
if ( !nextFace1.IsNull() && !nextFace2.IsNull() ) {
if ( SMESH_MesherHelper::GetSubShapeOri( nextFace1, *eIt1 ) == eIt1->Orientation() )
nextFace1.Reverse();
if ( SMESH_MesherHelper::GetSubShapeOri( nextFace2, *eIt2 ) == eIt2->Orientation() )
nextFace2.Reverse();
FE1.push_back( make_pair( nextFace1, *eIt1 ));
FE2.push_back( make_pair( nextFace2, *eIt2 ));
}
}
}
InsertAssociation( theShape1, theShape2, theMap );
return true;
}
// ----------------------------------------------------------------------
case TopAbs_COMPOUND: { // GROUP
// ----------------------------------------------------------------------
// Maybe groups contain only one member
TopoDS_Iterator it1( theShape1 ), it2( theShape2 );
TopAbs_ShapeEnum memberType = it1.Value().ShapeType();
int nbMembers = SMESH_MesherHelper::Count( theShape1, memberType, true );
if ( nbMembers == 0 ) return true;
if ( nbMembers == 1 ) {
return FindSubShapeAssociation( it1.Value(), theMesh1, it2.Value(), theMesh2, theMap );
}
// Try to make shells of faces
//
BRep_Builder builder;
TopoDS_Shell shell1, shell2;
builder.MakeShell(shell1); builder.MakeShell(shell2);
if ( memberType == TopAbs_FACE ) {
// just add faces of groups to shells
for (; it1.More(); it1.Next(), it2.Next() )
builder.Add( shell1, it1.Value() ), builder.Add( shell2, it2.Value() );
}
else if ( memberType == TopAbs_EDGE ) {
// Try to add faces sharing more than one edge of a group or
// sharing all its vertices with the group
TopTools_IndexedMapOfShape groupVertices[2];
TopExp::MapShapes( theShape1, TopAbs_VERTEX, groupVertices[0]);
TopExp::MapShapes( theShape2, TopAbs_VERTEX, groupVertices[1]);
//
TopTools_MapOfShape groupEdges[2], addedFaces[2];
bool hasInitAssoc = (!theMap.IsEmpty()), initAssocOK = !hasInitAssoc;
for (; it1.More(); it1.Next(), it2.Next() ) {
groupEdges[0].Add( it1.Value() );
groupEdges[1].Add( it2.Value() );
if ( !initAssocOK ) {
// for shell association there must be an edge with both vertices bound
TopoDS_Vertex v1, v2;
TopExp::Vertices( TopoDS::Edge( it1.Value().Oriented(TopAbs_FORWARD)), v1, v2 );
initAssocOK = ( theMap.IsBound( v1 ) && theMap.IsBound( v2 ));
}
}
for (int is2ndGroup = 0; initAssocOK && is2ndGroup < 2; ++is2ndGroup) {
const TopoDS_Shape& group = is2ndGroup ? theShape2: theShape1;
SMESH_Mesh* mesh = is2ndGroup ? theMesh2 : theMesh1;
TopoDS_Shell& shell = is2ndGroup ? shell2 : shell1;
for ( TopoDS_Iterator it( group ); it.More(); it.Next() ) {
const TopoDS_Edge& edge = TopoDS::Edge( it.Value() );
TopoDS_Face face;
for ( int iF = 0; iF < 2; ++iF ) { // loop on 2 faces sharing edge
face = GetNextFace(mesh->GetAncestorMap(), edge, face);
if ( !face.IsNull() ) {
int nbGroupEdges = 0;
for ( TopExp_Explorer f( face, TopAbs_EDGE ); f.More(); f.Next())
if ( groupEdges[ is2ndGroup ].Contains( f.Current() ))
if ( ++nbGroupEdges > 1 )
break;
bool add = (nbGroupEdges > 1 ||
SMESH_MesherHelper::Count( face, TopAbs_EDGE, true ) == 1 );
if ( !add ) {
add = true;
for ( TopExp_Explorer v( face, TopAbs_VERTEX ); add && v.More(); v.Next())
add = groupVertices[ is2ndGroup ].Contains( v.Current() );
}
if ( add && addedFaces[ is2ndGroup ].Add( face ))
builder.Add( shell, face );
}
}
}
}
} else {
RETURN_BAD_RESULT("Unexpected group type");
}
// Associate shells
//
int nbFaces1 = SMESH_MesherHelper::Count( shell1, TopAbs_FACE, 0 );
int nbFaces2 = SMESH_MesherHelper::Count( shell2, TopAbs_FACE, 0 );
if ( nbFaces1 != nbFaces2 )
RETURN_BAD_RESULT("Different nb of faces found for shells");
if ( nbFaces1 > 0 ) {
bool ok = false;
if ( nbFaces1 == 1 ) {
TopoDS_Shape F1 = TopoDS_Iterator( shell1 ).Value();
TopoDS_Shape F2 = TopoDS_Iterator( shell2 ).Value();
ok = FindSubShapeAssociation( F1, theMesh1, F2, theMesh2, theMap );
}
else {
ok = FindSubShapeAssociation(shell1, theMesh1, shell2, theMesh2, theMap );
}
// Check if all members are mapped
if ( ok ) {
TopTools_MapOfShape boundMembers[2];
TopoDS_Iterator mIt;
for ( mIt.Initialize( theShape1 ); mIt.More(); mIt.Next())
if ( theMap.IsBound( mIt.Value() )) {
boundMembers[0].Add( mIt.Value() );
boundMembers[1].Add( theMap( mIt.Value() ));
}
if ( boundMembers[0].Extent() != nbMembers ) {
// make compounds of not bound members
TopoDS_Compound comp[2];
for ( int is2ndGroup = 0; is2ndGroup < 2; ++is2ndGroup ) {
builder.MakeCompound( comp[is2ndGroup] );
for ( mIt.Initialize( is2ndGroup ? theShape2:theShape1 ); mIt.More(); mIt.Next())
if ( ! boundMembers[ is2ndGroup ].Contains( mIt.Value() ))
builder.Add( comp[ is2ndGroup ], mIt.Value() );
}
// check if theMap contains initial association for the comp's
bool hasInitialAssoc = false;
if ( memberType == TopAbs_EDGE ) {
for ( TopExp_Explorer v( comp[0], TopAbs_VERTEX ); v.More(); v.Next())
if ( theMap.IsBound( v.Current() )) {
hasInitialAssoc = true;
break;
}
}
if ( hasInitialAssoc == bool( !theMap.IsEmpty() ))
ok = FindSubShapeAssociation( comp[0], theMesh1, comp[1], theMesh2, theMap );
else {
TShapeShapeMap tmpMap;
ok = FindSubShapeAssociation( comp[0], theMesh1, comp[1], theMesh2, tmpMap );
if ( ok ) {
TopTools_DataMapIteratorOfDataMapOfShapeShape mapIt( tmpMap._map1to2 );
for ( ; mapIt.More(); mapIt.Next() )
theMap.Bind( mapIt.Key(), mapIt.Value());
}
}
}
}
return ok;
}
// Each edge of an edge group is shared by own faces
// ------------------------------------------------------------------
//
// map vertices to edges sharing them, avoid doubling edges in lists
TopTools_DataMapOfShapeListOfShape v2e[2];
for (int isFirst = 0; isFirst < 2; ++isFirst ) {
const TopoDS_Shape& group = isFirst ? theShape1 : theShape2;
TopTools_DataMapOfShapeListOfShape& veMap = v2e[ isFirst ? 0 : 1 ];
TopTools_MapOfShape addedEdges;
for ( TopExp_Explorer e( group, TopAbs_EDGE ); e.More(); e.Next() ) {
const TopoDS_Shape& edge = e.Current();
if ( addedEdges.Add( edge )) {
for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next()) {
const TopoDS_Shape& vertex = v.Current();
if ( !veMap.IsBound( vertex )) {
TopTools_ListOfShape l;
veMap.Bind( vertex, l );
}
veMap( vertex ).Append( edge );
}
}
}
}
while ( !v2e[0].IsEmpty() )
{
// find a bound vertex
TopoDS_Vertex V[2];
TopTools_DataMapIteratorOfDataMapOfShapeListOfShape v2eIt( v2e[0] );
for ( ; v2eIt.More(); v2eIt.Next())
if ( theMap.IsBound( v2eIt.Key() )) {
V[0] = TopoDS::Vertex( v2eIt.Key() );
V[1] = TopoDS::Vertex( theMap( V[0] ));
break;
}
if ( V[0].IsNull() )
RETURN_BAD_RESULT("No more bound vertices");
while ( !V[0].IsNull() && v2e[0].IsBound( V[0] )) {
TopTools_ListOfShape& edges0 = v2e[0]( V[0] );
TopTools_ListOfShape& edges1 = v2e[1]( V[1] );
int nbE0 = edges0.Extent(), nbE1 = edges1.Extent();
if ( nbE0 != nbE1 )
RETURN_BAD_RESULT("Different nb of edges: "<< nbE0 << " != " << nbE1);
if ( nbE0 == 1 )
{
TopoDS_Edge e0 = TopoDS::Edge( edges0.First() );
TopoDS_Edge e1 = TopoDS::Edge( edges1.First() );
v2e[0].UnBind( V[0] );
v2e[1].UnBind( V[1] );
InsertAssociation( e0, e1, theMap );
// MESSAGE("Assoc edge " << theMesh1->GetMeshDS()->ShapeToIndex( e0 )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( e1 ));
V[0] = GetNextVertex( e0, V[0] );
V[1] = GetNextVertex( e1, V[1] );
if ( !V[0].IsNull() ) {
InsertAssociation( V[0], V[1], theMap );
// MESSAGE("Assoc vertex " << theMesh1->GetMeshDS()->ShapeToIndex( V[0] )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( V[1] ));
}
}
else if ( nbE0 == 2 )
{
// one of edges must have both ends bound
TopoDS_Vertex v0e0 = GetNextVertex( TopoDS::Edge( edges0.First() ), V[0] );
TopoDS_Vertex v1e0 = GetNextVertex( TopoDS::Edge( edges0.Last() ), V[0] );
TopoDS_Vertex v0e1 = GetNextVertex( TopoDS::Edge( edges1.First() ), V[1] );
TopoDS_Vertex v1e1 = GetNextVertex( TopoDS::Edge( edges1.Last() ), V[1] );
TopoDS_Shape e0b, e1b, e0n, e1n, v1b; // bound and not-bound
TopoDS_Vertex v0n, v1n;
if ( theMap.IsBound( v0e0 )) {
v0n = v1e0; e0b = edges0.First(); e0n = edges0.Last(); v1b = theMap( v0e0 );
} else if ( theMap.IsBound( v1e0 )) {
v0n = v0e0; e0n = edges0.First(); e0b = edges0.Last(); v1b = theMap( v1e0 );
} else {
RETURN_BAD_RESULT("None of vertices bound");
}
if ( v1b.IsSame( v1e1 )) {
v1n = v0e1; e1n = edges1.First(); e1b = edges1.Last();
} else {
v1n = v1e1; e1b = edges1.First(); e1n = edges1.Last();
}
InsertAssociation( e0b, e1b, theMap );
InsertAssociation( e0n, e1n, theMap );
InsertAssociation( v0n, v1n, theMap );
// MESSAGE("Assoc edge " << theMesh1->GetMeshDS()->ShapeToIndex( e0b )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( e1b ));
// MESSAGE("Assoc edge " << theMesh1->GetMeshDS()->ShapeToIndex( e0n )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( e1n ));
// MESSAGE("Assoc vertex " << theMesh1->GetMeshDS()->ShapeToIndex( v0n )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( v1n ));
v2e[0].UnBind( V[0] );
v2e[1].UnBind( V[1] );
V[0] = v0n;
V[1] = v1n;
}
else {
RETURN_BAD_RESULT("Not implemented");
}
}
} //while ( !v2e[0].IsEmpty() )
return true;
}
default:
RETURN_BAD_RESULT("Unexpected shape type");
} // end switch by shape type
} // end case of available initial vertex association
//======================================================================
// 4) NO INITIAL VERTEX ASSOCIATION
//======================================================================
switch ( theShape1.ShapeType() ) {
case TopAbs_EDGE: {
// ----------------------------------------------------------------------
TopoDS_Edge edge1 = TopoDS::Edge( theShape1 );
TopoDS_Edge edge2 = TopoDS::Edge( theShape2 );
if ( isPropagationPossible( theMesh1, theMesh2 ))
{
TopoDS_Edge prpEdge = GetPropagationEdge( theMesh1, edge2, edge1 ).second;
if ( !prpEdge.IsNull() )
{
TopoDS_Vertex VV1[2], VV2[2];
TopExp::Vertices( edge1, VV1[0], VV1[1], true );
TopExp::Vertices( prpEdge, VV2[0], VV2[1], true );
InsertAssociation( VV1[ 0 ], VV2[ 0 ], theMap );
InsertAssociation( VV1[ 1 ], VV2[ 1 ], theMap );
if ( VV1[0].IsSame( VV1[1] ) || // one of edges is closed
VV2[0].IsSame( VV2[1] ) )
{
InsertAssociation( edge1, prpEdge, theMap ); // insert with a proper orientation
}
InsertAssociation( theShape1, theShape2, theMap );
theMap.SetAssocType( TShapeShapeMap::PROPAGATION );
return true; // done
}
}
if ( SMESH_MesherHelper::IsClosedEdge( edge1 ) &&
SMESH_MesherHelper::IsClosedEdge( edge2 ))
{
// TODO: find out a proper orientation (is it possible?)
InsertAssociation( edge1, edge2, theMap ); // insert with a proper orientation
InsertAssociation( TopExp::FirstVertex(edge1), TopExp::FirstVertex(edge2),
theMap );
InsertAssociation( theShape1, theShape2, theMap );
return true; // done
}
break; // try by vertex closeness
}
case TopAbs_FACE: {
// ----------------------------------------------------------------------
if ( isPropagationPossible( theMesh1, theMesh2 )) // try by propagation in one mesh
{
TopoDS_Face face1 = TopoDS::Face(theShape1);
TopoDS_Face face2 = TopoDS::Face(theShape2);
if ( face1.Orientation() >= TopAbs_INTERNAL ) face1.Orientation( TopAbs_FORWARD );
if ( face2.Orientation() >= TopAbs_INTERNAL ) face2.Orientation( TopAbs_FORWARD );
TopoDS_Edge edge1, edge2;
// get outer edge of theShape1
TopoDS_Shape wire = OuterShape( face1, TopAbs_WIRE );
//edge1 = TopoDS::Edge( OuterShape( face1, TopAbs_EDGE ));
// use map to find the closest propagation edge
map<int, pair< TopoDS_Edge, TopoDS_Edge > > propag_edges;
for ( TopoDS_Iterator edgeIt( wire ); edgeIt.More(); edgeIt.Next() )
{
edge1 = TopoDS::Edge( edgeIt.Value() );
// find out if any edge of face2 is a propagation edge of outer edge1
for ( TopExp_Explorer exp( face2, TopAbs_EDGE ); exp.More(); exp.Next() ) {
edge2 = TopoDS::Edge( exp.Current() );
pair<int,TopoDS_Edge> step_edge = GetPropagationEdge( theMesh1, edge2, edge1 );
if ( !step_edge.second.IsNull() ) { // propagation found
propag_edges.insert( make_pair( step_edge.first,
( make_pair( edge1, step_edge.second ))));
if ( step_edge.first == 1 ) break; // most close found
}
}
if ( !propag_edges.empty() && propag_edges.begin()->first == 1 ) break;
}
if ( !propag_edges.empty() ) // propagation found
{
edge1 = propag_edges.begin()->second.first;
edge2 = propag_edges.begin()->second.second;
TopoDS_Vertex VV1[2], VV2[2];
TopExp::Vertices( edge1, VV1[0], VV1[1], true );
TopExp::Vertices( edge2, VV2[0], VV2[1], true );
list< TopoDS_Edge > edges1, edges2;
int nbE = FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2 );
if ( !nbE ) RETURN_BAD_RESULT("FindFaceAssociation() failed");
// take care of proper association of propagated edges
bool same1 = edge1.IsSame( edges1.front() );
bool same2 = edge2.IsSame( edges2.front() );
if ( !same1 && !same2 )
{
same1 = ( edges1.back().Orientation() == edge1.Orientation() );
same2 = ( edges2.back().Orientation() == edge2.Orientation() );
}
if ( same1 != same2 )
{
reverseEdges(edges2, nbE);
if ( nbE != 2 ) // 2 degen edges of 4 (issue 0021144)
edges2.splice( edges2.end(), edges2, edges2.begin());
}
// store association
list< TopoDS_Edge >::iterator eIt1 = edges1.begin();
list< TopoDS_Edge >::iterator eIt2 = edges2.begin();
for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 )
{
InsertAssociation( *eIt1, *eIt2, theMap );
VV1[0] = SMESH_MesherHelper::IthVertex( 0, *eIt1, true );
VV2[0] = SMESH_MesherHelper::IthVertex( 0, *eIt2, true );
InsertAssociation( VV1[0], VV2[0], theMap );
}
InsertAssociation( theShape1, theShape2, theMap );
theMap.SetAssocType( TShapeShapeMap::PROPAGATION );
return true;
}
}
break; // try by vertex closeness
}
case TopAbs_COMPOUND: {
// ----------------------------------------------------------------------
if ( isPropagationPossible( theMesh1, theMesh2 )) {
// try to accosiate all using propagation
if ( assocGroupsByPropagation( theShape1, theShape2, *theMesh1, theMap ))
return true;
// find a boundary edge of theShape1
TopoDS_Edge E = GetBoundaryEdge( theShape1, *theMesh1 );
if ( E.IsNull() )
break; // try by vertex closeness
// find association for vertices of edge E
TopoDS_Vertex VV1[2], VV2[2];
for(TopExp_Explorer eexp(E, TopAbs_VERTEX); eexp.More(); eexp.Next()) {
TopoDS_Vertex V1 = TopoDS::Vertex( eexp.Current() );
// look for an edge ending in E whose one vertex is in theShape1
// and the other, in theShape2
const TopTools_ListOfShape& Ancestors = theMesh1->GetAncestors(V1);
TopTools_ListIteratorOfListOfShape ita(Ancestors);
for(; ita.More(); ita.Next()) {
if( ita.Value().ShapeType() != TopAbs_EDGE ) continue;
TopoDS_Edge edge = TopoDS::Edge(ita.Value());
bool FromShape1 = false;
for(TopExp_Explorer expe(theShape1, TopAbs_EDGE); expe.More(); expe.Next() ) {
if(edge.IsSame(expe.Current())) {
FromShape1 = true;
break;
}
}
if(!FromShape1) {
// is it an edge between theShape1 and theShape2?
TopExp_Explorer expv(edge, TopAbs_VERTEX);
TopoDS_Vertex V2 = TopoDS::Vertex( expv.Current() );
if(V2.IsSame(V1)) {
expv.Next();
V2 = TopoDS::Vertex( expv.Current() );
}
bool FromShape2 = false;
for ( expv.Init( theShape2, TopAbs_VERTEX ); expv.More(); expv.Next()) {
if ( V2.IsSame( expv.Current() )) {
FromShape2 = true;
break;
}
}
if ( FromShape2 ) {
if ( VV1[0].IsNull() )
VV1[0] = V1, VV2[0] = V2;
else
VV1[1] = V1, VV2[1] = V2;
break; // from loop on ancestors of V1
}
}
}
}
if ( !VV1[1].IsNull() ) {
InsertAssociation( VV1[0], VV2[0], theMap );
InsertAssociation( VV1[1], VV2[1], theMap );
TShapeShapeMap::EAssocType asType = theMap._assocType;
theMap.SetAssocType( TShapeShapeMap::PROPAGATION );
if ( FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap ))
return true;
theMap._assocType = asType;
}
}
break; // try by vertex closeness
}
default:;
}
// 4.b) Find association by closeness of vertices
// ----------------------------------------------
TopTools_IndexedMapOfShape vMap1, vMap2;
TopExp::MapShapes( theShape1, TopAbs_VERTEX, vMap1 );
TopExp::MapShapes( theShape2, TopAbs_VERTEX, vMap2 );
TopoDS_Vertex VV1[2], VV2[2];
if ( vMap1.Extent() != vMap2.Extent() )
{
if ( SMESH_MesherHelper:: Count( theShape1, TopAbs_EDGE, /*ignoreSame=*/false ) !=
SMESH_MesherHelper:: Count( theShape2, TopAbs_EDGE, /*ignoreSame=*/false ))
RETURN_BAD_RESULT("Different nb of vertices");
}
if ( vMap1.Extent() == 1 || vMap2.Extent() == 1 ) {
InsertAssociation( vMap1(1), vMap2(1), theMap );
if ( theShape1.ShapeType() == TopAbs_EDGE ) {
if ( vMap1.Extent() == 2 )
InsertAssociation( vMap1(2), vMap2(1), theMap );
else if ( vMap2.Extent() == 2 )
InsertAssociation( vMap2(2), vMap1(1), theMap );
InsertAssociation( theShape1, theShape2, theMap );
return true;
}
return FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap);
}
// Try to associate by common vertices of an edge
for ( int i = 1; i <= vMap1.Extent(); ++i )
{
const TopoDS_Shape& v1 = vMap1(i);
if ( vMap2.Contains( v1 ))
{
// find an egde sharing v1 and sharing at the same time another common vertex
PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( v1, *theMesh1, TopAbs_EDGE);
bool edgeFound = false;
while ( edgeIt->more() && !edgeFound )
{
TopoDS_Edge edge = TopoDS::Edge( edgeIt->next()->Oriented(TopAbs_FORWARD));
TopExp::Vertices(edge, VV1[0], VV1[1]);
if ( !VV1[0].IsSame( VV1[1] ))
edgeFound = ( vMap2.Contains( VV1[ v1.IsSame(VV1[0]) ? 1:0]));
}
if ( edgeFound )
{
InsertAssociation( VV1[0], VV1[0], theMap );
InsertAssociation( VV1[1], VV1[1], theMap );
TShapeShapeMap::EAssocType asType = theMap._assocType;
theMap.SetAssocType( TShapeShapeMap::COMMON_VERTEX );
if ( FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap ))
return true;
theMap._assocType = asType;
}
}
}
// Find transformation to make the shapes be of similar size at same location
Bnd_Box box[2];
for ( int i = 1; i <= vMap1.Extent(); ++i )
box[ 0 ].Add( BRep_Tool::Pnt ( TopoDS::Vertex( vMap1( i ))));
for ( int i = 1; i <= vMap2.Extent(); ++i )
box[ 1 ].Add( BRep_Tool::Pnt ( TopoDS::Vertex( vMap2( i ))));
gp_Pnt gc[2]; // box center
double x0,y0,z0, x1,y1,z1;
box[0].Get( x0,y0,z0, x1,y1,z1 );
gc[0] = 0.5 * ( gp_XYZ( x0,y0,z0 ) + gp_XYZ( x1,y1,z1 ));
box[1].Get( x0,y0,z0, x1,y1,z1 );
gc[1] = 0.5 * ( gp_XYZ( x0,y0,z0 ) + gp_XYZ( x1,y1,z1 ));
// 1 -> 2
gp_Vec vec01( gc[0], gc[1] );
double scale = sqrt( box[1].SquareExtent() / box[0].SquareExtent() );
// Find 2 closest vertices
// get 2 linked vertices of shape 1 not belonging to an inner wire of a face
std::list< TopoDS_Edge > allBndEdges1;
if ( !getOuterEdges( theShape1, *theMesh1, allBndEdges1 ))
{
if ( theShape1.ShapeType() != TopAbs_FACE )
RETURN_BAD_RESULT("Edge not found");
return assocFewEdgesFaces( TopoDS::Face( theShape1 ), theMesh1,
TopoDS::Face( theShape2 ), theMesh2, theMap );
}
std::list< TopoDS_Edge >::iterator edge1 = allBndEdges1.begin();
double minDist = std::numeric_limits<double>::max();
for ( int nbChecked=0; edge1 != allBndEdges1.end() && nbChecked++ < 10; ++edge1 )
{
TopoDS_Vertex edge1VV[2];
TopExp::Vertices( TopoDS::Edge( edge1->Oriented(TopAbs_FORWARD)), edge1VV[0], edge1VV[1]);
if ( edge1VV[0].IsSame( edge1VV[1] ))
continue;//RETURN_BAD_RESULT("Only closed edges");
// find vertices closest to 2 linked vertices of shape 1
double dist2[2] = { 1e+100, 1e+100 };
TopoDS_Vertex edge2VV[2];
for ( int i1 = 0; i1 < 2; ++i1 )
{
gp_Pnt p1 = BRep_Tool::Pnt( edge1VV[ i1 ]);
p1.Scale( gc[0], scale );
p1.Translate( vec01 );
if ( !i1 ) {
// select a closest vertex among all ones in vMap2
for ( int i2 = 1; i2 <= vMap2.Extent(); ++i2 )
{
TopoDS_Vertex V2 = TopoDS::Vertex( vMap2( i2 ));
gp_Pnt p2 = BRep_Tool::Pnt ( V2 );
double d2 = p1.SquareDistance( p2 );
if ( d2 < dist2[ 0 ] && d2 < minDist ) {
edge2VV[ 0 ] = V2;
dist2 [ 0 ] = d2;
}
}
}
else if ( !edge2VV[0].IsNull() ) {
// select a closest vertex among ends of edges meeting at edge2VV[0]
PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( edge2VV[0],
*theMesh2, TopAbs_EDGE);
while ( const TopoDS_Shape* edge2 = edgeIt->next() )
for ( TopoDS_Iterator itV2( *edge2 ); itV2.More(); itV2.Next() )
{
if ( itV2.Value().IsSame( edge2VV[ 0 ])) continue;
if ( !vMap2.Contains( itV2.Value() )) continue;
TopoDS_Vertex V2 = TopoDS::Vertex( itV2.Value() );
gp_Pnt p2 = BRep_Tool::Pnt ( V2 );
double d2 = p1.SquareDistance( p2 );
if ( d2 < dist2[1] && d2 < minDist ) {
edge2VV[ 1 ] = V2;
dist2 [ 1 ] = d2;
}
}
}
}
if ( dist2[0] + dist2[1] < minDist ) {
VV1[0] = edge1VV[0];
VV1[1] = edge1VV[1];
VV2[0] = edge2VV[0];
VV2[1] = edge2VV[1];
minDist = dist2[0] + dist2[1];
if ( minDist < 1e-10 )
break;
}
}
theMap.SetAssocType( TShapeShapeMap::CLOSE_VERTEX );
InsertAssociation( VV1[ 0 ], VV2[ 0 ], theMap );
InsertAssociation( VV1[ 1 ], VV2[ 1 ], theMap );
// MESSAGE("Initial assoc VERT " << theMesh1->GetMeshDS()->ShapeToIndex( VV1[ 0 ] )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( VV2[ 0 ] )<<
// "\nand VERT " << theMesh1->GetMeshDS()->ShapeToIndex( VV1[ 1 ] )<<
// " to " << theMesh2->GetMeshDS()->ShapeToIndex( VV2[ 1 ] ));
if ( theShape1.ShapeType() == TopAbs_EDGE ) {
InsertAssociation( theShape1, theShape2, theMap );
return true;
}
return FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap );
}
//================================================================================
/*
* Find association of edges of faces
* \param face1 - face 1
* \param VV1 - vertices of face 1
* \param face2 - face 2
* \param VV2 - vertices of face 2 associated with ones of face 1
* \param edges1 - out list of edges of face 1
* \param edges2 - out list of edges of face 2
* \param isClosenessAssoc - is association starting by VERTEX closeness
* \retval int - nb of edges in an outer wire in a success case, else zero
*/
//================================================================================
int StdMeshers_ProjectionUtils::FindFaceAssociation(const TopoDS_Face& face1,
TopoDS_Vertex VV1[2],
const TopoDS_Face& face2,
TopoDS_Vertex VV2[2],
list< TopoDS_Edge > & edges1,
list< TopoDS_Edge > & edges2,
const bool isClosenessAssoc)
{
bool OK = false;
list< int > nbEInW1, nbEInW2;
list< TopoDS_Edge >::iterator edgeIt;
int i_ok_wire_algo = -1;
for ( int outer_wire_algo = 0; outer_wire_algo < 2 && !OK; ++outer_wire_algo )
{
edges1.clear();
edges2.clear();
if ( SMESH_Block::GetOrderedEdges( face1, edges1, nbEInW1, VV1[0], outer_wire_algo) !=
SMESH_Block::GetOrderedEdges( face2, edges2, nbEInW2, VV2[0], outer_wire_algo) )
CONT_BAD_RESULT("Different number of wires in faces ");
if ( nbEInW1 != nbEInW2 && outer_wire_algo == 0 &&
( std::accumulate( nbEInW1.begin(), nbEInW1.end(), 0) !=
std::accumulate( nbEInW2.begin(), nbEInW2.end(), 0)))
RETURN_BAD_RESULT("Different number of edges in faces");
if ( nbEInW1.front() != nbEInW2.front() )
CONT_BAD_RESULT("Different number of edges in the outer wire: " <<
nbEInW1.front() << " != " << nbEInW2.front());
i_ok_wire_algo = outer_wire_algo;
// Define if we need to reverse one of wires to make edges in lists match each other
bool reverse = false;
const bool severalWires = ( nbEInW1.size() > 1 );
if ( !VV1[1].IsSame( TopExp::LastVertex( edges1.front(), true )))
{
reverse = true;
// check if the second vertex belongs to the first or last edge in the wire
edgeIt = --edges1.end(); // pointer to the last edge in the outer wire
if ( severalWires ) {
edgeIt = edges1.begin();
std::advance( edgeIt, nbEInW1.front()-1 );
}
if ( TopExp::FirstVertex( *edgeIt ).IsSame( TopExp::LastVertex( *edgeIt )) &&
SMESH_Algo::isDegenerated( *edgeIt )) {
--edgeIt; // skip a degenerated edge (test 3D_mesh_Projection_00/A3)
}
if ( !VV1[1].IsSame( TopExp::FirstVertex( *edgeIt, true ))) {
CONT_BAD_RESULT("GetOrderedEdges() failed");
}
}
if ( !VV2[1].IsSame( TopExp::LastVertex( edges2.front(), true )))
{
reverse = !reverse;
// check if the second vertex belongs to the first or last edge in the wire
edgeIt = --edges2.end(); // pointer to the last edge in the outer wire
if ( severalWires ) {
edgeIt = edges2.begin();
std::advance( edgeIt, nbEInW2.front()-1 );
}
if ( TopExp::FirstVertex( *edgeIt ).IsSame( TopExp::LastVertex( *edgeIt )) &&
SMESH_Algo::isDegenerated( *edgeIt )) {
--edgeIt; // skip a degenerated edge
}
if ( !VV2[1].IsSame( TopExp::FirstVertex( *edgeIt, true ))) {
CONT_BAD_RESULT("GetOrderedEdges() failed");
}
}
if ( reverse )
{
reverseEdges( edges2 , nbEInW2.front());
if ( SMESH_Algo::isDegenerated( edges2.front() ))
{
// move a degenerated edge to the back of the outer wire
edgeIt = edges2.end();
if ( severalWires ) {
edgeIt = edges2.begin();
std::advance( edgeIt, nbEInW2.front() );
}
edges2.splice( edgeIt, edges2, edges2.begin() );
}
if (( VV1[1].IsSame( TopExp::LastVertex( edges1.front(), true ))) !=
( VV2[1].IsSame( TopExp::LastVertex( edges2.front(), true ))))
CONT_BAD_RESULT("GetOrderedEdges() failed");
}
OK = true;
} // loop algos getting an outer wire
if ( OK && nbEInW1.front() > 4 ) // care of a case where faces are closed (23032)
{
// check if the first edges are seam ones
list< TopoDS_Edge >::iterator revSeam1, revSeam2;
revSeam1 = std::find( ++edges1.begin(), edges1.end(), edges1.front().Reversed());
revSeam2 = edges2.end();
if ( revSeam1 != edges1.end() )
revSeam2 = std::find( ++edges2.begin(), edges2.end(), edges2.front().Reversed());
if ( revSeam2 != edges2.end() ) // two seams detected
{
bool reverse =
std::distance( edges1.begin(), revSeam1 ) != std::distance( edges2.begin(), revSeam2 );
if ( !reverse && isClosenessAssoc )
{
// compare orientations of a non-seam edges using 3D closeness;
// look for a non-seam edges
list< TopoDS_Edge >::iterator edge1 = ++edges1.begin();
list< TopoDS_Edge >::iterator edge2 = ++edges2.begin();
for ( ; edge1 != edges1.end(); ++edge1, ++edge2 )
{
if (( edge1 == revSeam1 ) ||
( SMESH_Algo::isDegenerated( *edge1 )) ||
( std::find( ++edges1.begin(), edges1.end(), edge1->Reversed()) != edges1.end() ))
continue;
gp_Pnt p1 = BRep_Tool::Pnt( VV1[0] );
gp_Pnt p2 = BRep_Tool::Pnt( VV2[0] );
gp_Vec vec2to1( p2, p1 );
gp_Pnt pp1[2], pp2[2];
const double r = 0.2345;
double f,l;
Handle(Geom_Curve) C = BRep_Tool::Curve( *edge1, f,l );
pp1[0] = C->Value( f * r + l * ( 1. - r ));
pp1[1] = C->Value( l * r + f * ( 1. - r ));
if ( edge1->Orientation() == TopAbs_REVERSED )
std::swap( pp1[0], pp1[1] );
C = BRep_Tool::Curve( *edge2, f,l );
if ( C.IsNull() ) return 0;
pp2[0] = C->Value( f * r + l * ( 1. - r )).Translated( vec2to1 );
pp2[1] = C->Value( l * r + f * ( 1. - r )).Translated( vec2to1 );
if ( edge2->Orientation() == TopAbs_REVERSED )
std::swap( pp2[0], pp2[1] );
double dist00 = pp1[0].SquareDistance( pp2[0] );
double dist01 = pp1[0].SquareDistance( pp2[1] );
reverse = ( dist00 > dist01 );
break;
}
}
if ( reverse ) // make a seam counterpart be the first
{
list< TopoDS_Edge >::iterator outWireEnd = edges2.begin();
std::advance( outWireEnd, nbEInW2.front() );
edges2.splice( outWireEnd, edges2, edges2.begin(), ++revSeam2 );
reverseEdges( edges2 , nbEInW2.front());
}
}
}
// Try to orient all (if !OK) or only internal wires (issue 0020996) by UV similarity
if (( !OK || nbEInW1.size() > 1 ) && i_ok_wire_algo > -1 )
{
// Check that Vec(VV1[0],VV1[1]) in 2D on face1 is the same
// as Vec(VV2[0],VV2[1]) on face2
double vTol = BRep_Tool::Tolerance( VV1[0] );
BRepAdaptor_Surface surface1( face1, true );
BRepAdaptor_Surface surface2( face2, true );
// TODO: use TrsfFinder2D to superpose the faces
gp_Pnt2d v0f1UV( surface1.FirstUParameter(), surface1.FirstVParameter() );
gp_Pnt2d v0f2UV( surface2.FirstUParameter(), surface2.FirstVParameter() );
gp_Pnt2d v1f1UV( surface1.LastUParameter(), surface1.LastVParameter() );
gp_Pnt2d v1f2UV( surface2.LastUParameter(), surface2.LastVParameter() );
double vTolUV =
surface1.UResolution( vTol ) + surface1.VResolution( vTol ); // let's be tolerant
// VV1[0] = TopExp::FirstVertex( edges1.front(), true ); // ori is important if face is closed
// VV1[1] = TopExp::LastVertex ( edges1.front(), true );
// VV2[0] = TopExp::FirstVertex( edges2.front(), true );
// VV2[1] = TopExp::LastVertex ( edges2.front(), true );
// gp_Pnt2d v0f1UV = BRep_Tool::Parameters( VV1[0], face1 );
// gp_Pnt2d v0f2UV = BRep_Tool::Parameters( VV2[0], face2 );
// gp_Pnt2d v1f1UV = BRep_Tool::Parameters( VV1[1], face1 );
// gp_Pnt2d v1f2UV = BRep_Tool::Parameters( VV2[1], face2 );
gp_Vec2d v01f1Vec( v0f1UV, v1f1UV );
gp_Vec2d v01f2Vec( v0f2UV, v1f2UV );
if ( Abs( v01f1Vec.X()-v01f2Vec.X()) < vTolUV &&
Abs( v01f1Vec.Y()-v01f2Vec.Y()) < vTolUV )
{
if ( !OK /*i_ok_wire_algo != 1*/ )
{
edges1.clear();
edges2.clear();
SMESH_Block::GetOrderedEdges( face1, edges1, nbEInW1, VV1[0], i_ok_wire_algo);
SMESH_Block::GetOrderedEdges( face2, edges2, nbEInW2, VV2[0], i_ok_wire_algo);
}
gp_XY dUV = v0f2UV.XY() - v0f1UV.XY(); // UV shift between 2 faces
//
// skip edges of the outer wire (if the outer wire is OK)
list< int >::iterator nbE2, nbE1 = nbEInW1.begin();
list< TopoDS_Edge >::iterator edge2Beg, edge1Beg = edges1.begin();
if ( OK ) std::advance( edge1Beg, *nbE1++ );
list< TopoDS_Edge >::iterator edge2End, edge1End;
//
// find corresponding wires of face2
for ( int iW1 = OK; nbE1 != nbEInW1.end(); ++nbE1, ++iW1 ) // loop on wires of face1
{
// reach an end of edges of a current wire1
edge1End = edge1Beg;
std::advance( edge1End, *nbE1 );
// UV on face1 to find on face2
TopoDS_Vertex v01 = SMESH_MesherHelper::IthVertex(0,*edge1Beg);
TopoDS_Vertex v11 = SMESH_MesherHelper::IthVertex(1,*edge1Beg);
v0f1UV = BRep_Tool::Parameters( v01, face1 );
v1f1UV = BRep_Tool::Parameters( v11, face1 );
v0f1UV.ChangeCoord() += dUV;
v1f1UV.ChangeCoord() += dUV;
//
// look through wires of face2
edge2Beg = edges2.begin();
nbE2 = nbEInW2.begin();
if ( OK ) std::advance( edge2Beg, *nbE2++ );
for ( int iW2 = OK; nbE2 != nbEInW2.end(); ++nbE2, ++iW2 ) // loop on wires of face2
{
// reach an end of edges of a current wire2
edge2End = edge2Beg;
std::advance( edge2End, *nbE2 );
if ( *nbE1 == *nbE2 && iW2 >= iW1 )
{
// rotate edge2 until coincides with edge1 in 2D
int i = *nbE2;
bool sameUV = false;
while ( !( sameUV = sameVertexUV( *edge2Beg, face2, 0, v0f1UV, vTolUV )) && --i > 0 )
// move edge2Beg to place before edge2End
edges2.splice( edge2End, edges2, edge2Beg++ );
if ( sameUV )
{
if ( iW1 == 0 ) OK = true; // OK is for the first wire
// reverse edges2 if needed
if ( SMESH_MesherHelper::IsClosedEdge( *edge1Beg ))
{
// Commented (so far?) as it's not checked if orientation must be same or reversed
// double f,l;
// Handle(Geom2d_Curve) c1 = BRep_Tool::CurveOnSurface( *edge1Beg, face1,f,l );
// if ( edge1Beg->Orientation() == TopAbs_REVERSED )
// std::swap( f,l );
// gp_Pnt2d uv1 = dUV + c1->Value( f * 0.8 + l * 0.2 ).XY();
// Handle(Geom2d_Curve) c2 = BRep_Tool::CurveOnSurface( *edge2Beg, face2,f,l );
// if ( edge2Beg->Orientation() == TopAbs_REVERSED )
// std::swap( f,l );
// gp_Pnt2d uv2 = c2->Value( f * 0.8 + l * 0.2 );
// gp_Pnt2d uv3 = c2->Value( l * 0.8 + f * 0.2 );
// if ( uv1.SquareDistance( uv2 ) > uv1.SquareDistance( uv3 ))
// edge2Beg->Reverse();
}
else
{
if ( !sameVertexUV( *edge2Beg, face2, 1, v1f1UV, vTolUV ))
reverseEdges( edges2 , *nbE2, std::distance( edges2.begin(),edge2Beg ));
}
// put wire2 at a right place within edges2
if ( iW1 != iW2 ) {
list< TopoDS_Edge >::iterator place2 = edges2.begin();
std::advance( place2, std::distance( edges1.begin(), edge1Beg ));
edges2.splice( place2, edges2, edge2Beg, edge2End );
// move nbE2 as well
list< int >::iterator placeNbE2 = nbEInW2.begin();
std::advance( placeNbE2, iW1 );
nbEInW2.splice( placeNbE2, nbEInW2, nbE2 );
}
break;
}
}
// prepare for the next wire loop
edge2Beg = edge2End;
}
edge1Beg = edge1End;
}
}
}
const int nbEdges = nbEInW1.front();
if ( OK && nbEdges == 2 )
{
// if wires include 2 edges, it's impossible to associate them using
// topological information only. Try to use length of edges for association.
double l1[2], l2[2];
edgeIt = edges1.begin();
l1[0] = SMESH_Algo::EdgeLength( *edgeIt++ );
l1[1] = SMESH_Algo::EdgeLength( *edgeIt++ );
if ( Abs( l1[0] - l1[1] ) > 0.1 * Max( l1[0], l1[1] ) )
{
edgeIt = edges2.begin();
l2[0] = SMESH_Algo::EdgeLength( *edgeIt++ );
l2[1] = SMESH_Algo::EdgeLength( *edgeIt++ );
if (( l1[0] < l1[1] ) != ( l2[0] < l2[1] ))
{
reverseEdges( edges2, nbEdges );
}
}
}
return OK ? nbEInW1.front() : 0;
}
//=======================================================================
//function : InitVertexAssociation
//purpose :
//=======================================================================
void StdMeshers_ProjectionUtils::InitVertexAssociation( const SMESH_Hypothesis* theHyp,
TShapeShapeMap & theAssociationMap)
{
string hypName = theHyp->GetName();
if ( hypName == "ProjectionSource1D" ) {
const StdMeshers_ProjectionSource1D * hyp =
static_cast<const StdMeshers_ProjectionSource1D*>( theHyp );
if ( hyp->HasVertexAssociation() )
InsertAssociation( hyp->GetTargetVertex(),hyp->GetSourceVertex(),theAssociationMap );
}
else if ( hypName == "ProjectionSource2D" ) {
const StdMeshers_ProjectionSource2D * hyp =
static_cast<const StdMeshers_ProjectionSource2D*>( theHyp );
if ( hyp->HasVertexAssociation() ) {
InsertAssociation( hyp->GetTargetVertex(1),hyp->GetSourceVertex(1),theAssociationMap);
InsertAssociation( hyp->GetTargetVertex(2),hyp->GetSourceVertex(2),theAssociationMap);
}
}
else if ( hypName == "ProjectionSource3D" ) {
const StdMeshers_ProjectionSource3D * hyp =
static_cast<const StdMeshers_ProjectionSource3D*>( theHyp );
if ( hyp->HasVertexAssociation() ) {
InsertAssociation( hyp->GetTargetVertex(1),hyp->GetSourceVertex(1),theAssociationMap);
InsertAssociation( hyp->GetTargetVertex(2),hyp->GetSourceVertex(2),theAssociationMap);
}
}
}
//=======================================================================
/*
* Inserts association theShape1 <-> theShape2 to TShapeShapeMap
* \param theShape1 - target shape
* \param theShape2 - source shape
* \param theAssociationMap - association map
* \retval bool - true if there was no association for these shapes before
*/
//=======================================================================
bool StdMeshers_ProjectionUtils::InsertAssociation( const TopoDS_Shape& theShape1, // tgt
const TopoDS_Shape& theShape2, // src
TShapeShapeMap & theAssociationMap)
{
if ( !theShape1.IsNull() && !theShape2.IsNull() ) {
SHOW_SHAPE(theShape1,"Assoc ");
SHOW_SHAPE(theShape2," to ");
bool isNew = ( theAssociationMap.Bind( theShape1, theShape2 ));
return isNew;
}
else {
throw SALOME_Exception("StdMeshers_ProjectionUtils: attempt to associate NULL shape");
}
return false;
}
//=======================================================================
/*
* Finds an edge by its vertices in a main shape of the mesh
* \param aMesh - the mesh
* \param V1 - vertex 1
* \param V2 - vertex 2
* \retval TopoDS_Edge - found edge
*/
//=======================================================================
TopoDS_Edge StdMeshers_ProjectionUtils::GetEdgeByVertices( SMESH_Mesh* theMesh,
const TopoDS_Vertex& theV1,
const TopoDS_Vertex& theV2)
{
if ( theMesh && !theV1.IsNull() && !theV2.IsNull() )
{
TopTools_ListIteratorOfListOfShape ancestorIt( theMesh->GetAncestors( theV1 ));
for ( ; ancestorIt.More(); ancestorIt.Next() )
if ( ancestorIt.Value().ShapeType() == TopAbs_EDGE )
for ( TopExp_Explorer expV ( ancestorIt.Value(), TopAbs_VERTEX );
expV.More();
expV.Next() )
if ( theV2.IsSame( expV.Current() ))
return TopoDS::Edge( ancestorIt.Value() );
}
return TopoDS_Edge();
}
//================================================================================
/*
* Return another face sharing an edge
* \param edgeToFaces - data map of descendants to ancestors
* \param edge - edge
* \param face - face
* \retval TopoDS_Face - found face
*/
//================================================================================
TopoDS_Face StdMeshers_ProjectionUtils::GetNextFace( const TAncestorMap& edgeToFaces,
const TopoDS_Edge& edge,
const TopoDS_Face& face)
{
// if ( !edge.IsNull() && !face.IsNull() && edgeToFaces.Contains( edge ))
if ( !edge.IsNull() && edgeToFaces.Contains( edge )) // PAL16202
{
TopTools_ListIteratorOfListOfShape ancestorIt( edgeToFaces.FindFromKey( edge ));
for ( ; ancestorIt.More(); ancestorIt.Next() )
if ( ancestorIt.Value().ShapeType() == TopAbs_FACE &&
!face.IsSame( ancestorIt.Value() ))
return TopoDS::Face( ancestorIt.Value() );
}
return TopoDS_Face();
}
//================================================================================
/*
* Return other vertex of an edge
*/
//================================================================================
TopoDS_Vertex StdMeshers_ProjectionUtils::GetNextVertex(const TopoDS_Edge& edge,
const TopoDS_Vertex& vertex)
{
TopoDS_Vertex vF,vL;
TopExp::Vertices(edge,vF,vL);
if ( vF.IsSame( vL ))
return TopoDS_Vertex();
return vertex.IsSame( vF ) ? vL : vF;
}
//================================================================================
/*
* Return a propagation edge
* \param aMesh - mesh
* \param anEdge - edge to find by propagation
* \param fromEdge - start edge for propagation
* \param chain - return, if !NULL, a propagation chain passed till
* anEdge; if anEdge.IsNull() then a full propagation chain is returned;
* fromEdge is the 1st in the chain
* \retval pair<int,TopoDS_Edge> - propagation step and found edge
*/
//================================================================================
pair<int,TopoDS_Edge>
StdMeshers_ProjectionUtils::GetPropagationEdge( SMESH_Mesh* aMesh,
const TopoDS_Edge& anEdge,
const TopoDS_Edge& fromEdge,
TopTools_IndexedMapOfShape* chain)
{
TopTools_IndexedMapOfShape locChain;
TopTools_IndexedMapOfShape& aChain = chain ? *chain : locChain;
int step = 0;
//TopTools_IndexedMapOfShape checkedWires;
BRepTools_WireExplorer aWE;
TopoDS_Shape fourEdges[4];
// List of edges, added to chain on the previous cycle pass
TopTools_ListOfShape listPrevEdges;
listPrevEdges.Append( fromEdge );
aChain.Add( fromEdge );
// Collect all edges pass by pass
while (listPrevEdges.Extent() > 0)
{
step++;
// List of edges, added to chain on this cycle pass
TopTools_ListOfShape listCurEdges;
// Find the next portion of edges
TopTools_ListIteratorOfListOfShape itE (listPrevEdges);
for (; itE.More(); itE.Next())
{
const TopoDS_Shape& anE = itE.Value();
// Iterate on faces, having edge <anE>
TopTools_ListIteratorOfListOfShape itA (aMesh->GetAncestors(anE));
for (; itA.More(); itA.Next())
{
const TopoDS_Shape& aW = itA.Value();
// There are objects of different type among the ancestors of edge
if ( aW.ShapeType() == TopAbs_WIRE /*&& checkedWires.Add( aW )*/)
{
Standard_Integer nb = 0, found = -1;
for ( aWE.Init( TopoDS::Wire( aW )); aWE.More(); aWE.Next() ) {
if (nb+1 > 4) {
found = -1;
break;
}
fourEdges[ nb ] = aWE.Current();
if ( aWE.Current().IsSame( anE )) found = nb;
nb++;
}
if (nb == 4 && found >= 0) {
// Quadrangle face found, get an opposite edge
TopoDS_Shape& anOppE = fourEdges[( found + 2 ) % 4 ];
// add anOppE to aChain if ...
int prevChainSize = aChain.Extent();
if ( aChain.Add(anOppE) > prevChainSize ) { // ... anOppE is not in aChain
// Add found edge to the chain oriented so that to
// have it co-directed with a fromEdge
TopAbs_Orientation ori = anE.Orientation();
if ( anOppE.Orientation() == fourEdges[found].Orientation() )
ori = TopAbs::Reverse( ori );
anOppE.Orientation( ori );
if ( anOppE.IsSame( anEdge ))
return make_pair( step, TopoDS::Edge( anOppE ));
listCurEdges.Append(anOppE);
}
} // if (nb == 4 && found >= 0)
} // if (aF.ShapeType() == TopAbs_WIRE)
} // loop on ancestors of anE
} // loop on listPrevEdges
listPrevEdges = listCurEdges;
} // while (listPrevEdges.Extent() > 0)
return make_pair( INT_MAX, TopoDS_Edge());
}
//================================================================================
/*
* Find corresponding nodes on two faces
* \param face1 - the first face
* \param mesh1 - mesh containing elements on the first face
* \param face2 - the second face
* \param mesh2 - mesh containing elements on the second face
* \param assocMap - map associating sub-shapes of the faces
* \param node1To2Map - map containing found matching nodes
* \retval bool - is a success
*/
//================================================================================
bool StdMeshers_ProjectionUtils::
FindMatchingNodesOnFaces( const TopoDS_Face& face1,
SMESH_Mesh* mesh1,
const TopoDS_Face& face2,
SMESH_Mesh* mesh2,
const TShapeShapeMap & assocMap,
TNodeNodeMap & node1To2Map)
{
SMESHDS_Mesh* meshDS1 = mesh1->GetMeshDS();
SMESHDS_Mesh* meshDS2 = mesh2->GetMeshDS();
SMESH_MesherHelper helper1( *mesh1 );
SMESH_MesherHelper helper2( *mesh2 );
// Get corresponding submeshes and roughly check match of meshes
SMESHDS_SubMesh * SM2 = meshDS2->MeshElements( face2 );
SMESHDS_SubMesh * SM1 = meshDS1->MeshElements( face1 );
if ( !SM2 || !SM1 )
RETURN_BAD_RESULT("Empty submeshes");
if ( SM2->NbNodes() != SM1->NbNodes() ||
SM2->NbElements() != SM1->NbElements() )
RETURN_BAD_RESULT("Different meshes on corresponding faces "
<< meshDS1->ShapeToIndex( face1 ) << " and "
<< meshDS2->ShapeToIndex( face2 ));
if ( SM2->NbElements() == 0 )
RETURN_BAD_RESULT("Empty submeshes");
helper1.SetSubShape( face1 );
helper2.SetSubShape( face2 );
if ( helper1.HasRealSeam() != helper2.HasRealSeam() )
RETURN_BAD_RESULT("Different faces' geometry");
// Data to call SMESH_MeshEditor::FindMatchingNodes():
// 1. Nodes of corresponding links:
// get 2 matching edges, try to find not seam ones
TopoDS_Edge edge1, edge2, seam1, seam2, anyEdge1, anyEdge2;
TopExp_Explorer eE( OuterShape( face2, TopAbs_WIRE ), TopAbs_EDGE );
do {
// edge 2
TopoDS_Edge e2 = TopoDS::Edge( eE.Current() );
eE.Next();
// edge 1
if ( !assocMap.IsBound( e2, /*is2nd=*/true ))
continue;
//RETURN_BAD_RESULT("Association not found for edge " << meshDS2->ShapeToIndex( e2 ));
TopoDS_Edge e1 = TopoDS::Edge( assocMap( e2, /*is2nd=*/true ));
if ( !helper1.IsSubShape( e1, face1 ))
RETURN_BAD_RESULT("Wrong association, edge " << meshDS1->ShapeToIndex( e1 ) <<
" isn't a sub-shape of face " << meshDS1->ShapeToIndex( face1 ));
// check that there are nodes on edges
SMESHDS_SubMesh * eSM1 = meshDS1->MeshElements( e1 );
SMESHDS_SubMesh * eSM2 = meshDS2->MeshElements( e2 );
bool nodesOnEdges = ( eSM1 && eSM2 && eSM1->NbNodes() && eSM2->NbNodes() );
// check that the nodes on edges belong to faces
// (as NETGEN ignores nodes on the degenerated geom edge)
bool nodesOfFaces = false;
if ( nodesOnEdges ) {
const SMDS_MeshNode* n1 = eSM1->GetNodes()->next();
const SMDS_MeshNode* n2 = eSM2->GetNodes()->next();
nodesOfFaces = ( n1->GetInverseElementIterator(SMDSAbs_Face)->more() &&
n2->GetInverseElementIterator(SMDSAbs_Face)->more() );
}
if ( nodesOfFaces )
{
if ( helper2.IsRealSeam( e2 )) {
seam1 = e1; seam2 = e2;
}
else {
edge1 = e1; edge2 = e2;
}
}
else {
anyEdge1 = e1; anyEdge2 = e2;
}
} while ( edge2.IsNull() && eE.More() );
//
if ( edge2.IsNull() ) {
edge1 = seam1; edge2 = seam2;
}
bool hasNodesOnEdge = (! edge2.IsNull() );
if ( !hasNodesOnEdge ) {
// 0020338 - nb segments == 1
edge1 = anyEdge1; edge2 = anyEdge2;
}
// get 2 matching vertices
TopoDS_Vertex V2 = TopExp::FirstVertex( TopoDS::Edge( edge2 ));
if ( !assocMap.IsBound( V2, /*is2nd=*/true ))
{
V2 = TopExp::LastVertex( TopoDS::Edge( edge2 ));
if ( !assocMap.IsBound( V2, /*is2nd=*/true ))
RETURN_BAD_RESULT("Association not found for vertex " << meshDS2->ShapeToIndex( V2 ));
}
TopoDS_Vertex V1 = TopoDS::Vertex( assocMap( V2, /*is2nd=*/true ));
// nodes on vertices
const SMDS_MeshNode* vNode1 = SMESH_Algo::VertexNode( V1, meshDS1 );
const SMDS_MeshNode* vNode2 = SMESH_Algo::VertexNode( V2, meshDS2 );
if ( !vNode1 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS1->ShapeToIndex( V1 ));
if ( !vNode2 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS2->ShapeToIndex( V2 ));
// nodes on edges linked with nodes on vertices
const SMDS_MeshNode* nullNode = 0;
vector< const SMDS_MeshNode*> eNode1( 2, nullNode );
vector< const SMDS_MeshNode*> eNode2( 2, nullNode );
if ( hasNodesOnEdge )
{
int nbNodeToGet = 1;
if ( helper1.IsClosedEdge( edge1 ) || helper2.IsClosedEdge( edge2 ) )
nbNodeToGet = 2;
for ( int is2 = 0; is2 < 2; ++is2 )
{
TopoDS_Edge & edge = is2 ? edge2 : edge1;
SMESHDS_Mesh * smDS = is2 ? meshDS2 : meshDS1;
SMESHDS_SubMesh* edgeSM = smDS->MeshElements( edge );
// nodes linked with ones on vertices
const SMDS_MeshNode* vNode = is2 ? vNode2 : vNode1;
vector< const SMDS_MeshNode*>& eNode = is2 ? eNode2 : eNode1;
int nbGotNode = 0;
SMDS_ElemIteratorPtr vElem = vNode->GetInverseElementIterator(SMDSAbs_Edge);
while ( vElem->more() && nbGotNode != nbNodeToGet ) {
const SMDS_MeshElement* elem = vElem->next();
if ( edgeSM->Contains( elem ))
eNode[ nbGotNode++ ] =
( elem->GetNode(0) == vNode ) ? elem->GetNode(1) : elem->GetNode(0);
}
if ( nbGotNode > 1 ) // sort found nodes by param on edge
{
SMESH_MesherHelper* helper = is2 ? &helper2 : &helper1;
double u0 = helper->GetNodeU( edge, eNode[ 0 ]);
double u1 = helper->GetNodeU( edge, eNode[ 1 ]);
if ( u0 > u1 ) std::swap( eNode[ 0 ], eNode[ 1 ]);
}
if ( nbGotNode == 0 )
RETURN_BAD_RESULT("Found no nodes on edge " << smDS->ShapeToIndex( edge ) <<
" linked to " << vNode );
}
}
else // 0020338 - nb segments == 1
{
// get 2 other matching vertices
V2 = TopExp::LastVertex( TopoDS::Edge( edge2 ));
if ( !assocMap.IsBound( V2, /*is2nd=*/true ))
RETURN_BAD_RESULT("Association not found for vertex " << meshDS2->ShapeToIndex( V2 ));
V1 = TopoDS::Vertex( assocMap( V2, /*is2nd=*/true ));
// nodes on vertices
eNode1[0] = SMESH_Algo::VertexNode( V1, meshDS1 );
eNode2[0] = SMESH_Algo::VertexNode( V2, meshDS2 );
if ( !eNode1[0] ) RETURN_BAD_RESULT("No node on vertex #" << meshDS1->ShapeToIndex( V1 ));
if ( !eNode2[0] ) RETURN_BAD_RESULT("No node on vertex #" << meshDS2->ShapeToIndex( V2 ));
}
// 2. face sets
int assocRes;
for ( int iAttempt = 0; iAttempt < 2; ++iAttempt )
{
set<const SMDS_MeshElement*> Elems1, Elems2;
for ( int is2 = 0; is2 < 2; ++is2 )
{
set<const SMDS_MeshElement*> & elems = is2 ? Elems2 : Elems1;
SMESHDS_SubMesh* sm = is2 ? SM2 : SM1;
SMESH_MesherHelper* helper = is2 ? &helper2 : &helper1;
const TopoDS_Face & face = is2 ? face2 : face1;
SMDS_ElemIteratorPtr eIt = sm->GetElements();
if ( !helper->IsRealSeam( is2 ? edge2 : edge1 ))
{
while ( eIt->more() ) elems.insert( elems.end(), eIt->next() );
}
else
{
// the only suitable edge is seam, i.e. it is a sphere.
// FindMatchingNodes() will not know which way to go from any edge.
// So we ignore all faces having nodes on edges or vertices except
// one of faces sharing current start nodes
// find a face to keep
const SMDS_MeshElement* faceToKeep = 0;
const SMDS_MeshNode* vNode = is2 ? vNode2 : vNode1;
const SMDS_MeshNode* eNode = is2 ? eNode2[0] : eNode1[0];
TIDSortedElemSet inSet, notInSet;
const SMDS_MeshElement* f1 =
SMESH_MeshAlgos::FindFaceInSet( vNode, eNode, inSet, notInSet );
if ( !f1 ) RETURN_BAD_RESULT("The first face on seam not found");
notInSet.insert( f1 );
const SMDS_MeshElement* f2 =
SMESH_MeshAlgos::FindFaceInSet( vNode, eNode, inSet, notInSet );
if ( !f2 ) RETURN_BAD_RESULT("The second face on seam not found");
// select a face with less UV of vNode
const SMDS_MeshNode* notSeamNode[2] = {0, 0};
for ( int iF = 0; iF < 2; ++iF ) {
const SMDS_MeshElement* f = ( iF ? f2 : f1 );
for ( int i = 0; !notSeamNode[ iF ] && i < f->NbNodes(); ++i ) {
const SMDS_MeshNode* node = f->GetNode( i );
if ( !helper->IsSeamShape( node->getshapeId() ))
notSeamNode[ iF ] = node;
}
}
gp_Pnt2d uv1 = helper->GetNodeUV( face, vNode, notSeamNode[0] );
gp_Pnt2d uv2 = helper->GetNodeUV( face, vNode, notSeamNode[1] );
if ( uv1.X() + uv1.Y() > uv2.X() + uv2.Y() )
faceToKeep = f2;
else
faceToKeep = f1;
// fill elem set
elems.insert( faceToKeep );
while ( eIt->more() ) {
const SMDS_MeshElement* f = eIt->next();
int nbNodes = f->NbNodes();
if ( f->IsQuadratic() )
nbNodes /= 2;
bool onBnd = false;
for ( int i = 0; !onBnd && i < nbNodes; ++i ) {
const SMDS_MeshNode* node = f->GetNode( i );
onBnd = ( node->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE);
}
if ( !onBnd )
elems.insert( f );
}
// add also faces adjacent to faceToKeep
int nbNodes = faceToKeep->NbNodes();
if ( faceToKeep->IsQuadratic() ) nbNodes /= 2;
notInSet.insert( f1 );
notInSet.insert( f2 );
for ( int i = 0; i < nbNodes; ++i ) {
const SMDS_MeshNode* n1 = faceToKeep->GetNode( i );
const SMDS_MeshNode* n2 = faceToKeep->GetNode(( i+1 ) % nbNodes );
f1 = SMESH_MeshAlgos::FindFaceInSet( n1, n2, inSet, notInSet );
if ( f1 )
elems.insert( f1 );
}
} // case on a sphere
} // loop on 2 faces
node1To2Map.clear();
assocRes = SMESH_MeshEditor::FindMatchingNodes( Elems1, Elems2,
vNode1, vNode2,
eNode1[0], eNode2[0],
node1To2Map);
if (( assocRes != SMESH_MeshEditor::SEW_OK ) &&
( eNode1[1] || eNode2[1] )) // there is another node to try (on a closed EDGE)
{
node1To2Map.clear();
if ( eNode1[1] ) std::swap( eNode1[0], eNode1[1] );
else std::swap( eNode2[0], eNode2[1] );
continue; // one more attempt
}
break;
}
if ( assocRes != SMESH_MeshEditor::SEW_OK )
RETURN_BAD_RESULT("FindMatchingNodes() result " << assocRes );
// On a sphere, add matching nodes on the edge
if ( helper1.IsRealSeam( edge1 ))
{
// sort nodes on edges by param on edge
map< double, const SMDS_MeshNode* > u2nodesMaps[2];
for ( int is2 = 0; is2 < 2; ++is2 )
{
TopoDS_Edge & edge = is2 ? edge2 : edge1;
SMESHDS_Mesh * smDS = is2 ? meshDS2 : meshDS1;
SMESHDS_SubMesh* edgeSM = smDS->MeshElements( edge );
map< double, const SMDS_MeshNode* > & pos2nodes = u2nodesMaps[ is2 ];
SMDS_NodeIteratorPtr nIt = edgeSM->GetNodes();
while ( nIt->more() ) {
const SMDS_MeshNode* node = nIt->next();
const SMDS_EdgePosition* pos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition());
pos2nodes.insert( make_pair( pos->GetUParameter(), node ));
}
if ((int) pos2nodes.size() != edgeSM->NbNodes() )
RETURN_BAD_RESULT("Equal params of nodes on edge "
<< smDS->ShapeToIndex( edge ) << " of face " << is2 );
}
if ( u2nodesMaps[0].size() != u2nodesMaps[1].size() )
RETURN_BAD_RESULT("Different nb of new nodes on edges or wrong params");
// compare edge orientation
double u1 = helper1.GetNodeU( edge1, vNode1 );
double u2 = helper2.GetNodeU( edge2, vNode2 );
bool isFirst1 = ( u1 < u2nodesMaps[0].begin()->first );
bool isFirst2 = ( u2 < u2nodesMaps[1].begin()->first );
bool reverse ( isFirst1 != isFirst2 );
// associate matching nodes
map< double, const SMDS_MeshNode* >::iterator u_Node1, u_Node2, end1;
map< double, const SMDS_MeshNode* >::reverse_iterator uR_Node2;
u_Node1 = u2nodesMaps[0].begin();
u_Node2 = u2nodesMaps[1].begin();
uR_Node2 = u2nodesMaps[1].rbegin();
end1 = u2nodesMaps[0].end();
for ( ; u_Node1 != end1; ++u_Node1 ) {
const SMDS_MeshNode* n1 = u_Node1->second;
const SMDS_MeshNode* n2 = ( reverse ? (uR_Node2++)->second : (u_Node2++)->second );
node1To2Map.insert( make_pair( n1, n2 ));
}
// associate matching nodes on the last vertices
V2 = TopExp::LastVertex( TopoDS::Edge( edge2 ));
if ( !assocMap.IsBound( V2, /*is2nd=*/true ))
RETURN_BAD_RESULT("Association not found for vertex " << meshDS2->ShapeToIndex( V2 ));
V1 = TopoDS::Vertex( assocMap( V2, /*is2nd=*/true ));
vNode1 = SMESH_Algo::VertexNode( V1, meshDS1 );
vNode2 = SMESH_Algo::VertexNode( V2, meshDS2 );
if ( !vNode1 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS1->ShapeToIndex( V1 ));
if ( !vNode2 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS2->ShapeToIndex( V2 ));
node1To2Map.insert( make_pair( vNode1, vNode2 ));
}
// don't know why this condition is usually true :(
// if ( node1To2Map.size() * quadFactor < SM1->NbNodes() )
// MESSAGE("FindMatchingNodes() found too few node pairs starting from nodes ("
// << vNode1->GetID() << " - " << eNode1[0]->GetID() << ") ("
// << vNode2->GetID() << " - " << eNode2[0]->GetID() << "):"
// << node1To2Map.size() * quadFactor << " < " << SM1->NbNodes());
return true;
}
//================================================================================
/*
* Return any sub-shape of a face belonging to the outer wire
* \param face - the face
* \param type - type of sub-shape to return
* \retval TopoDS_Shape - the found sub-shape
*/
//================================================================================
TopoDS_Shape StdMeshers_ProjectionUtils::OuterShape( const TopoDS_Face& face,
TopAbs_ShapeEnum type)
{
TopExp_Explorer exp( BRepTools::OuterWire( face ), type );
if ( exp.More() )
return exp.Current();
return TopoDS_Shape();
}
//================================================================================
/*
* Check that sub-mesh is computed and try to compute it if is not
* \param sm - sub-mesh to compute
* \param iterationNb - int used to stop infinite recursive call
* \retval bool - true if computed
*/
//================================================================================
bool StdMeshers_ProjectionUtils::MakeComputed(SMESH_subMesh * sm, const int iterationNb)
{
if ( iterationNb > 10 )
RETURN_BAD_RESULT("Infinite recursive projection");
if ( !sm )
RETURN_BAD_RESULT("NULL submesh");
if ( sm->IsMeshComputed() )
return true;
SMESH_Mesh* mesh = sm->GetFather();
SMESH_Gen* gen = mesh->GetGen();
SMESH_Algo* algo = sm->GetAlgo();
TopoDS_Shape shape = sm->GetSubShape();
if ( !algo )
{
if ( shape.ShapeType() != TopAbs_COMPOUND )
{
// No algo assigned to a non-compound sub-mesh.
// Try to find an all-dimensional algo of an upper dimension
int dim = gen->GetShapeDim( shape );
for ( ++dim; ( dim <= 3 && !algo ); ++dim )
{
SMESH_HypoFilter hypoFilter( SMESH_HypoFilter::IsAlgo() );
hypoFilter.And( SMESH_HypoFilter::HasDim( dim ));
list <const SMESHDS_Hypothesis * > hyps;
list< TopoDS_Shape > assignedTo;
int nbAlgos =
mesh->GetHypotheses( shape, hypoFilter, hyps, true, &assignedTo );
if ( nbAlgos > 1 ) // concurrent algos
{
vector<SMESH_subMesh*> smList; // where an algo is assigned
list< TopoDS_Shape >::iterator shapeIt = assignedTo.begin();
for ( ; shapeIt != assignedTo.end(); ++shapeIt )
smList.push_back( mesh->GetSubMesh( *shapeIt ));
mesh->SortByMeshOrder( smList );
algo = smList.front()->GetAlgo();
shape = smList.front()->GetSubShape();
}
else if ( nbAlgos == 1 )
{
algo = (SMESH_Algo*) hyps.front();
shape = assignedTo.front();
}
}
if ( !algo )
return false;
}
else
{
// group
bool computed = true;
for ( TopoDS_Iterator grMember( shape ); grMember.More(); grMember.Next())
if ( SMESH_subMesh* grSub = mesh->GetSubMesh( grMember.Value() ))
if ( !MakeComputed( grSub, iterationNb + 1 ))
computed = false;
return computed;
}
}
string algoType = algo->GetName();
if ( algoType.substr(0, 11) != "Projection_")
return gen->Compute( *mesh, shape, SMESH_Gen::SHAPE_ONLY );
// try to compute source mesh
const list <const SMESHDS_Hypothesis *> & hyps =
algo->GetUsedHypothesis( *mesh, shape );
TopoDS_Shape srcShape;
SMESH_Mesh* srcMesh = 0;
list <const SMESHDS_Hypothesis*>::const_iterator hIt = hyps.begin();
for ( ; srcShape.IsNull() && hIt != hyps.end(); ++hIt ) {
string hypName = (*hIt)->GetName();
if ( hypName == "ProjectionSource1D" ) {
const StdMeshers_ProjectionSource1D * hyp =
static_cast<const StdMeshers_ProjectionSource1D*>( *hIt );
srcShape = hyp->GetSourceEdge();
srcMesh = hyp->GetSourceMesh();
}
else if ( hypName == "ProjectionSource2D" ) {
const StdMeshers_ProjectionSource2D * hyp =
static_cast<const StdMeshers_ProjectionSource2D*>( *hIt );
srcShape = hyp->GetSourceFace();
srcMesh = hyp->GetSourceMesh();
}
else if ( hypName == "ProjectionSource3D" ) {
const StdMeshers_ProjectionSource3D * hyp =
static_cast<const StdMeshers_ProjectionSource3D*>( *hIt );
srcShape = hyp->GetSource3DShape();
srcMesh = hyp->GetSourceMesh();
}
}
if ( srcShape.IsNull() ) // no projection source defined
return gen->Compute( *mesh, shape, /*shapeOnly=*/true );
if ( srcShape.IsSame( shape ))
RETURN_BAD_RESULT("Projection from self");
if ( !srcMesh )
srcMesh = mesh;
if ( MakeComputed( srcMesh->GetSubMesh( srcShape ), iterationNb + 1 ) &&
gen->Compute( *mesh, shape, SMESH_Gen::SHAPE_ONLY ))
return sm->IsMeshComputed();
return false;
}
//================================================================================
/*
* Returns an error message to show in case if MakeComputed( sm ) fails.
*/
//================================================================================
std::string StdMeshers_ProjectionUtils::SourceNotComputedError( SMESH_subMesh * sm,
SMESH_Algo* projAlgo )
{
const char usualMessage [] = "Source mesh not computed";
if ( !projAlgo )
return usualMessage;
if ( !sm || sm->GetAlgoState() != SMESH_subMesh::NO_ALGO )
return usualMessage; // algo is OK, anything else is KO.
// Try to find a type of all-dimensional algorithm that would compute the
// given sub-mesh if it could be launched before projection
const TopoDS_Shape shape = sm->GetSubShape();
const int shapeDim = SMESH_Gen::GetShapeDim( shape );
for ( int dimIncrement = 1; shapeDim + dimIncrement < 4; ++dimIncrement )
{
SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
filter.And( filter.HasDim( shapeDim + dimIncrement ));
SMESH_Algo* algo = (SMESH_Algo*) sm->GetFather()->GetHypothesis( shape, filter, true );
if ( algo && !algo->NeedDiscreteBoundary() )
return SMESH_Comment("\"")
<< algo->GetFeatures()._label << "\""
<< " can't be used to compute the source mesh for \""
<< projAlgo->GetFeatures()._label << "\" in this case";
}
return usualMessage;
}
//================================================================================
/*
* Return a boundary EDGE (or all boundary EDGEs) of edgeContainer
*/
//================================================================================
TopoDS_Edge
StdMeshers_ProjectionUtils::GetBoundaryEdge(const TopoDS_Shape& edgeContainer,
const SMESH_Mesh& mesh,
std::list< TopoDS_Edge >* allBndEdges)
{
TopTools_IndexedMapOfShape facesOfEdgeContainer, facesNearEdge;
TopExp::MapShapes( edgeContainer, TopAbs_FACE, facesOfEdgeContainer );
if ( !facesOfEdgeContainer.IsEmpty() )
for ( TopExp_Explorer exp(edgeContainer, TopAbs_EDGE); exp.More(); exp.Next() )
{
const TopoDS_Edge& edge = TopoDS::Edge( exp.Current() );
facesNearEdge.Clear();
PShapeIteratorPtr faceIt = SMESH_MesherHelper::GetAncestors( edge, mesh, TopAbs_FACE );
while ( const TopoDS_Shape* face = faceIt->next() )
if ( facesOfEdgeContainer.Contains( *face ))
if ( facesNearEdge.Add( *face ) && facesNearEdge.Extent() > 1 )
break;
if ( facesNearEdge.Extent() == 1 ) {
if ( allBndEdges )
allBndEdges->push_back( edge );
else
return edge;
}
}
return TopoDS_Edge();
}
namespace { // Definition of event listeners
SMESH_subMeshEventListener* getSrcSubMeshListener();
//================================================================================
/*!
* \brief Listener that resets an event listener on source submesh when
* "ProjectionSource*D" hypothesis is modified
*/
//================================================================================
struct HypModifWaiter: SMESH_subMeshEventListener
{
HypModifWaiter():SMESH_subMeshEventListener(false,// won't be deleted by submesh
"StdMeshers_ProjectionUtils::HypModifWaiter") {}
void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh,
EventListenerData*, const SMESH_Hypothesis*)
{
if ( event == SMESH_subMesh::MODIF_HYP &&
eventType == SMESH_subMesh::ALGO_EVENT)
{
// delete current source listener
subMesh->DeleteEventListener( getSrcSubMeshListener() );
// let algo set a new one
if ( SMESH_Algo* algo = subMesh->GetAlgo() )
algo->SetEventListener( subMesh );
}
}
};
//================================================================================
/*!
* \brief return static HypModifWaiter
*/
//================================================================================
SMESH_subMeshEventListener* getHypModifWaiter() {
static HypModifWaiter aHypModifWaiter;
return &aHypModifWaiter;
}
//================================================================================
/*!
* \brief return static listener for source shape submeshes
*/
//================================================================================
SMESH_subMeshEventListener* getSrcSubMeshListener() {
static SMESH_subMeshEventListener srcListener(false, // won't be deleted by submesh
"StdMeshers_ProjectionUtils::SrcSubMeshListener");
return &srcListener;
}
}
//================================================================================
/*
* Set event listeners to submesh with projection algo
* \param subMesh - submesh with projection algo
* \param srcShape - source shape
* \param srcMesh - source mesh
*/
//================================================================================
void StdMeshers_ProjectionUtils::SetEventListener(SMESH_subMesh* subMesh,
TopoDS_Shape srcShape,
SMESH_Mesh* srcMesh)
{
// Set the listener that resets an event listener on source submesh when
// "ProjectionSource*D" hypothesis is modified since source shape can be changed
subMesh->SetEventListener( getHypModifWaiter(),0,subMesh);
// Set an event listener to submesh of the source shape
if ( !srcShape.IsNull() )
{
if ( !srcMesh )
srcMesh = subMesh->GetFather();
SMESH_subMesh* srcShapeSM = srcMesh->GetSubMesh( srcShape );
if ( srcShapeSM != subMesh ) {
if ( srcShapeSM->GetSubMeshDS() &&
srcShapeSM->GetSubMeshDS()->IsComplexSubmesh() )
{ // source shape is a group
TopExp_Explorer it(srcShapeSM->GetSubShape(), // explore the group into sub-shapes...
subMesh->GetSubShape().ShapeType()); // ...of target shape type
for (; it.More(); it.Next())
{
SMESH_subMesh* srcSM = srcMesh->GetSubMesh( it.Current() );
if ( srcSM != subMesh )
{
SMESH_subMeshEventListenerData* data =
srcSM->GetEventListenerData(getSrcSubMeshListener());
if ( data )
data->mySubMeshes.push_back( subMesh );
else
data = SMESH_subMeshEventListenerData::MakeData( subMesh );
subMesh->SetEventListener ( getSrcSubMeshListener(), data, srcSM );
}
}
}
else
{
if ( SMESH_subMeshEventListenerData* data =
srcShapeSM->GetEventListenerData( getSrcSubMeshListener() ))
{
bool alreadyIn =
(std::find( data->mySubMeshes.begin(),
data->mySubMeshes.end(), subMesh ) != data->mySubMeshes.end() );
if ( !alreadyIn )
data->mySubMeshes.push_back( subMesh );
}
else
{
subMesh->SetEventListener( getSrcSubMeshListener(),
SMESH_subMeshEventListenerData::MakeData( subMesh ),
srcShapeSM );
}
}
}
}
}
namespace StdMeshers_ProjectionUtils
{
//================================================================================
/*!
* \brief Computes transformation between two sets of 2D points using
* a least square approximation
*
* See "Surface Mesh Projection For Hexahedral Mesh Generation By Sweeping"
* by X.Roca, J.Sarrate, A.Huerta. (2.2)
*/
//================================================================================
bool TrsfFinder2D::Solve( const vector< gp_XY >& srcPnts,
const vector< gp_XY >& tgtPnts )
{
// find gravity centers
gp_XY srcGC( 0,0 ), tgtGC( 0,0 );
for ( size_t i = 0; i < srcPnts.size(); ++i )
{
srcGC += srcPnts[i];
tgtGC += tgtPnts[i];
}
srcGC /= srcPnts.size();
tgtGC /= tgtPnts.size();
// find trsf
math_Matrix mat (1,4,1,4, 0.);
math_Vector vec (1,4, 0.);
// cout << "m1 = smesh.Mesh('src')" << endl
// << "m2 = smesh.Mesh('tgt')" << endl;
double xx = 0, xy = 0, yy = 0;
for ( size_t i = 0; i < srcPnts.size(); ++i )
{
gp_XY srcUV = srcPnts[i] - srcGC;
gp_XY tgtUV = tgtPnts[i] - tgtGC;
xx += srcUV.X() * srcUV.X();
yy += srcUV.Y() * srcUV.Y();
xy += srcUV.X() * srcUV.Y();
vec( 1 ) += srcUV.X() * tgtUV.X();
vec( 2 ) += srcUV.Y() * tgtUV.X();
vec( 3 ) += srcUV.X() * tgtUV.Y();
vec( 4 ) += srcUV.Y() * tgtUV.Y();
// cout << "m1.AddNode( " << srcUV.X() << ", " << srcUV.Y() << ", 0 )" << endl
// << "m2.AddNode( " << tgtUV.X() << ", " << tgtUV.Y() << ", 0 )" << endl;
}
mat( 1,1 ) = mat( 3,3 ) = xx;
mat( 2,2 ) = mat( 4,4 ) = yy;
mat( 1,2 ) = mat( 2,1 ) = mat( 3,4 ) = mat( 4,3 ) = xy;
math_Gauss solver( mat );
if ( !solver.IsDone() )
return false;
solver.Solve( vec );
if ( vec.Norm2() < gp::Resolution() )
return false;
// cout << vec( 1 ) << "\t " << vec( 2 ) << endl
// << vec( 3 ) << "\t " << vec( 4 ) << endl;
_trsf.SetTranslationPart( tgtGC );
_srcOrig = srcGC;
gp_Mat2d& M = const_cast< gp_Mat2d& >( _trsf.VectorialPart());
M( 1,1 ) = vec( 1 );
M( 2,1 ) = vec( 2 ); // | 1 3 | -- is it correct ????????
M( 1,2 ) = vec( 3 ); // | 2 4 |
M( 2,2 ) = vec( 4 );
return true;
}
//================================================================================
/*!
* \brief Transforms a 2D points using a found transformation
*/
//================================================================================
gp_XY TrsfFinder2D::Transform( const gp_Pnt2d& srcUV ) const
{
gp_XY uv = srcUV.XY() - _srcOrig ;
_trsf.Transforms( uv );
return uv;
}
//================================================================================
/*!
* \brief Computes transformation between two sets of 3D points using
* a least square approximation
*
* See "Surface Mesh Projection For Hexahedral Mesh Generation By Sweeping"
* by X.Roca, J.Sarrate, A.Huerta. (2.4)
*/
//================================================================================
bool TrsfFinder3D::Solve( const vector< gp_XYZ > & srcPnts,
const vector< gp_XYZ > & tgtPnts )
{
// find gravity center
gp_XYZ srcGC( 0,0,0 ), tgtGC( 0,0,0 );
for ( size_t i = 0; i < srcPnts.size(); ++i )
{
srcGC += srcPnts[i];
tgtGC += tgtPnts[i];
}
srcGC /= srcPnts.size();
tgtGC /= tgtPnts.size();
gp_XYZ srcOrig = 2 * srcGC - tgtGC;
gp_XYZ tgtOrig = srcGC;
// find trsf
math_Matrix mat (1,9,1,9, 0.);
math_Vector vec (1,9, 0.);
double xx = 0, yy = 0, zz = 0;
double xy = 0, xz = 0, yz = 0;
for ( size_t i = 0; i < srcPnts.size(); ++i )
{
gp_XYZ src = srcPnts[i] - srcOrig;
gp_XYZ tgt = tgtPnts[i] - tgtOrig;
xx += src.X() * src.X();
yy += src.Y() * src.Y();
zz += src.Z() * src.Z();
xy += src.X() * src.Y();
xz += src.X() * src.Z();
yz += src.Y() * src.Z();
vec( 1 ) += src.X() * tgt.X();
vec( 2 ) += src.Y() * tgt.X();
vec( 3 ) += src.Z() * tgt.X();
vec( 4 ) += src.X() * tgt.Y();
vec( 5 ) += src.Y() * tgt.Y();
vec( 6 ) += src.Z() * tgt.Y();
vec( 7 ) += src.X() * tgt.Z();
vec( 8 ) += src.Y() * tgt.Z();
vec( 9 ) += src.Z() * tgt.Z();
}
mat( 1,1 ) = mat( 4,4 ) = mat( 7,7 ) = xx;
mat( 2,2 ) = mat( 5,5 ) = mat( 8,8 ) = yy;
mat( 3,3 ) = mat( 6,6 ) = mat( 9,9 ) = zz;
mat( 1,2 ) = mat( 2,1 ) = mat( 4,5 ) = mat( 5,4 ) = mat( 7,8 ) = mat( 8,7 ) = xy;
mat( 1,3 ) = mat( 3,1 ) = mat( 4,6 ) = mat( 6,4 ) = mat( 7,9 ) = mat( 9,7 ) = xz;
mat( 2,3 ) = mat( 3,2 ) = mat( 5,6 ) = mat( 6,5 ) = mat( 8,9 ) = mat( 9,8 ) = yz;
math_Gauss solver( mat );
if ( !solver.IsDone() )
return false;
solver.Solve( vec );
if ( vec.Norm2() < gp::Resolution() )
return false;
// cout << endl
// << vec( 1 ) << "\t " << vec( 2 ) << "\t " << vec( 3 ) << endl
// << vec( 4 ) << "\t " << vec( 5 ) << "\t " << vec( 6 ) << endl
// << vec( 7 ) << "\t " << vec( 8 ) << "\t " << vec( 9 ) << endl;
_srcOrig = srcOrig;
_trsf.SetTranslationPart( tgtOrig );
gp_Mat& M = const_cast< gp_Mat& >( _trsf.VectorialPart() );
M.SetRows( gp_XYZ( vec( 1 ), vec( 2 ), vec( 3 )),
gp_XYZ( vec( 4 ), vec( 5 ), vec( 6 )),
gp_XYZ( vec( 7 ), vec( 8 ), vec( 9 )));
return true;
}
//================================================================================
/*!
* \brief Transforms a 3D point using a found transformation
*/
//================================================================================
gp_XYZ TrsfFinder3D::Transform( const gp_Pnt& srcP ) const
{
gp_XYZ p = srcP.XYZ() - _srcOrig;
_trsf.Transforms( p );
return p;
}
//================================================================================
/*!
* \brief Transforms a 3D vector using a found transformation
*/
//================================================================================
gp_XYZ TrsfFinder3D::TransformVec( const gp_Vec& v ) const
{
return v.XYZ().Multiplied( _trsf.VectorialPart() );
}
//================================================================================
/*!
* \brief Inversion
*/
//================================================================================
bool TrsfFinder3D::Invert()
{
if (( _trsf.Form() == gp_Translation ) &&
( _srcOrig.X() != 0 || _srcOrig.Y() != 0 || _srcOrig.Z() != 0 ))
{
// seems to be defined via Solve()
gp_XYZ newSrcOrig = _trsf.TranslationPart();
gp_Mat& M = const_cast< gp_Mat& >( _trsf.VectorialPart() );
const double D = M.Determinant();
if ( D < 1e-3 * ( newSrcOrig - _srcOrig ).Modulus() )
{
#ifdef _DEBUG_
cerr << "TrsfFinder3D::Invert()"
<< "D " << M.Determinant() << " IsSingular " << M.IsSingular() << endl;
#endif
return false;
}
gp_Mat Minv = M.Inverted();
_trsf.SetTranslationPart( _srcOrig );
_srcOrig = newSrcOrig;
M = Minv;
}
else
{
_trsf.Invert();
}
return true;
}
//================================================================================
/*!
* \brief triangulate the srcFace in 2D
* \param [in] srcWires - boundary of the src FACE
*/
//================================================================================
Morph::Morph(const TSideVector& srcWires):
_delaunay( srcWires, /*checkUV=*/true )
{
_srcSubMesh = srcWires[0]->GetMesh()->GetSubMesh( srcWires[0]->Face() );
}
//================================================================================
/*!
* \brief Move non-marked target nodes
* \param [in,out] tgtHelper - helper
* \param [in] tgtWires - boundary nodes of the target FACE; must be in the
* same order as the nodes in srcWires given in the constructor
* \param [in] src2tgtNodes - map of src -> tgt nodes
* \param [in] moveAll - to move all nodes; if \c false, move only non-marked nodes
* \return bool - Ok or not
*/
//================================================================================
bool Morph::Perform(SMESH_MesherHelper& tgtHelper,
const TSideVector& tgtWires,
Handle(ShapeAnalysis_Surface) tgtSurface,
const TNodeNodeMap& src2tgtNodes,
const bool moveAll)
{
// get tgt boundary points corresponding to src boundary nodes
size_t nbP = 0;
for ( size_t iW = 0; iW < tgtWires.size(); ++iW )
nbP += tgtWires[iW]->NbPoints() - 1; // 1st and last points coincide
if ( nbP != _delaunay.GetBndNodes().size() )
return false;
std::vector< gp_XY > tgtUV( nbP );
for ( size_t iW = 0, iP = 0; iW < tgtWires.size(); ++iW )
{
const UVPtStructVec& tgtPnt = tgtWires[iW]->GetUVPtStruct();
for ( int i = 0, nb = tgtPnt.size() - 1; i < nb; ++i, ++iP )
{
tgtUV[ iP ] = tgtPnt[i].UV();
}
}
SMESHDS_Mesh* tgtMesh = tgtHelper.GetMeshDS();
const SMDS_MeshNode *srcNode, *tgtNode;
// un-mark internal src nodes in order iterate them using _delaunay
int nbSrcNodes = 0;
SMDS_NodeIteratorPtr nIt = _srcSubMesh->GetSubMeshDS()->GetNodes();
if ( !nIt || !nIt->more() ) return true;
if ( moveAll )
{
nbSrcNodes = _srcSubMesh->GetSubMeshDS()->NbNodes();
while ( nIt->more() )
nIt->next()->setIsMarked( false );
}
else
{
while ( nIt->more() )
nbSrcNodes += int( !nIt->next()->isMarked() );
}
// Move tgt nodes
double bc[3]; // barycentric coordinates
int nodeIDs[3]; // nodes of a delaunay triangle
const SMDS_FacePosition* pos;
_delaunay.InitTraversal( nbSrcNodes );
while (( srcNode = _delaunay.NextNode( bc, nodeIDs )))
{
// compute new coordinates for a corresponding tgt node
gp_XY uvNew( 0., 0. ), nodeUV;
for ( int i = 0; i < 3; ++i )
uvNew += bc[i] * tgtUV[ nodeIDs[i]];
gp_Pnt xyz = tgtSurface->Value( uvNew );
// find and move tgt node
TNodeNodeMap::const_iterator n2n = src2tgtNodes.find( srcNode );
if ( n2n == src2tgtNodes.end() ) continue;
tgtNode = n2n->second;
tgtMesh->MoveNode( tgtNode, xyz.X(), xyz.Y(), xyz.Z() );
if (( pos = dynamic_cast< const SMDS_FacePosition* >( tgtNode->GetPosition() )))
const_cast<SMDS_FacePosition*>( pos )->SetParameters( uvNew.X(), uvNew.Y() );
--nbSrcNodes;
}
return nbSrcNodes == 0;
} // Morph::Perform
//=======================================================================
//function : Delaunay
//purpose : construct from face sides
//=======================================================================
Delaunay::Delaunay( const TSideVector& wires, bool checkUV ):
SMESH_Delaunay( SideVector2UVPtStructVec( wires ),
TopoDS::Face( wires[0]->FaceHelper()->GetSubShape() ),
wires[0]->FaceHelper()->GetSubShapeID() )
{
_wire = wires[0]; // keep a wire to assure _helper to keep alive
_helper = _wire->FaceHelper();
_checkUVPtr = checkUV ? & _checkUV : 0;
}
//=======================================================================
//function : Delaunay
//purpose : construct from UVPtStructVec's
//=======================================================================
Delaunay::Delaunay( const std::vector< const UVPtStructVec* > & boundaryNodes,
SMESH_MesherHelper& faceHelper,
bool checkUV):
SMESH_Delaunay( boundaryNodes,
TopoDS::Face( faceHelper.GetSubShape() ),
faceHelper.GetSubShapeID() )
{
_helper = & faceHelper;
_checkUVPtr = checkUV ? & _checkUV : 0;
}
//=======================================================================
//function : getNodeUV
//purpose :
//=======================================================================
gp_XY Delaunay::getNodeUV( const TopoDS_Face& face, const SMDS_MeshNode* node ) const
{
return _helper->GetNodeUV( face, node, 0, _checkUVPtr );
}
} // namespace StdMeshers_ProjectionUtils